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Abstract. The complementary nature of color and depth synchronized
information acquired by low cost RGBD sensors poses new challenges
and design opportunities in several applications and research areas. Here,
we focus on background subtraction for moving object detection, which
is the building block for many computer vision applications, being the
first relevant step for subsequent recognition, classification, and activity
analysis tasks. The aim of this paper is to describe a novel benchmarking
framework that we set up and made publicly available in order to evalu-
ate and compare scene background modeling methods for moving object
detection on RGBD videos. The proposed framework involves the largest
RGBD video dataset ever made for this specific purpose. The 33 videos
span seven categories, selected to include diverse scene background mod-
eling challenges for moving object detection. Seven evaluation metrics,
chosen among the most widely used, are adopted to evaluate the results
against a wide set of pixel-wise ground truths. Moreover, we present a
preliminary analysis of results, devoted to assess to what extent the var-
ious background modeling challenges pose troubles to background sub-
traction methods exploiting color and depth information.
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1 Introduction

The advent of low cost RGBD sensors such as Microsoft Kinect or Asus Xtion
Pro is completely changing the computer vision world, as they are being suc-
cessfully used in several applications and research areas. Many of these appli-
cations, such as gaming or human computer interaction systems, rely on the
efficiency of learning a scene background model for detecting and tracking mov-
ing objects, to be further processed and analyzed. Depth data is particularly
attractive and suitable for applications based on moving objects detection, since
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they are not affected by several problems representative of color-based imagery.
However, depth data suffer from other problems, such as depth camouflage or
depth sensor noisy measurements, which limit the efficiency of depth-only based
background modeling approaches. The complementary nature of color and depth
synchronized information acquired by RGBD sensors poses new challenges and
design opportunities. New strategies are required that explore the effectiveness of
the combination of depth- and color-based features, or their joint incorporation
into well known moving object detection and tracking frameworks.

In order to evaluate and compare scene background modelling methods for
moving object detection on RGBD videos, we assembled and made available the
SBM-RGBD dataset1. It provides all facilities (data, ground truths, and eval-
uation scripts) for the SBM-RGBD Challenge, organized in conjunction with
the Workshop on Background Learning for Detection and Tracking from RGBD
Videos, 2017. The dataset and the results of the SBM-RGBD Challenge, which
are described in the following sections, will remain available also after the com-
petition, as reference for future methods.

2 Video Categories

The SBM-RGBD dataset provides a wide set of synchronized color and depth
sequences acquired by the Microsoft Kinect. The dataset consists of 33 videos
(about 15000 frames) representative of typical indoor visual data captured in
video surveillance and smart environment scenarios, selected to cover a wide
range of scene background modeling challenges for moving object detection.
The videos come from our personal collections as well as from existing pub-
lic datasets, including the GSM dataset, described in Moyá-Alcover et al. [13],
MULTIVISION, described in Fernandez-Sanchez et al. [5], the Princeton Track-
ing Benchmark, described by Song and Xiao [14], the RGB-D object detection
dataset, described by Camplani and Salgado [3], and the UR Fall Detection
Dataset, described by Kwolek and Kepski [7].

The videos have 640 × 480 spatial resolution and their length varies from 70
to 1400 frames. Depth images are recorded at either 16 or 8 bits. They are already
synchronized and registered with the corresponding color images by projecting
the depth map onto the color image, allowing a color-depth pixel correspondence.
For each sequence, pixels that have no color-depth correspondence (due to the
difference in the color and depth cameras centers) are indicated in black in a
binary Region-of-Interest (ROI) image (see Fig. 2-(c)) and are excluded by the
evaluation (see Sect. 4).

The videos span seven categories, selected to include diverse scene back-
ground modelling challenges for moving object detection. These well known
challenges can be related only to the RGB channels (RGB), only to the depth
channel (D), or can be related to all the channels (RGB+D):

1 http://rgbd2017.na.icar.cnr.it/SBM-RGBDdataset.html.

http://rgbd2017.na.icar.cnr.it/SBM-RGBDdataset.html
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1. Bootstrapping (RGB+D): Videos including foreground objects in all their
frames. The challenge is to learn a model of the scene background (to be
adopted for background subtraction) even when the usual assumption of hav-
ing a set of training frames empty of foreground objects fails.
This category includes five videos, in most of which the background is never
shown in some scene regions, being always occupied by foreground people.

2. Color Camouflage (RGB): Videos including foreground objects whose color
is very close to that of the background, making hard a correct segmentation
based only on color.
This category consists of four videos where foreground objects are moved
in front of similarly colored background (e.g., a white box in front of other
white boxes or a rolling furniture moving in front of other furniture of the
same color).

3. Depth Camouflage (D): Videos including foreground objects very close in
depth to the background. Indeed, in these cases the sensor gives the same
depth data values for foreground and background, making hard a correct
segmentation based only on depth.
The category consists of four videos where people move their hands or other
objects very close to the background.

4. Illumination Changes (RGB): Videos containing strong and mild illumi-
nation changes. The challenge here is to adapt the color background model
to illumination changes in order to achieve an accurate foreground detection.
Four videos are included into this category, where the illumination varies due
to the covering of the light source or to unstable illumination acquisition.

5. Intermittent Motion (RGB+D): Videos with scenarios known for causing
ghosting artifacts in the detected motion, i.e., abandoned foreground objects
or removed foreground objects. The challenge here is to detect foreground
objects even if they stop moving (abandoned object) or if they were initially
stationary and then start moving (removed object).
This category consists of six videos including abandoned and removed objects.
Two videos are obtained by reversing the original temporal order of the
frames (so that an object that is abandoned in the original sequence results
as removed in the reversed sequence).

6. Out of Sensor Range (D): Videos including foreground or background
objects that are too close to/far from the sensor. Indeed, in these cases the
sensor is unable to measure depth, due to its minimum and maximum depth
specifications, resulting in invalid depth values.
Five videos are included into this category, where several invalid depth values
are due to foreground objects whose distance from the sensor is out of the
admissible sensor range.

7. Shadows (RGB+D): Videos showing shadows caused by foreground objects.
Indeed, foreground objects block the active light emitted by the sensor from
reaching the background. This causes the casting on the background of shad-
ows, that apparently behave as moving objects. RGBD sensors exhibit two
different types of shadows: visible-light shadows in the RGB channels or IR
shadows in the depth channel.
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Fig. 1. Examples of videos from all the categories: (a) Bootstrapping, (b) Color-
Camouflage, (c) DepthCamouflage, (d) IlluminationChanges, (e) IntermittentMotion,
(f) OutOfRange, (g) Shadows.

The category consists of five videos including more or less strong shadows.

Examples of videos from all the categories are reported in Fig. 1.

3 Ground Truths

To enable a precise quantitative comparison of various algorithms for moving
object detection from RGBD videos, all the videos come with pixel-wise ground
truth foreground segmentations for each video. A foreground region is intended
as anything that does not belong to the background, including abandoned objects
and still persons, but excluding light reflections, shadows, etc. The ground
truth images, some of which created using the GroundTruther software kindly
made available by the organizers of changedetection.net, contain four labels
(see Fig. 2-(d)), namely:

– 0: Background
– 85: Outside ROI
– 170: Unknown motion
– 255: Foreground

Areas around moving objects are labeled as unknown motion, due to semi-
transparency and motion blur that do not allow a precise foreground/background
classification. Therefore, these areas, as those not included into the ROI, are
excluded by the evaluation.

While our evaluation is made across all the ground truths for all the videos,
only a subset of the available ground truths is made publicly available for testing,
in order to reduce the possibility of overtuning method parameters.

4 Metrics

The SBM-RGBD dataset comes also with tools to compute performance metrics
for moving object detection from RGBD videos, and thus identify algorithms
that are robust across various challenges. Let TP , FP , FN , and TN indicate,
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Fig. 2. Sequence ChairBox: (a) color and (b) depth images; (c) ROI; (d) ground truth.

for each video, the total number of True Positive, False Positive, False Nega-
tive, and True Negative pixels, respectively. The seven adopted metrics, widely
adopted in the literature for evaluating the results of moving object detection
(e.g., [6]), are

1. Recall
Rec =

TP

TP + FN

2. Specificity

Sp =
TN

TN + FP

3. False Positive Rate
FPR =

FP

FP + TN

4. False Negative Rate

FNR =
FN

TP + FN

5. Percentage of Wrong Classifications

PWC = 100 ∗ FN + FP

TP + FN + FP + TN

6. Precision
Prec =

TP

TP + FP

7. F-Measure
F1 =

2 ∗ Prec ∗ Rec

Prec + Rec

The Matlab scripts to compute all performance metrics have been adapted by
the scripts available from changedetection.net.
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5 Experimental Results

Several authors submitted their results to the SBM-RGBD challenge, and
some of them provided a description of their method: RGBD-SOBS and RGB-
SOBS [11], SCAD [12], and cwisardH+ [4]. Therefore, our experimental analysis
is mainly devoted to assess to what extent the different background modelling
challenges introduced in Sect. 2 pose troubles to these background subtraction
methods.

In Table 1, we report average results on the whole dataset achieved by all
submitted methods (as of July 4th, 2017), while in Tables 2 and 3, we report
their average results for each challenge category2.

Table 1. Average results on the whole SBM-RGBD dataset.

Method Name Rec Sp FPR FNR PWC Prec F1

RGBD-SOBS [11] 0.8391 0.9958 0.0042 0.0895 1.0828 0.8796 0.8557

RGB-SOBS [11] 0.7707 0.9708 0.0292 0.1578 5.4010 0.7247 0.7068

SRPCA [2] 0.7786 0.9739 0.0261 0.1499 3.1911 0.7474 0.7472

AvgM-D 0.7065 0.9869 0.0131 0.2221 2.8848 0.7498 0.7157

Kim 0.8493 0.9947 0.0053 0.0793 1.0292 0.8764 0.8606

SCAD [12] 0.8847 0.9932 0.0068 0.0439 0.9088 0.8698 0.8757

cwisardH+ [4] 0.7622 0.9817 0.0183 0.1664 2.8806 0.7556 0.7470

Bootstrapping can be a problem, especially for selective background sub-
traction methods (e.g., [9]), i.e. those that update the background model using
only background information. Indeed, once a foreground object is erroneously
included into the background model (e.g., due to inappropriate background ini-
tialization or to inaccurate segmentation of foreground objects), it will hardly
be removed by the model, continuing to produce false negative results. The
problem is even harder if some parts of the background are never shown during
the sequences, as it happens in most of the videos of the Bootstrapping cate-
gory. Indeed, in these cases, also the best performing background initialization
methods [1] fail, as illustrated in Fig. 3, and only alternative techniques (e.g.,
inpainting) can be adopted to recover missing data [10]. Nonetheless, depth
information seems to be beneficial for affording the challenge, as reported in
Table 2, where accurate results are achieved by most of the methods that exploit
depth information.

As expected, all the methods that exploit depth information achieve high
accuracy in case of color camouflage. An evident example of the benefits induced
by depth information for this category is given by the F-measure value achieved

2 All the results are available at http://rgbd2017.na.icar.cnr.it/SBM-RGBDchallenge
Results.html.

http://rgbd2017.na.icar.cnr.it/SBM-RGBDchallengeResults.html
http://rgbd2017.na.icar.cnr.it/SBM-RGBDchallengeResults.html
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Table 2. Average results for each category of the SBM-RGBD dataset (Part 1).

Method Name Rec Sp FPR FNR PWC Prec F1

Bootstrapping

RGBD-SOBS 0.8842 0.9925 0.0075 0.1158 2.3270 0.9080 0.8917

RGB-SOBS 0.8023 0.9814 0.0186 0.1977 4.4221 0.8165 0.8007

SRPCA 0.7284 0.9914 0.0086 0.2716 3.7409 0.9164 0.8098

AvgM-D 0.4587 0.9861 0.0139 0.5413 7.1960 0.6941 0.5350

Kim 0.8805 0.9965 0.0035 0.1195 1.5227 0.9566 0.9169

SCAD 0.8997 0.9940 0.0060 0.1003 1.8015 0.9319 0.9134

cwisardH+ 0.5727 0.9616 0.0384 0.4273 8.1381 0.5787 0.5669

ColorCamouflage

RGBD-SOBS 0.9563 0.9927 0.0073 0.0437 1.2161 0.9434 0.9488

RGB-SOBS 0.4310 0.9767 0.0233 0.5690 16.0404 0.8018 0.4864

SRPCA 0.8476 0.9389 0.0611 0.1524 4.3124 0.8367 0.8329

AvgM-D 0.9001 0.9793 0.0207 0.0999 2.0719 0.8096 0.8508

Kim 0.9737 0.9927 0.0073 0.0263 0.7389 0.9754 0.9745

SCAD 0.9875 0.9904 0.0096 0.0125 0.7037 0.9677 0.9775

cwisardH+ 0.9533 0.9849 0.0151 0.0467 1.1931 0.9502 0.9510

DepthCamouflage

RGBD-SOBS 0.8401 0.9985 0.0015 0.1599 0.9778 0.9682 0.8936

RGB-SOBS 0.9725 0.9856 0.0144 0.0275 1.5809 0.8354 0.8935

SRPCA 0.8679 0.9778 0.0222 0.1321 2.9944 0.7850 0.8083

AvgM-D 0.8368 0.9922 0.0078 0.1632 1.6943 0.8860 0.8538

Kim 0.8702 0.9968 0.0032 0.1298 0.9820 0.9433 0.9009

SCAD 0.9841 0.9963 0.0037 0.0159 0.4432 0.9447 0.9638

cwisardH+ 0.6821 0.9949 0.0051 0.3179 2.4049 0.9016 0.7648

IlluminationChanges

RGBD-SOBS 0.4514 0.9955 0.0045 0.0486 0.9321 0.4737 0.4597

RGB-SOBS 0.4366 0.9715 0.0285 0.0634 3.5022 0.4759 0.4527

SRPCA 0.4795 0.9816 0.0184 0.0205 1.9171 0.4159 0.4454

AvgM-D 0.3392 0.9858 0.0142 0.1608 3.0717 0.4188 0.3569

Kim 0.4479 0.9935 0.0065 0.0521 1.1395 0.4587 0.4499

SCAD 0.4699 0.9927 0.0073 0.0301 0.9715 0.4567 0.4610

cwisardH+ 0.4707 0.9914 0.0086 0.0293 1.0754 0.4504 0.4581

IntermittentMotion

RGBD-SOBS 0.8921 0.9970 0.0030 0.1079 0.8648 0.9544 0.9202

RGB-SOBS 0.9265 0.9028 0.0972 0.0735 9.3877 0.4054 0.5397

SRPCA 0.8893 0.9629 0.0371 0.1107 3.7026 0.7208 0.7735

AvgM-D 0.8976 0.9912 0.0088 0.1024 1.4603 0.9115 0.9027

Kim 0.9418 0.9938 0.0062 0.0582 0.9213 0.9385 0.9390

SCAD 0.9563 0.9914 0.0086 0.0437 0.8616 0.9243 0.9375

cwisardH+ 0.8086 0.9558 0.0442 0.1914 5.0851 0.5984 0.6633
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Table 3. Average results for each category of the SBM-RGBD dataset (Part 2).

Method Name Rec Sp FPR FNR PWC Prec F1

OutOfRange

RGBD-SOBS 0.9170 0.9975 0.0025 0.0830 0.5613 0.9362 0.9260

RGB-SOBS 0.8902 0.9896 0.0104 0.1098 1.3610 0.8237 0.8527

SRPCA 0.8785 0.9878 0.0122 0.1215 1.6100 0.7443 0.8011

AvgM-D 0.6319 0.9860 0.0140 0.3681 2.7663 0.6360 0.6325

Kim 0.9040 0.9961 0.0039 0.0960 0.8228 0.9216 0.9120

SCAD 0.9286 0.9965 0.0035 0.0714 0.5711 0.9357 0.9309

cwisardH+ 0.8959 0.9956 0.0044 0.1041 0.8731 0.9038 0.8987

Shadows

RGBD-SOBS 0.9323 0.9970 0.0030 0.0677 0.7001 0.9733 0.9500

RGB-SOBS 0.9359 0.9881 0.0119 0.0641 1.5128 0.9140 0.9218

SRPCA 0.7592 0.9768 0.0232 0.2408 4.0602 0.8128 0.7591

AvgM-D 0.8812 0.9876 0.0124 0.1188 1.9330 0.8927 0.8784

Kim 0.9270 0.9934 0.0066 0.0730 1.0771 0.9404 0.9314

SCAD 0.9665 0.9910 0.0090 0.0335 1.0093 0.9276 0.9458

cwisardH+ 0.9518 0.9877 0.0123 0.0482 1.3942 0.9062 0.9264

by the RGBD-SOBS method, that doubles the value achieved by the same
method but without considering depth (RGB-SOBS). A similar reasoning can
be applied to the illumination changes challenge. However, we point out that,
in this case, the analysis should be based on Specificity, FPR, FNR, and PWC,
rather than on the other three metrics. Indeed, two of the four videos of this cat-
egory have no foreground objects throughout the whole duration, their rationale
being the willingness of not detecting false positives under varying illumina-
tion conditions. This leads to have no positive cases in all ground truths and,
consequently, to undefined values of Precision, Recall, and F-measure (in the
experiments, values for these undefined cases are set to zero).

Depth can be beneficial also for detecting and properly handling cases of
intermittent motion. Indeed, foreground objects can be easily identified based
on their depth, that is lower than that of the background, even when they remain
stationary for long time periods. Methods that explicitly exploit this character-
istic (e.g., RGBD-SOBS and SCAD) succeed in handling cases of removed and
abandoned objects, achieving high accuracy.

Overall, shadows do not seem to pose a strong challenge to most of the meth-
ods. Indeed, depth shadows due to moving objects cause some undefined depth
values, generally close to the object contours, but these can be handled based on
motion. Color shadows can be handled either exploiting depth information, that
is insensitive to this challenge, or through color shadow detection techniques
(e.g., as in RGB-SOBS and SCAD), when only color information is taken into
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Fig. 3. Background image for sequence adl24cam0 (where the center area of the room
is always covered by the man) computed using: (a) temporal median filter and (b)
LabGen [8].

account. Instead, they are still a challenge when the sole grey level intensity is
considered (e.g., as in SRPCA).

Out of range and Depth camouflage are among the most challenging issues,
at least when information on color is disregarded or not properly combined with
depth. Indeed, even though accuracy of most of the methods is moderately high,
several false negatives are produced, as shown in Fig. 4 for depth camouflage.

Fig. 4. Sequence DCamSeq2 (DepthCamouflage): (a) image no. 534, corresponding (b)
depth image, and (c) ground truth; segmentation masks achieved by: (d) RGBD-SOBS,
(e) RGB-SOBS, (f) SRPCA, (g) AvgM-D, (h) Kim, (i) SCAD, (j) CwisardH+.

6 Conclusions and Perspectives

The paper describes a novel benchmarking framework that we set up and made
publicly available in order to evaluate and compare scene background model-
ing methods for moving object detection on RGBD videos. The SBM-RGBD
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dataset is the largest RGBD video collection ever made available for this spe-
cific purpose. The 33 videos span seven categories, selected to include diverse
scene background modeling challenges for moving object detection. Seven evalu-
ation metrics, chosen among the most widely used, are adopted to evaluate the
results against a wide set of pixel-wise ground truths. A preliminary analysis of
results achieved by several methods investigates to what extent the various back-
ground modeling challenges pose troubles to background subtraction methods
that exploit color and depth information. The proposed framework will serve as
a reference for future methods aiming at overcoming these challenges.
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