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Abstract. In this note we address the problem of providing a fast, auto-
matic, and coarse processing of the early mapping from emotional facial
expression stimuli to the basic continuous dimensions of the core affect
representation of emotions, namely valence and arousal. Taking stock
of results in affective neuroscience, such mapping is assumed to be the
earliest stage of a complex unfolding of processes that eventually entail
detailed perception and emotional reaction involving the proper body.

Thus, differently from the vast majority of approaches in the field
of affective facial expression processing, we assume and design such a
feedforward mechanism as a preliminary step to provide a suitable prior
to the subsequent core affect dynamics, in which recognition is actually
grounded. To this end we conceive and exploit a 3D spatiotemporal deep
network as a suitable architecture to instantiate such early component,
and experiments on the MAHNOB dataset prove the rationality of this
approach.
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1 Introduction

Facial expression (FE) is the most effective modality for emotion display [8]
and humans have developed specific skills to recognize even subtle expres-
sion changes [2]. FEs are generated by rapid (between 250 ms to 5 s) con-
traction of facial muscles. The accurate measure of FE could be delegated
to the fEMG [7,19] or accomplished by computer vision techniques. In this
vein, a plethora of approaches have been proposed ranging from local to holis-
tic approaches, adopting deformation or motion-based models, being image or
model-based (for an exhaustive discussion of FE methods see the survey [27]).

However, as a general comment on the large body of work that has been
done in the field of affective FE detection/analysis, the vast majority of
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approaches mostly rely on the classic computer vision and pattern recognition
“pipeline” [27], where visual feature extraction/reduction is followed by classifi-
cation (discrete emotion recognition) or regression (continuous affect detection),
e.g. [20].

In this note, we take a different perspective. As motivated in Sect. 2, our main
concern is in providing a suitable account of the earliest stage of FE processing,
where, upon stimulus onset, a fast, automatic trigger is fed into the continuous
core affect state-space of valence and arousal. To such end, in this work we adopt
a deep network architecture (Sect. 3). Recently, deep networks have proven their
effectiveness in solving a variety of vision tasks. Also the FE task has been
faced with deep networks [4,20]. Here, different from those works, we aim at
achieving at the output of this automatic feed-forward step, a suitable prior in
probabilistic terms, for the latent manifold that functionally models core-affect
state-space [31].

This, in turn will initiate further processing that, eventually, will lead to emo-
tion recognition/attribution. Remarkably, it has been shown that at the neurobi-
ological level, processes that follow this “hidden”, sub-cortical step, involve both
visuomotor and visceromotor pathways that are likely to be used in simulation-
based mechanisms for affective expression recognition [2,17,32].

2 Background and Motivations

FE analysis goes back to 1872, when Darwin demonstrated among other things
the universality of facial and body expressions [10]. About one century later
Ekman and Friesen [14] postulated six primary emotions that possess each a
distinctive content together with a unique and universal facial expression. These
prototypic emotional displays are also referred to as basic emotions. In more gen-
eral terms, this is the bulk of the discrete theory of emotions. Pioneering work
on automatic FE analysis goes back to Mase and Pentland [23]. Since then, in
computer vision and markedly in the more recent affective computing field [24] a
large body of work has been done in the framework of the discrete approach [11].
This success can be easily understood if one thinks of basic emotions as categor-
ical constructs: then the attribution of emotion simply boils down to a classifi-
cation problem over a set of suitable features (e.g., computational counterparts
of Ekmans’s Action Units -AUs [13]- in the case of FEs [27]).

There are however other competing theories to the discrete theory of emo-
tions. The continuous, dimensional view parsimoniously proposes the two broad
dimensions of valence (pleasure/displeasure) and arousal (sleepy/activated) of
affect [25], as the core (core affect) of emotion representation and processing. This
describes a kind of “kernel” neurophysiological state as the basis for grounding
emotion episodes. Such view is supported by the fact that many kinds of emo-
tion data can be mapped well into such a continuous two-dimensional space.
Interestingly enough, the dimensional approach has received much more atten-
tion in affect evaluation via physiological, voice or music signals rather than FEs
research [11], though, more recently, continuous representations are gaining cur-
rency [18]. Componential models of emotion [15,28] argue that the rich emotions
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that people experience unfold through a complex set of evaluations and coping
mechanisms. Such “appraisal” theories invoke a larger vocabulary of features
from which a correspondingly larger set of emotions can be constructed. In some
respect, the computational models derived from appraisal theories have raised
interest over the years in the classic Artificial intelligence (AI) community [11].
However the use of how to exploit this theoretical approach for automatic mea-
surement of affect is an open research question since requiring, as discussed [18],
complex, multicomponential and sophisticated measurements of change.

This long dispute by competing psychological theories might be eventually
reconciled, as conjectured by Dubois and Adolphs: “One could imagine con-
structing a more complex framework consisting of an underlying dimensionality
of valence and arousal, a more fine-grained classification into six or so basic
emotion categories, and a very fine-grained and more flexible attribution based
on appraisal features” [12].

Under such circumstances, it is best to take into account recent findings in
affective neuroscience that might pave the way to a thorough and principled
synthesis. Coming back to FE analysis, the unfolding of emotion attribution at
the neurobiological level can be summarised as follows [1,2]. Upon the onset of
an emotionally meaningful stimulus, observer’s response undergoes the following
stages: (1) fast early perceptual processing of highly salient stimuli (120 ms);
(2) detailed perception and emotional reaction involving the body (170 ms); (3)
retrieval of conceptual knowledge about the emotion signaled by the expresser’s
face (>300 ms).

At the core of all such stages lies the activity of the amygdala and the pre-
frontal cortex. It has been argued [26] that functional interactions between the
amygdala and pre-frontal cortex form a potential neural substrate for the encod-
ing of the psychological dimensions of valence and arousal, thus of the core affect.

Most interesting for the work presented here is the first stage. Initial percep-
tion of the face modulates activity in subcortical structures as well as in early
visual cortices. The subcortical structures, the superior colliculus and the pulv-
inar thalamus, are likely to be specialized for very fast, automatic, and coarse
processing of the stimulus. In particular, coarse processing of the visual motion
generated by dynamic facial expressions might be relevant. Crucially, informa-
tion from the pulvinar feeds into early processing within amygdala. As to the
cortical structures, it would include V1, V2, and other early visual cortices, via
input from the lateral geniculate thalamus.

Early visual processing may be relatively specialized to extract information
about highly salient stimuli and it may rely in large part on information based
on specific features that are detected. These processes are likely to be fairly auto-
matic and obligatory. Subsequently, it would be also supported by more anterior
visual regions dedicated to face processing (e.g., superior temporal gyrus for what
concerns mouth movement, eye movements, and changes in facial expression).

The amygdala participates in the recognition of emotional signals via at least
the subcortical route (superior colliculus, pulvinar thalamus), and the cortical
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route via the visual neocortex. This is consistent with LeDoux dual-route pro-
posal [9,16,21].

It has been shown that even subliminally presented facial expressions of fear
activates the amygdala and such activation appears to depend on relatively pas-
sive or implicit processing of the emotion. Indeed, it is this fast automatic per-
ceptual mapping from the early stimulus onset to basic “core affect components”
that we are addressing in this note.

3 Architecture

To account for the early trigger to affective nuclei we propose to adopt an archi-
tecture inspired to the 3D convolutional network C3D presented in [30], allowing
to learn spatiotemporal features. Since dealing with a more specific task than
the usual video scene classification and using a small dataset, we opted for a
shallower architecture than C3D to prevent overfitting. We choose three layers
each composed by one 3D convolutional block, followed by ReLU nonlineari-
ties, max pooling and layer normalization [3]. The last layer is a global average
pooling block [22] followed by a linear fully connected layer and a tanh activa-
tion that outputs the estimates for valence and arousal. The network is fed by
inputs composed by 16 consecutive frames, thus capturing spatiotemporal fea-
tures. Groundtruth values of valence and arousal for these 16-frame volumes are
obtained averaging the corresponding single-frame valence and arousal labels.

Table 1. Size of the 3D convolutional blocks for each layer

Layer Convolutional filter size

1 5 × 5 × 5 × 3 × 64

2 5 × 5 × 5 × 64 × 128

3 5 × 5 × 5 × 128 × 128

4 Experimental Results

The training and test of the spatiotemporal convolutional network we proposed,
has been setup considering the 23 most expressive videos of the MAHNOB
dataset [5], and referring to the continuous valence/arousal labeling we pro-
duced exploiting a novel web-based annotation tool named DANTE (Dimen-
sional ANnotation Tool for Emotions) [6]. 13 videos have been used for training
and the remaining for test.

In Fig. 1 we report an example of both the manual annotations and the
automatic regression values of valence on one of the tested video (vid9 in MAH-
NOB). We observe that the automatic values respect the trend of the ground
truth, while the range of variability is slightly reduced.
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Fig. 1. An example of comparison between the ground truth (blue line) and the
regressed value (red dashed line) on the Valence obtained by the trained convolutional
network. (Color figure online)

As a quantitative and exhaustive evaluation of the regressor, we computed
the root mean square error of the obtained emotional values, as reported in
Table 2. The error is always contained, independently of the tested video, and
this is reflected in the resulting low mean RMSE.

It is interesting to visualize network behavior. In Fig. 2 we show the input
areas that are more informative for the regressor. We estimate these areas in a
similar way as the GRAD-Cam method described in [29], using the mean of the
feature maps of the last convolutional layer weighted by their backpropagated
gradient. As we can observe the most informative areas concern the facial fea-
tures, and in particular the eyes, but also, when the framing is larger, the body
motion is captured and exploited to regress valence and arousal.

Table 2. Root Mean Square Error on the obtained values for each video and the mean
value for the whole dataset.

Video V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 MEAN

RMSE 0.07 0.11 0.07 0.10 0.14 0.11 0.11 0.10 0.06 0.08 0.08

Fig. 2. Visualization of the last layer of the learnt convolutional network. Both the
face and the body movements help the emotional state determination.
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Fig. 3. Correspondences between the expresser and the “amygdala-like” activation.

Finally, in Fig. 3 we report the effect of the amygdala-like activation as a
suitable prior for the latent manifold that has been learnt from valence-arousal
labelling and that functionally models core-affect state-space. This very fast and
automatic step it is likely to trigger the subsequent core affect representation of
emotions.

5 Conclusions

We have presented a feed-forward mechanism providing a fast, automatic, and
coarse processing of the earliest mapping from emotional facial expression stimuli
to the core affect representation of emotions. Such mapping provides a suitable
prior to the subsequent core affect dynamics, in which recognition is actually
grounded.

To this end we designed a 3D spatiotemporal deep network as a suitable
architecture to instantiate such early component. The network is quite shallow
due to both the specificity of the task, and to the limited quantity of labeled
data available.

The regression has produced satisfactory results on both valence and arousal
dimensions, encouraging the integration of this preliminary step in a complete
core affect model.
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