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Abstract. Mobile cloud computing integrates cloud computing into mobile
environments, allowing users to use data, infrastructure, platforms, and appli-
cations on the cloud from their mobile devices. However, accessing and
exploiting cloud-based resources and services is associated with numerous
security implications (e.g. authentication and authorization) which represent the
major barriers making individuals and organizations hesitant to migrate data or
processing to the cloud. Using biometric techniques is increasingly emerging to
secure such users’ assets. In this paper, we propose a bi-modal continuous
authentication approach integrating face and touch biometrics into mobile cloud
environments, going beyond traditional one-off authentication. The system
reacts to sliding windows of recent user’s actions to dynamically update the trust
in genuineness for the current user. For each biometric trait, it calculates the
similarity scores resulting from the comparison between probes and templates,
then they are fused together. If the fusion score is above a given threshold, the
system rewards the current user; otherwise, they are penalized. In case the trust
in the current user drops below a predefined threshold, the system raises an
alarm. Experimental results indicate the advantage offered by our approach on
performance of continuous authentication systems, providing a good
security-usability tradeoff to mobile cloud environments.
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1 Introduction

Mobile devices (e.g. smartphone and tablet) are increasingly becoming an essential part
of everyday life, playing the role of the most convenient communication tool with no
constraints in time and place. In parallel, various challenges in terms of the resource use
and the communication workload are preventing the improvement of the service quality
they can offer. Mobile Cloud Computing (MCC) integrates cloud computing into
mobile environments in order to provide high-quality services to mobile users and
overcome such emerging issues [1]. MCC is widely recognized as the next generation
computing disruption, enabling mobile users to exploit infrastructure (e.g. servers and
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networks), platforms (e.g. services and operating systems), and software (e.g. appli-
cations) made available on-demand by cloud providers (e.g. Google and Microsoft).

However, accessing and exploiting cloud-based resources and applications is
associated with numerous security and privacy implications (e.g. user authentication
and authorization) which represent the major barriers making individuals and organi-
zations hesitant to migrate data or processing to the cloud [2]. For instance, a stolen
mobile device could be abused to download sensitive data from the cloud, if a mobile
user is registered with a cloud service provider. Using techniques to control the access
to data and applications becomes essential to secure users’ assets hosted by cloud
providers [3].

Existing access control methods based on passwords and smartcards tend to suffer
from the lack of authenticity and non-repudiation. By contrast, biometrics are
becoming an attractive feature for cloud providers in order to provide novel security
features and service models to their clients [4]. In user authentication, both physical and
behavioral characteristics promise to be stronger than passwords. Human peculiarities
cannot be easily stolen, forgotten, nor guessed. Emerging biometric systems are mainly
required to (i) have a high level of accuracy to be secure and practical for widespread
adoption in the cloud, (ii) operate continuously to avoid impostor users using the
system after the genuine user logs in, and (iii) protect biometric samples to preserve
users’ privacy. Meeting the requirements is essential for the successful adoption of
biometric systems.

In this paper, we specifically focus on the first two requirements and propose a
multi-modal biometric approach in order to authenticate users continuously and
transparently in mobile cloud environments. In our investigated scenario, the fusion
system uses two standalone biometrics (i.e. face and touch) and calculates the
score-level fusion of the corresponding matching scores. However, due to the natural
variation in behavior and the heterogeneous conditions in operation, a user can deviate
from the normal condition on a minority of situations as well as impostor users can
appear as genuine for certain periods. The concept of trust in genuiness of the user
models this variation. The system computes the similarity scores resulting from the
comparison between probes and templates, then they are fused together. If the fusion
score is above a given threshold, the system rewards the current user; otherwise, they
are penalized. The global system trust in the user is updated accordingly. If it is above a
given threshold, then the user continues the normal activities; otherwise, the user is
locked out. Experiments on a publicly-available dataset were carried out to validate the
methodology. The results show the potential of our approach to strength the security
provided for MCC environments.

The rest of this paper is organized as follows. Section 2 introduces a brief overview
of the related work, Sect. 3 describe the proposed approach, Sect. 4 presents experi-
ments and results, and Sect. 5 provides conclusions and insights for future work.
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2 Related Work

2.1 Access Control in Cloud Environments

Cloud services relies heavily on authentication methods based on passwords and/or
personal identification numbers. Biometrics are an attractive feature to overcome
various problems and emerge as a practical alternative to password authentication [5].

In biometric systems running on the cloud, one of the most challenging problems is
preserving user’s privacy and maintaining the confidentiality of users’ biometric data
during transfer or storing. Unlike passwords and tokens, biometric traits cannot be
canceled and reissued (i.e. if a user’s fingerprint is compromised it cannot be changed
and the user cannot use it in the future). Moreover, unsecured biometric templates are
vulnerable to biometric dilemma threat [6], where an impostor accesses a biometric
template in a less secure biometric system and uses it to gain access to a high secure
system. Hence, biometric authentication systems must consider the security of users’
biometric data. Some schemes apply biometric authentication in the cloud without
taking user’s template protection into account. For instance, Cloud Iris Verification
System (CIVS) [7] applies iris authentication for authenticating users of the cloud
software as a service. CIVS stores iris patterns on the cloud without protection. Other
approaches apply biometric authentication in the cloud with template protection
mechanisms (e.g. Revocable Bio-tokens [8]). Biometric template protection mecha-
nisms are surveyed by [9].

In general, biometric systems in cloud environments tend also to suffer from low
matching accuracy and tradeoffs between FAR (False Acceptance Rate) and TAR (True
Acceptance Rate). In general, whenever the FAR is set to a low level, the TAR falls
down too. Moreover, the low FAR can be vulnerable to doppelganger threat [6], where
a set of biometric data (i.e. stolen biometric database) can be applied to get access to a
system by leveraging the FAR. It follows that biometric authentication should have a
high TAR and very low FAR to be a secure and practical. For instance, the authors in
[10] used keystroke authentication scheme for the cloud environment. Nevertheless it
enhances the matching computation time, the authentication accuracy does not ensure
high security (FAR = 1.65%, FRR = 2.75%). In fact, even though this FAR can be
seen as practical rate, it can be exploited due to the biometric doppelganger attack [6].

In general, impostors can take advantage of the mentioned drawbacks to access data
and applications improperly since existing biometric systems in cloud environments
appear to authenticate users only at login time. By contrast, continuous authentication
promises to verify users’ identity throughout the session, strengthening the ability of
the system of locking out impostors even when the recognition ability on an individual
sample is not high. Moreover, they leverage behavioral biometrics which are not easily
to be stolen and replicated since they depend on users’ action in the context of the given
session and application. This makes harder improper access even when impostors have
a copy of the biometric trait. Furthermore, the fusion of behavioral biometrics and
physical biometrics (e.g. face) can be exploited to improve overall recognition
capabilities.
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2.2 Continuous Biometric Authentication on Mobile Device

In recent years, biometrics and security research communities have developed tech-
niques and methodologies for continuous implicit user authentication by mobile
devices [11]. We show a set of academic and commercial examples, both uni and
multi-modal.

Continuous biometric systems usually require real-time processing capabilities and
optimization methods already explored in various domains such as finance [12] and
computer networks [13]. First, biometric modalities such as gait, face, typing, or voice
are continuously measured by the built-in sensors integrated into a mobile device (e.g.
camera, touch screen, accelerometer, orientation sensor). Then, the system determines
whether these biometric traits correspond to a genuine user. If the features correspond
to a genuine user, the biometric system continues to process new incoming data [14].

Touch dynamics is one of the most commonly used continuous authentication
methods for mobile devices using touchscreen input as a data source. The way users
swipe their fingers on touchscreen of mobile devices is used to continuously authen-
ticate users while they perform basic operations [15]. For instance, [16, 17] studied
whether a classifier can continuously authenticate users based on the way they interact
with the touchscreen of a smartphone. They proposed a set of behavioral touch features
that can be extracted from raw touchscreen logs. Other continuous authentication
systems monitor user’s identity based on face recognition. In [18], it was designed a
method for detecting partially cropped and occluded faces captured using a smart-
phone’s front-facing camera for continuous authentication. The key idea is to detect
facial segments in frames and cluster the results to obtain the region which is most
likely to contain a face. Then, it was used for verification. In [19], a face-based
continuous authentication system operates in an unobtrusive manner, fusing mobile
device face capture with gyroscope, accelerometer, and magnetometer to correct face
image orientation. Several studies have used contextual information to enhance the
performance of continuous authentication such as investigating how the position in
which the smartphone is held affects user authentication. For instance, the authors in
[20] proposed a set of behavioral features useful to capture micro-movement and
orientation dynamics resulting from how a user grasps, holds, and taps on smartphones.
Behavior modelling as developed in [21] enabled cross-device authentication based on
how users perform actions.

It has been observed that some of the limitations of unimodal continuous authenti-
cation systems can be addressed by deploying multi-modal systems that essentially
integrate the evidence presented by multiple sources of information. For instance, [22]
introduced a transparent authentication framework utilizing a combination of behavioural
biometrics: keystroke dynamics and voice recognition. Similarly, [23] examined the
combination of keystroke dynamics, behavioural profiling and linguistic profiling. In
[24], the authors proposed a multi-biometric system based on the observation that the
instinctive gesture of responding to a phone call can be used to capture two different
biometrics, namely ear and arm gesture, which are complementary due to their physical
and behavioral nature. Literature in this field demonstrates that human authentication
based on multi-modal biometrics is becoming an emerging trend, and one of the most
important reasons to combine different modalities is to improve recognition accuracy.
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3 The Proposed System

The proposed approach is built on top of a modular architecture. Each component
performs a task in the typical operational cascade of a biometric system. The imple-
mentation of single modules has been properly analyzed to ensure both the effective-
ness and the efficiency of the overall system. It follows that this increases the number of
functionalities provided with no degradation in the tradeoff between security and
usability. Such feature is essential for biometric systems, especially when they operate
continuously to authenticate users based on what they do.

The underlying architecture depicted in Fig. 1 includes two independent biometric
authentication modules: face authentication module and touch authentication module.
The input of each module is the data captured by the corresponding sensor on the
mobile device, while the output is a matching score for each one of them. Each module
performs score normalization separately on the obtained scores from each of these two
biometric modules. Matching scores lie in the range [0,1], where 0 means totally
different, while 1 means the same. Then, these scores are fused together by the Trust
Manager to obtain the final matching score used to decide whether the test subject is
genuine and update the trust level accordingly.

3.1 Face Authentication Module

Nowadays, mobile devices provide routines and drivers to access on-board cameras.
Using them, it is easy to acquire users’ face images coming from a continuous clip.

The module receives an image as input. It implements the FaceNet algorithm [25]
for the localization of the relevant subregion of the image containing the face. FaceNet
has been proven to work well when face samples are collected in the wild, including
partial visibility, illumination changes, occlusion and wide variation in poses and facial
expressions. To accomplish this task, a FaceNet-based model is pre-trained on

Fig. 1. Overall architecture of the proposed multi-modal system.
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CASIA-Webface dataset1. The face region is cropped and aligned. Then, the module
detects the key points of interest on the face. More precisely, it tries to localize and
label the left eyebrow, the right eyebrow, the left eye, the right eye, the nose and the
mouth. The implemented landmark detector is based on the ensemble of regression
trees trained to estimate the facial landmark positions directly from the pixel intensities
as proposed in [26]. Each landmark is cropped and stored separately. An image cor-
rection routine is used to normalize illumination on both the face image and the
landmark images.

Five different types of features are extracted as follows: (i) the pre-processed face is
converted to grayscale, rescaled and vectorized as uni-dimensional vector; (ii) from the
64 � 64 rescaled grayscale image, Local Binary Pattern (LBP) features as
uni-dimensional vector are extracted for a cell size of 8 � 8 pixels; (iii) bounding
boxes of the landmarks are computed for each face part from the pre-processed
grayscale image. The eye-based, nose and mouth bounding boxes are resized to
16 � 20, 28 � 17 and 22 � 46 pixels respectively, then vectorized to a
uni-dimensional vector; (iv) LBP features are obtained from the resized bounding
boxes with a size of 12 � 12 pixels; (v) FaceNet embeddings resulting from the whole
face and individual landmarks are extracted.

The above features are concatenated to form a unique feature vector whose values
are transformed in the range [0,1] by min-max normalization. It constitutes the user’s
template. The matching score between the template and the probe is calculated using
Cosine Distance. As output, the module returns such distance to the Trust Manager.

3.2 Touch Authentication Module

The module receives raw touchscreen logs as input. Then, it divides up them into
individual strokes considering three types of events: finger down, move and finger
up. Each stroke is a sequence of touch data beginning with touching the screen and
ending with lifting the finger. No input is recorded between two consecutive strokes.
Every stroke is encoded as a sequence of 4-tuples data = (xi, yi, pi, ti) for i 2 1,…,Nc

where xi, yi is the location coordinates and pi is the pressure applied at time ti, and Nc is
the number of data points captured during the stroke. The module is set to process only
strokes containing more than three data points during feature extraction.

From each stroke with Nc � 4, a 30-dimensional feature vector is extracted using
the method described in [16]. The features include measures related to velocity and
acceleration both between internal-stroke points and first and last stroke points. Past
research has proven that these stroke features exhibit a larger variance across different
users than for a single user. The template is represented by an ensemble of three
classifiers properly trained with genuine data and impostor data coming from the
dataset in [16], following the one-vs-all protocol. More precisely, the three classifiers
are the AdaBoost classifier, RandomForest classifier and Stochastic Gradient Descent
classifier with a log loss function and L2 penalty. During verification, the ensemble
classifier predicts the overall matching score based on the maximum argument of the

1 http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html.
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sums of the predicted probabilities from each classifier, which is recommended for an
ensemble of well-calibrated classifiers. The matching score is normalized in the range
[0,1] by min-max normalization. As output, the module return such value to the Trust
Manager.

3.3 Trust Manager Module

The module receives two distances as matching scores coming from the Touch
Authentication module and the Face Authentication module, as input. It can operate in
two different modalities: standard continuous mode and trusted continuous mode. The
first one includes the fusion of the matching scores using a weighted sum. If the fusion
score is above a given threshold the user continues the activities, otherwise an alarm is
raised.

However, due to the natural variation in behavior and the heterogeneous conditions
in operation, a user can deviate from the normal condition on a minority of situations as
well as impostor users can appear as genuine for certain periods. Hence, the second
mode of operation includes the concept of trust in genuiness of the user. If a specific
action is performed in accordance with the normal behavior of a genuine user, then the
system’s trust in the genuineness of this user will increase. If there is a large deviation
between the behaviour of the genuine user and the current user, the trust of the system
will decrease. A small deviation from the behavior of the current user, when compared
to the template, leads to a small decrease in trust, while a large deviation to a larger
decrease. The fusion score is computed by merging the scores from the independent
biometric systems as performed in standard continuous mode. But, if the score is high
enough, the system will reward the current user, otherwise the user is penalized. If the
system trust drops below a pre-defined threshold T, the system locks itself. The
penalty/reward and the current system trust are calculated dynamically using the for-
mulas provided in [27]. As parameters for those formulas, the module sets A = 0.54,
B = 0.005, C = D=2, T = 50. The upper limit of the system trust is 100 to ensure an
imposter cannot benefit from the high trust obtained by the genuine user, before they
access the system.

4 Experimental Evaluation

4.1 Dataset

To evaluate the applicability of our proposed approach, we used the highly-challenging
UMDAA-02 [28] multi-modal database. It consists of data recorded by built-in cameras
and touchscreen sensors during activities performed on smartphones.

It includes a set of over 33,000 images captured by smartphone cameras and
recorded during all the sessions of 43 users at 7-s intervals for the first 60 s of inter-
action during each session. The number of images varies between 300 to 2,700 per
user, while the number of sessions varies between 25 and 750, providing a wide range
of images for each user and session. They include faces with partial visibility, illu-
mination changes, occlusion and variation in poses and facial expressions.
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From the same set of users during the same tasks, raw touch events were also
recorded. The number of strokes varies around 3,500 per user, while the number of
strokes per user for each session is around 196. The maximum number of data points in
a stroke ranges between 4 and 3,000. These features demonstrate this database meets
our goal.

4.2 Evaluation Protocol

We carried out extensive experiments in two different settings based on the mode of
operation of the Trust Manager (i.e. standard continuous mode and trusted continuous
mode) in order to evaluate the effectiveness of the proposed continuous biometric
approach. For each setting, we firstly consider the biometric modules separately.
During face verification, the combination of N consecutive face images is computed by
averaging the matching scores to reinforce the recognition during each iteration. In the
same way, M consecutive strokes are used to calculate the matching score for touch
authentication. Then, we combined the biometrics by averaging the scores obtained by
matching N face images and M touch strokes. M and N varies during the experiments.

In standard continuous mode, we calculated the False Recognition Rate (FRR) by
matching the user’s template against the remaining samples of the same user. If the
matching h against g is performed, the symmetric one (i.e. g against h) is not executed
to avoid correlation. Then, we computed the False Acceptance Rate (FAR) by
matching the template of each user against all the samples of the other subjects. Finally,
the Equal Error Rate (EER) is calculated starting from FAR and FRR values.

In trusted continuous mode, we replicated the evaluation protocol in [27] based on
the computation of the Average Number of Imposter Actions (ANIA) and the Average
Number of Genuine Actions (ANGA) as evaluation metrics. These indicators reveal
how much imposters can do before they are locked out and how much genuine users
can do before they are locked out of the system. Each user can be classified into one of
the following categories: the genuine user is never locked out and all impostors are
detected (+/+); the genuine user is not locked out, but some impostors are not detected
(±); the genuine user is locked out, but all the impostors are detected (�); the genuine
user is locked out, while some of the impostors are not detected (–/–).

4.3 Experimental Results

Standard Continuous Mode. The EERs obtained using different values of M and N
for touch and face respectively are reported in Fig. 2. The values of M range from 2 to
14. N is set to M/2 to achieve a good tradeoff between security and usability.

From these results, we see for single-trait biometric verification, face matcher
achieved the lowest performance comparing to touch and fusion matchers. This is
reasonable, since the face images collected into the database contain a vast variety of
challenging conditions regarding illumination, head pose, facial expression, and age
difference. All these factors contribute negatively to the verification process. Mean-
while, the multi-modal fusion always obtained higher performance than single-trait
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approaches. As proposed in this work, integrating these two modalities into the fusion
system and averaging their contribution results in a performance improvement. In
addition to it, we observed that the lowest EER values achieved in the benchmark
results carried out on the UMDAA database for uni-modal traits are EER = 18.44%
and EER = 22.10%, using N = 30 face images and M = 16 touchscreen strokes
respectively. With our approach, we achieved EER = 9.61% combining only M = 14
touch strokes and N = 14 face images. This demonstrated that the bi-modal fusion can
improve both effectiveness and efficiency.

Trusted Continuous Mode. Table 1 shows the results achieved by our approach
fusing face and touch biometrics. We report results for M = 2 and N = 1 to hold a good
trade-off between usability and security while maintaining efficiency. The guidelines
followed to report the performance are provided by [27]. The column “# Users” defines
the number of users for each category. The ANGA indicates the average number of
genuine actions before genuine users are locked out. If the genuine users are not locked
out, no ANGA is reported. The column ANIA displays the average number of impostor

Fig. 2. The performance of the proposed bi-modal approach in standard continuous mode.

Table 1. The performance of our bi-modal approach in trusted continuous mode (M = 2, N = 1).

Category #Users ANGA ANIA #NDI

+/+ 16 – 30 –

+/– 7 – 42 27 (9%)
–/+ 18 680 26 –

–/– 3 344 113 3 (2%)
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actions based on the assumption that all impostors are detected. The actions of the
non-detected impostors are not used in this calculation, but the number of non-detected
impostors is given in the column #NDI. This number should be seen in relation to the
number of biometric subjects in that category (see the percentage in the #NDI column).

In Table 1, 16 participants obtained very good recognition and only 30 actions as
ANIA. In this category, none of the genuine users is locked out and all the impostors
are detected. In the second category, we find 7 participants which are not locked out.
The average ANIA is similar (42 actions) to the first category and a total of 27
imposters were not detected (i.e. 9%). The remaining 18 genuine users in the third
category were locked out at least once by the system. For these users, we have an
average ANGA and ANIA of 680 and 26 actions, respectively. There are only 3
participants that fall into the worst category where ANGA and ANIA are 344 and 113
actions respectively and 3 imposters are not detected. Such users are not sufficiently
protected against impostors.

The experimental results promise that our approach integrating face and touch
biometrics can be a practical solution to improve both effectiveness and efficiency of
continuous authentication in comparison with uni-modal approaches.

5 Conclusions

In this paper, we presented an approach for integrating face recognition together with
touch behavior recognition to increase the overall performance of a continuous
multi-modal authentication system in mobile cloud environments, going beyond tra-
ditional one-off authentication. The system reacts to users’ actions and dynamically
update the trust in genuiness for the user. Experimental results show promising per-
formance which indicates the advantage offered by our system and makes it suitable for
mobile cloud applications requiring a good security-usability tradeoff.

In next steps, we will investigate approaches to improve recognition scores returned
by individual biometric systems, adding novel types of feature as an example. Larger
datasets where to test our approach will be considered. Furthermore, we will study
other penalty-reward equations in order to dynamically update the trust level. We also
plan to employ Big Data architectures to support large-scale fast computations and
leverage the cloud’s unbounded computational resources and attractive properties of
flexibility, scalability, and cost reduction to enhance the overall performance of our
approach.
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