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Abstract. We discuss modelling issues related to the design of a somatic
facial motor space. The variants proposed are conceived to be part of a
larger system for dealing with simulation-based face emotion analysis
along dual interactions.
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1 Introduction

In the course of actual interactions (human-human or human-agent), the unfold-
ing of emotional episodes is likely to follow a different route than pursued by
a large body of work in affective facial expression analysis where a computer
vision “pipeline-based” approach is followed (feature extraction then recogni-
tion/classification [14]). Facial expressions are facial actions and are likely to
draw on simulation mechanisms underlying action perception in general [16].
These rely on mirroring processes that ground the capability of own reproduc-
tion of the action in question “as if” a similar action were performed or a similar
emotion experienced.

At the heart of the simulation-based framework is the modelling of a suit-
able visuomotor mapping of perceived facial cues to an internal somatic motor
space, which, in turn, works side by side with core affect components via forward
and backward connections [16]. Importantly, such internal motor space must be
endowed with generative capabilities, so to support actual simulation (e.g. facial
mimicry). In this note we discuss, from a probabilistic standpoint, some mod-
elling issues that arise in this effort. A relevant one is the hierarchy of levels of
predictive control (for an in-depth discussion see [11].
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Not much effort has been spent in such direction. We build on [15], address-
ing a mapping from visual cues to a probabilistic core affect space within a
simulation-based paradigm. However, in that case, only static images are con-
sidered, and most important, motor representation is not explicitly addressed.
An even simpler variant is presented in [7]. Though not addressing the issue
of motor simulation, Fan et al. [6] exploit the motor control sequence m(t) -
derived from a 3D shape model as the observation input to a Kalman filter. The
authors are mostly concerned with the classification of basic emotions, rather
than building a continuous latent space of actions akin to support visuomotor
learning and simulation.

2 Modelling Issues

We assume that the observer O perceives the facial action of the expresser E in
terms of the visible cues, say yE , captured by his visual system and maps such
cues onto his own internal motor action representation (visuomotor mapping [9]).
The observer’s internal representation not only “stands for” the visual signalling
generated by E , but, in a simulation-based account of facial expression analysis,
it must be apt to generate the internal facial dynamics for mirroring that of E .

From a modelling perspective, the egocentric motor representation of the face
of agent I ∈ {E ,O} is accounted for by the state-space RV w(t) = w(m(t), sI).

Here, sI stands for a set of static parameters that control the biometric char-
acteristics of each individual I ∈ {E ,O}; we assume that observer’s parameters
sO are given, while expresser’s parameter sE are inferred by the observer at the
onset of the interaction.

The action control is given by the motor parameters m(t) controlling the
facial deformation due to muscle action. Motor control parameters m(t) tune the
actual evolution of the internal facial dynamics w(t), but are in turn governed by
a specific action which we represent as a trajectory in a latent action state-space,
formalised via the time-varying hidden RV h(t). The latent facial action state-
space dynamics is affect-driven, since in the context of affective interactions can
be assumed to be “biased” by the dynamics of the core affect [13].

The generative stage can be written in the form of an ancestral sampling
procedure on the Probabilistic Graphical Model (PGM) shown in Fig. 1a:

1. Sampling a time dependent action state from the latent affect-driven action
space:

˜h(t + 1) ∼ P (h(t + 1) | h(t)); (1)

2. Sampling facial action control parameters conditioned on the current affect-
state and on the inferred control parameters:

m̃(t + 1) ∼ P (m(t + 1) | ˜h(t + 1)), (2)

3. Motor-state space dynamics towards visuomotor mapping



A Note on Modelling a Somatic Motor Space 183

Fig. 1. Modelling issues at a glance. (a): the dynamic PGM representation of the
model. The dashed boxes show the two levels of predictive control. (b): the Kalman-
based predictive component summarised as a further level of control within the original
PGM

(a) Use sampled control parameters, and sample a facial configuration of the
expresser E , by setting wE(t + 1) = w(m̃(t + 1), sE):

w̃E(t + 1) ∼ P (wE(t + 1) | w(t), m̃(t + 1)) (3)

(b) Sample facial landmarks in expresser visual space

ỹE(t + 1) ∼ P (yE(t + 1) | w̃E(t + 1)) (4)

If external simulation (actual facial mimicry) is enabled, the visible
facial expression of the observer can be obtained by setting w(t + 1) =
wO(m̃(t + 1), sO). Then state is sampled analogously to Eq. 5 and facial mimicry
generated via ˜IO(t + 1) ∼ P (IO(t + 1) | w(t + 1), IO(t)).

Note that such a generative model, focusing on the expresser’s side, can be
seen as a hierarchical predictive control model where the lowest level predicts
the motor state and then generates an estimate of expresser’s visual landmarks.
At this level, novel predictions are governed by the error or discrepancy between
the estimated landmarks and the observation of expresser’s landmarks. Indeed,
this level can be seen as an instance of model-based predictive coding that has
been widely adopted in the video processing realm.

At the highest level, that is prediction, parameter estimation and error cor-
rection are implicitly obtained by relying on the action state-space dynamics,
and on the optimization procedures in such latent space. This is the meaning
of Eq. 2. This has some modelling compactness and efficiency advantages, whilst
drawbacks could occur due to the fact that, in principle, the lower dimensionality
action space (that is, in turn, related to core affect dynamics) might operate on
a coarser time scale than that of motor parameter dynamics. In a more general
setting one should consider parameter sampling based on the conditional distri-
bution P (m(t + 1) | m̂(t), ˜h(t + 1)), where the dynamics is explicitly handled.

To suitably ground the discussion, the observer’s internal motor space is
formalised as a 3D deformable shape model consisting of a collection of N vertices
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represented by w = [w1 · · ·wN ] ∈ R
3×N , where every 3-dimensional vector

wi = (Xi, Yi, Zi)T corresponds to the i-th vertex in the model. The dynamical
evolution of the motor state is captured in the model by the dependence of the
vectors upon the time variable t, so that each vertex follows a curve wi(t) =
(Xi(t), Yi(t), Zi(t))T .

It can be shown that under Helmholtz’s fundamental theorem for deformable
bodies [8] and small rotations, prediction of face motion at vertex i can be written
(assuming unitary time step) as:

wi(t + 1) = wi(t) + R(t)wi(t) + dWS
i s + dWM

i m(t) + t(t). (5)

where the pose parameters θ(t) = (R(t), t(t)) represent the rotation matrix
R(ω) ∈ SO(3) with angular velocity vector ω = (ωx, ωy, ωz) and the translation
vector, respectively, that is the global rigid motion constrained by cranial pose
dynamics. As to the deformation term, dWS

i ∈ R
3×Ns and dWM

i ∈ R
3×Nm are

respectively the matrices of Shape Unit (SU) and Action Unit Vector (AUV)
deformation. Individual biometric control parameters s are considered fixed
along the interaction, for both expresser and observer. Equation 5 applied to
all vertices represents the motor state of the 3D face model evolving in time, i.e.
the forward model.

The generation (estimate) of expresser’s visual landmarks is obtained as the
projection of the 3D vertices on the 2D image coordinate system, under weak
perspective projection (given the small depth of the face [10]), namely ŷE,l =
T w̃E,l where l indexes the L vertices that are in correspondence with extracted
facial landmarks. Under Gaussian assumption, parameter inference boils down
to the negative log-likelihood minimisation problem, which gives the “observed”
m̂(t) and where the error control is accounted for by term ‖yE,l − ŷE,l‖2.

As to the top control level, the latent action space can be specified by resort-
ing to a dynamical variational Gaussian Process Latent Variable Model (DVGP-
LVM, [4]). The variational GP provides an efficient nonlinear mapping. In such
setting, Eqs. 1 and 2 are suitably implemented, and for a single parameter mk,
Eq. 2 becomes

mk(t) = fk(h(t)) + νh(t), νh ∼ N (0, σ2
h), (6)

where fk is a latent mapping from the low dimensional action space to the k-th
dimension of the parameter space of m. The individual components of the latent
function h are taken to be independent sample paths drawn from a Gaussian
process with covariance function kh(t, t′) and the components of f are indepen-
dent draws from a Gaussian process with covariance function kf (h(t),h(t′)),
which determines the properties of the latent mapping.

To cope with limitations discussed above, we introduce a further control level
(see Fig. 1b) where m̃ and related covariances, say Σtd, serve as top-down bias.
To such end we introduce a state variable r and design a prediction/correct
scheme in the form of the Kalman filter shaped as proposed in [12].

In our case the ordinary Kalman filter assumes a predicted observation

m(t) = H(t)r(t) + ζ(t), ζ(t) ∼ N (0, Σbu), (7)
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with Σbu = [ζ(t)ζT (t)] is the covariance of the “bottom up” noise ζ affecting
observations m. Kalman filter dynamics can be written as a prediction step
followed by a measurement or correction step. State prediction can be written
as

r(t + 1) = Ar̂(t) + η(t) (8)

where η(t) ∼ N (μr(t), Σr(t), Σr(t) = E[(η(t) − μr(t))(η(t) − μr(t))T ]. The
evolution of r goes together with covariance prediction M(t + 1) = AN(t)AT +
Σr(t) and N = M−1(t) + HTΣ−1

bu H is a normalization matrix that maintains
the covariance of the estimated state.

The update step corrects prediction by taking into account the measurement
error

r̃(t + 1) = r(t + 1) + K(t + 1)(m̂(t + 1) − m(t + 1)) (9)

where Hr(t + 1) is the predicted measurement and K is the Kalman gain which
is updated as K(t + 1) = N−1HTΣ−1

bu .
The Kalman filter equation is obtained by combining Eqs. 8 and 9:

r̂(t + 1) = A(r(t) + K(t)(m̂(t) − m(t))) + η(t). (10)

Set Kbu = K rtd = m̃ and define the top-down Kalman gain Ktd = NΣtd,
Σtd being the top-down covariance matrix provided by the upper-most level.
Then the update step in Eq. 8 can be rewritten as

r̃(t + 1) = r(t + 1) + Kbu(t + 1)(m̂(t + 1) − m(t + 1))+
Ktd(t + 1)(r̂td(t + 1) − r(t + 1)) − Ng(r(t + 1)) (11)

where the last term is a decay that penalizes overfitting of data and g an expo-
nentially decreasing function. Eventually,

r̂(t+1) = A(r(t)+Kbu(t)(m̂(t)−m(t))+Ktd(t+1)(r̂td(t)−r(t))−Ng(r(t)))+η(t).
(12)

3 Preliminary Results

We focus on the behaviour of the observer’s visuomotor simulation component
when the motor-state space is controlled either by “raw” or by Kalman filtered
parameters. We also compare for completeness with parameters obtained by a
Kalman smoother, though this is unsuitable for online processing.

In the simulations, expresser’s landmarks yE are inferred via the Constrained
Local Neural Field (CLNF) [2]; a viable alternative is in [17] (or its sparse vari-
ants, e.g. [3]).

For the motor space representation w and its deformations we exploit the 3D
face model Candide-3 [1], which is a 3D wireframe model of approximately 113
vertices wi and 184 triangles, that easily fits our needs. Indeed, Candide directly
accounts for encoding the matrices of Shape Unit (SU) and Action Unit Vector
(AUV) deformations parameters at vertices (dWS

i and dWM
i ) together with
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related control parameters s and m, respectively. AUVs determines a change in
face geometry and implement a subset of the Ekman’s Action Units of FACS [5].
The considered AUVs (NAUV = 11) are AUVk, k = 0, 2, 3, 5, 6, 7, 8, 9, 10, 11, 14.
Observer’s parameters sO are derived offline, and expresser’s parameters sE
inferred through the perceptual process at the very onset of the interaction.

As to Kalman based control, we consider the state variable as formed by
position and velocity for all AUVs. Only the position vectors are eventually
used to represent the motor action parameters. Parameter learning is performed
via the EM algorithm. In the same framework, we also apply Kalman smoothing
for comparison.

Fig. 2. Result of the Kalman filter (blue) and Kalman smoother (green) observations
for each of the considered AUVs, related to the ‘disgust’ emotion. (Color figure online)

Fig. 3. Walking on the ‘Happiness’ trajectory. Top panels show the learned latent
action spaces. To each red dot in top latent space corresponds facial synthesis (bottom
panels). Latent space is learned by using raw motor parameters in a, Kalman filter
state in b and Kalman smoother in c.
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Due to limitations of space, we provide an excerpt of typical results so far
achieved. Also, to provide clear clues to the reader these are related to motor
trajectories of prototypical expressions (basic emotions), though the facial action
space is a continuous manifold.

Figure 2 shows the result of the Kalman filter and smoother, as well as the
original motor parameters from the prototypical “disgust” emotion of a subject
from the Cohn-Kanade dataset.

Most important, is the latent action manifold as learned by adopting the
different control schemes. One example is provided in Fig. 3, where basic emotion
trajectories are shown within the GP-LVM latent space.

4 Conclusive Remarks

We have discussed modelling issues that arise in the design of a somatic facial
motor space for affective interactions. We have considered different levels of
hierarchical control for the generation and learning of motor control parameters
tuning the unfolding of the facial expression. Preliminary results show that it
is important to evaluate parameter dynamics not per se but related to the con-
struction and the dynamics of the latent action space. On the example provided,
and similar to other results, the Kalman level seems, in general, to better sep-
arate and constrain trajectories as produced along discrete expressions. This is
consistent with the idea that basic expressions originate as prototypes that clus-
ter and partition continuous manifolds [13]. As expected, the Kalman smoother
achieves smoother results, however it is unsuitable to provide online control. On
the other hand, the direct implicit control via the action space could gain some
currency as to the parsimony of such representation.

We surmise that conclusive arguments on the choice between one or the other
scheme need to take into account, beyond the latent action space, the continuous
manifold of the core affect.
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