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Abstract. Beyond their security guarantees under well-studied assump-
tions, algebraic pseudo-random functions are motivated by their compat-
ibility with efficient zero-knowledge proof systems, which is useful in a
number of privacy applications like digital cash. We consider the prob-
lem of proving the correct evaluation of lattice-based PRFs based on the
Learning-With-Rounding (LWR) problem introduced by Banerjee et al.
(Eurocrypt’12). Namely, we are interested zero-knowledge arguments of
knowledge of triples (y, k, x) such that y = Fk(x) is the correct evaluation
of a PRF for a secret input x and a committed key k. While analogous
statements admit efficient zero-knowledge protocols in the discrete log-
arithm setting, they have never been addressed in lattices so far. We
provide such arguments for the key homomorphic PRF of Boneh et al.
(Crypto’13) and the generic PRF implied by the LWR-based pseudo-
random generator. As an application of our ZK arguments, we design
the first compact e-cash system based on lattice assumptions. By “com-
pact”, we mean that the complexity is at most logarithmic in the value
of withdrawn wallets. Our system can be seen as a lattice-based analogue
of the first compact e-cash construction due to Camenisch, Hohenberger
and Lysyanskaya (Eurocrypt’05).

Keywords: Lattices · Pseudo-random functions · Zero-knowledge
arguments · E-cash systems · Anonymity

1 Introduction

Since the seminal results of Ajtai [2] and Regev [85], lattice-based cryptography
has been a very active area which undergone quite rapid development, notably
with the advent of lattice trapdoors [52,76] and homomorphic encryption [51].
Not only does it enable powerful functionalities, it also offers many advantages
over conventional number-theoretic techniques, like simpler arithmetic opera-
tions, its conjectured resistance to quantum attacks or a better asymptotic
efficiency.
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The design of numerous cryptographic protocols appeals to zero-knowledge
proofs [55] to prove properties about encrypted or committed values so as to
enforce honest behavior on behalf of participants or protect the privacy of users.
In the lattice settings, efficient zero-knowledge proofs are non-trivial to construct.
While natural solutions exist for proving knowledge of secret keys [64,70,73,77],
they are only known to work for very specific languages. When it comes to
proving general circuit satisfiability, the best known methods rely on the ring
variants [14,89] of the Learning-With-Errors (LWE) and Short Integer Solution
(SIS) problems and are not known to readily carry over to standard lattices. In
the standard model, the problem is even trickier as we do not have a lattice-
based counterpart of Groth-Sahai proofs [58] and efficient non-interactive proof
systems are only available for specific problems [84].

In this paper, we consider the natural problem of proving the correct eval-
uation of lattice-based pseudo-random functions (PRFs) w.r.t. committed keys
and inputs. This problem arises in numerous protocols where a user has to deter-
ministically generate a random-looking value without betraying his identity.

We provide zero-knowledge arguments of correct evaluation for the LWE-
based PRF of Boneh, Lewi, Montgomery and Raghunathan (BLMR) [17] as well
as the construction generically obtained from pseudo-random generators via the
Goldreich-Goldwasser-Micali (GGM) methodology [54]. As an application of our
arguments, we provide the first lattice-based realization of the compact e-cash
primitive of Camenisch, Hohenberger and Lysyanskaya [22].

Introduced by Chaum [33,34], electronic cash is the digital counterpart of reg-
ular money. As envisioned in [33], digital cash involve a bank and several users and
merchants. It allows users to withdraw digital coins from the bank in such a way
that e-coins can later be spent at merchants. In the on-line setting [33,35,36], mer-
chants contact the bank before accepting any payment so that the bank is involved
in all transactions to prevent double-spendings. In the (usually preferred) off-line
model [37], the merchant accepts payments without any interaction with the bank:
the deposit phase is postponed to a later moment where the merchant can return
many coins at once. In all cases, when a merchant returns coins back to the bank,
the latter should infer no information as to when and by whom the returned coins
were withdrawn. Should the bank collude with the merchant, it remains unable
to link a received coin to a particular execution of the withdrawal protocol. Of
course, dishonest users should not be able to spend more coins than they with-
drew without being identified. While fair e-cash systems [88] resort to an off-
line trusted authority to call out cheaters, classical e-cash [37] allows identifying
double-spenders without any TTP. In 2005, Camenisch, Hohenberger and Lysyan-
skaya [22] advocated e-cash solutions with compactness property: namely, a com-
pact e-cash scheme allows a user to withdraw a wallet of 2L coins in such a way that
the complexity of spending and withdrawal protocols does not exceed O(L + λ),
where λ is the security parameter. The constructions of [22] elegantly combine sig-
nature schemes with efficient protocols [25,26], number theoretic pseudo-random
functions [44] and zero-knowledge proofs, making it possible to store a wallet using
only O(L + λ) bits.
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1.1 Our Contributions

Our Results. We describe the first compact e-cash system [22] based on lat-
tice assumptions. Here, consistently with the literature on e-cash, “compactness”
refers to schemes where the withdrawal, spending and deposit phases have at
most logarithmic complexities in the maximal value of withdrawn wallets (anal-
ogously to the solutions of [22] where the term “compact” was introduced). The
security of our scheme is proved in the random oracle model [11] under the Short
Integer Solution (SIS) and LWE assumptions.

As a crucial ingredient of our solution, we provide zero-knowledge arguments
vouching for the correct evaluation of lattice-based pseudo-random functions.
More precisely, we construct arguments of knowledge of a committed seed k, a
secret input J and an output y satisfying y = Fk(J). We describe such argu-
ments for the key-homomorphic PRF of Boneh et al. [17] and the PRF obtained
by applying the Goldreich-Goldwasser-Micali (GGM) [54] paradigm. As a build-
ing block, we provide zero-knowledge arguments for statements related to the
Learning-With-Rounding (LWR) problem of Banerjee, Peikert and Rosen [8].
Given a public random matrix A ∈ Z

n×m
q , it requires to tell apart vectors

�AT · s�p = �(p/q) ·AT · s� ∈ Z
m
p from the uniform distribution U(Zm

p ) over Zm
p ,

where q > p ≥ 2. A crucial step of our argument system consists in demonstrat-
ing the correct computation of the rounding step: i.e., proving that y = �x�p,
for x ∈ Z

m
q satisfying some additional context-dependent constraints.

We believe that our zero-knowledge arguments can find use cases in many
other applications involving PRFs, and where zero-knowledge proofs con-
strain participants not to deviate from the protocol. Examples include privacy-
preserving de-centralized e-cash systems [12,39,57], stateful anonymous creden-
tials [40], n-times periodic anonymous authentication [21], traceable ring sig-
natures [50], anonymous survey systems [59], password-protected secret sharing
[61] or unlinkable pseudonyms for privacy-preserving distributed databases [24].
We also think of distributed PRFs [75,80], where servers holding a polynomial
share ki of the seed k can prove the correctness of their contribution w.r.t. to
their committed share ki. Our arguments may also prove useful in the context of
oblivious PRF evaluations [49,62], where one party holds a PRF key k and must
convince the other party that k was correctly used in oblivious computations.

Our Techniques. In order to convince a verifier of the correct evaluation of
LWR-based PRFs, the first step is to provide evidence that the underlying round-
ing operation is properly carried out. For dimension m > 1 and moduli q > p ≥ 2,
identify Zq, Zp as the set [0, q − 1] and [0, p − 1], respectively, and consider the
function �·�p : Zm

q → Z
m
p : x �→ y = �(p/q) · x� mod p. We observe that, one

knows secret vector x ∈ [0, q−1]m such that �x�p = y for a given y ∈ [0, p−1]m,
if and only if one knows x, z ∈ [0, q − 1]m such that

p · x = q · y + z mod pq. (1)

This crucial observation gives us a modular equation where the secret vec-
tors x, z are “small” relatively to the modulus pq. To prove that we know such
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secret vectors (where x may satisfy additional statements, e.g., it is commit-
ted, or certified, or is the output of other algorithms), we exploit Ling et al.’s
decomposition-extension framework [70], which interacts well with Stern’s per-
muting technique [86]. Specifically, we employ a matrix Hm,q−1 ∈ Z

m×m̄
q , where

m̄ = m�log q	, that allows to compute x̃, z̃ ∈ {0, 1}m̄ such that Hm,q−1 · x̃ = x
and Hm,q−1 · z̃ = z. Then, we let B2

m̄ be the set of all vectors in {0, 1}2m̄ that
have fixed Hamming weight m̄, and append m̄ suitable entries to x̃, z̃ to obtain
x̂, ẑ ∈ B2

m̄. Now, Eq. (1) is rewritten as:
(

p · [Hm,q−1 | 0m×m̄]
) · x̂ − [Hm,q−1 | 0m×m̄] · ẑ = q · y mod pq. (2)

Note that, one knows x, z ∈ [0, q − 1]m satisfying (1) if and only if one can
compute x̂, ẑ ∈ B2

m̄ satisfying (2). Moreover, as the constraint of x̂, ẑ is invariant
under permutation (namely, x̂, ẑ ∈ B2

m̄ if and only if πx(x̂), πz(ẑ) ∈ B2
m̄, where

πx, πz are permutations of 2m̄ elements), the latter statement can be handled via
Stern’s technique. Our method is readily extended to prove that the underlying
vector x satisfies additional statements.

Let us now consider the problem of proving a correct evaluation of the Boneh
et al. PRF [17]. The function uses public binary matrices P0,P1 ∈ {0, 1}m×m

and a secret seed k ∈ Z
m
q which allows mapping an input J ∈ {0, 1}L to

Fk(J) =
⌊

PJ[L] · PJ[L−1] · · · PJ[1] · k
⌋

p
.

We consider the evaluation process iteratively and transform intermediate wit-
nesses using the decomposition-extension framework [70], so that they nicely
interact with Stern’s permuting technique [86]. Namely, we define a sequence
{xi}L

i=0 which is initialized with x0 = k ∈ Z
m
q , iteratively computed as

xi = PJ[i] · xi−1 ∈ Z
m
q , for each i ∈ [1, L], and eventually yields the output

y = �xL�p. For each i ∈ [1, L], we translate the equation xi = PJ[i] ·xi−1 mod q
into

xi =
[

P0 | P1

] · ti−1 mod q, with ti−1 =
(

J [i]·xi−1

J [i]·xi−1

)

and where J [i] and J [i] = 1 − J [i] are part of the witnesses. Using suitable
decomposition-extension techniques [69,70] on vectors {xi}L

i=0, {ti}L
i=1, we man-

age to express all the L iterative equations by just one equation of the form
M1 · w1 = u1 mod q, for some public matrix M1 and vector u1 over Zq, while
w1 is a binary vector containing secret bits of all the witnesses and fitting a
certain pattern. Meanwhile, the rounding step y = �xL�p, as discussed above,
would yield an equation of the form M2 · w2 = u2 mod pq, where w2 is cor-
related to w1. Furthermore, our applications require to additionally prove that
a binary representation of the seed x0 = k is properly committed or certified,
while the commitment or signature scheme may use a different modulus. Thus,
we eventually have to handle relations of the form Mi · wi = ui mod qi for sev-
eral moduli q1, . . . , qN when, for distinct i, j ∈ [N ], witnesses wi,wj may have
entries in common. An abstraction of Stern’s protocol was recently suggested by
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Libert et al. [68] to address a similar setting when one has to prove a number of
linear relations. Unfortunately, their framework, which deals with a unique mod-
ulus, does not directly cover our setting. To overcome this problem, we thus put
forward a generalization of Libert et al.’s framework, so as to handle correlated
witnesses across relations modulo distinct integers.

The above techniques thus smoothly interact with the pseudo-random func-
tions of Boneh et al. [17] and the PRG of [8]. Unfortunately, we did not manage
to extend them to other existing PRFs [7,8,45] based on the hardness of LWR.
In the synthesizer-based construction of Banerjee et al. [8], the difficulty is the
lack of public matrices which would help us reduce the statement to an asser-
tion of the form M · w = u, for some witness w ∈ Z

m and public M ∈ Z
n×m
q ,

u ∈ Z
n
q . Our zero-knowledge arguments do not appear to carry over to the key

homomorphic functions of Banerjee and Peikert [7] either as they rely on a more
complex tree-like structure. The fact that our techniques do not apply to all
known lattice-based PRFs emphasizes that they are far more innovative than
just an application of generic zero-knowledge paradigms, which would resort to a
circuit decomposition of the evaluation algorithm and proceed in a gate-by-gate
manner. Indeed, we process all statements without decomposing the arithmetic
operations into a circuit.

Our compact e-cash construction builds on the design principle of Camenisch
et al. [22] which combines signatures with efficient protocols [25,26], algebraic
pseudo-random functions [44] and zero-knowledge proofs. In the lattice setting,
we take the same approach by combining (a variant of) the signature scheme
with efficient protocols of [68] and the PRF of [17]. While the GGM-based PRF
of [8] would allow a more efficient choice of parameters, we chose to instanti-
ate our system with the realization of Boneh et al. [17] since it simplifies the
description and the security proof (specifically, we do not have to rely on the
pseudo-randomness of the function in one of the security properties). However,
our scheme can be modified to rely on the PRF built on the LWR-based PRG.

As in [22], the withdrawal phase allows the user to obtain a wallet of value
2L − 1 which consists of two PRF seeds, a counter and a signature generated
by the bank on committed values. In the withdrawal protocol, the PRF seeds
are obliviously signed (and bound to the user’s secret key) by the bank using a
signature scheme with efficient protocols [25,26]. The first seed k is used to derive
each coin’s serial number yS = Fk(J) ∈ Z

m
p as a pseudo-random function of an

L-bit counter J ∈ {0, 1}L which denotes the number of previously spent coins.
By spending the same coin twice, the user is thus forced to use the same serial
number in two distinct transactions, making the cheating attempt detectable.

The second PRF seed t is used to compute a security tag yT that allows iden-
tifying double-spenders. This tag is a vector yT = PKU +H(info) ·Ft(J) ∈ Z

m
p ,

where PKU is the user’s public key and H(info) ∈ Z
m×m
p is a matrix gener-

ated by hashing some transaction-specific information supplied by the merchant.
From two coins that share the same serial number yS and distinct security tags
yT,1 = PKU +H(info1) ·Ft(J) and yT,2 = PKU +H(info2) ·Ft(J), the differ-
ence yT,1 − yT,2 = (H(info1) − H(info2)) · Ft(J) allows computing the PRF
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value Ft(J) = (H(info1) − H(info2))−1 · (yT,1 − yT,2) ∈ Z
m
p (and then PKU )

whenever H(info1) − H(info2) is invertible over Zp. This property is precisely
ensured by the Full-Rank Difference function of Agrawal et al. [1], which comes
in handy to instantiate H : {0, 1}∗ → Z

m×m
p . In contrast with [1], the Full-Rank

Difference function is utilized in the scheme while [1] uses it in security proofs.

1.2 Related Work

E-Cash. Chaum’s pioneering work [33,34] inspired a large body of research
towards efficient e-cash systems [37,38,47,82,83,87] with better properties dur-
ing two decades. The first compact realization was given by Camenisch et al. [22]
whose techniques served as a blueprint for many subsequent e-cash systems with
additional features such as refined accountability-anonymity tradeoffs [23], coin
endorsement [27], or security proofs in the standard model [10]. The authors of
[22] extended their schemes with a coin tracing mechanism whereby all the coins
of a double-spender can be traced once this user has been identified.

Divisible e-cash [82] allow users to withdraw a wallet of value 2L in such a way
that each spending may involve transactions of variable amounts. While the early
constructions [82,83] only provided weaker anonymity properties, Canard and
Gouget gave truly anonymous realizations [28] using tree-based techniques which
were subsequently made scalable [29,30]. The recent adoption of de-centralized
payment systems [79] has triggered a new line of research towards strengthening
the privacy of Bitcoin (see [12,57,78] and references therein).

To our knowledge, all truly private compact e-cash systems rely on discrete-
logarithm-based techniques, either because of the underlying pseudo-random
function [10,22] or via accumulators [5] (or both). In the lattice setting, we
are not aware of any compact e-cash realization and neither do we know of any
proofs of correct PRF evaluation with or without random oracles. In particular, it
remains an open problem to build verifiable random functions [74] from lattices.

Lattices and Zero-Knowledge Proofs. Existing methods of proving rela-
tions appearing in lattice-based cryptosystems belong to two main families. The
first family, introduced by Lyubashevsky [73], uses “rejection sampling” tech-
niques, and recently lead to relatively efficient proofs of knowledge of small
secret vectors [9,13,14,42,43]. However, due to the nature of “rejection sam-
pling” mechanisms, even the honest prover may fail to convince the verifier with
a tiny probability: i.e., protocols in this family do not have perfect complete-
ness. Furthermore, when proving knowledge of vectors having norm bound β, the
knowledge extractor of these protocols is only guaranteed to produce witnesses
of norm bound g · β, for some factor g > 1. This factor, called the “soundness
slack” in [9,42], may have an undesirable consequence: if an extracted witness
has to be used in the security proof to solve a challenge SIS instance, we have
to rely on the SISg·β assumption, which is stronger than the SISβ assumption
required by the protocol itself. Moreover, in some advanced protocols such as
those considered in this work, the coordinates of extracted vectors are expected
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to be in {0, 1} and/or satisfy a specific pattern. Such issues seem hard to tackle
using this family of protocols.

The second family, initiated by Ling et al. [70], rely on “decomposition-
extension” techniques in lattice-based analogues [64] of Stern’s protocol [86].
Stern-like systems are less efficient than those of the first family because each
protocol execution admits a constant soundness error, requiring the protocols to
be repeated ω(log λ) times in order to achieve a negligible soundness error. On
the upside, Stern-like protocols do have perfect completeness and are capable
of handling a wide range of lattice-based relations [66–69,71], especially when
the witnesses are not only required to be small or binary, but should also have
prescribed arrangements of coordinates. Moreover, unlike protocols of the first
family, the extractor of Stern-like protocols are able to output witness vectors
having exactly the same properties as those expected from valid witnesses. This
feature is often crucial in the design of advanced cryptographic constructions
involving zero-knowledge proofs. Additionally, the “soundness slack” issue is
completely avoided, so that the hardness assumptions are kept “in place”.

When it comes to proving the correct evaluation of AES-like secret key prim-
itives, several works [32,48,63] built zero-knowledge proofs upon garbled circuits
or multi-party computation [53,60], which may lead to truly practical proofs [53]
even for non-algebraic statements. However, the garbled circuit paradigm [63]
inherently requires interactive proofs (and cannot be made non-interactive via
Fiat-Shamir [46]), making it unsuitable to our applications where coins must
carry a non-interactive proof. While Giacomelli et al. [53] successfully designed
efficient non-interactive proofs for SHA-256 evaluations, these remain of linear
length in the circuit size and efficiently combining them with proofs of alge-
braic statements is non-trivial here: in the e-cash setting, our goal is to prove
the correct evaluation of LWE-based symmetric primitives for committed inputs
and keys. To our knowledge, known results on the smooth integration of alge-
braic and non-algebraic statements [32] are obtained by tweaking the approach
of Jawurek et al. [63], which requires interaction.

Despite the scarcity of truly efficient zero-knowledge proofs in the lattice-
setting, a recent body of work successfully designed proof systems in privacy-
preserving protocols [13,56,64,65,71,81]. These results, however, only consid-
ered ring signatures [19,64], group signatures [13,56,65,66,71,81], group encryp-
tion [67] or building blocks [68] for anonymous credentials [35]. As of the time
of writing, lattice-based realizations of anonymous e-cash still remain lacking.

2 Background and Definitions

Vectors are denoted in bold lower-case letters and bold upper-case letters will
denote matrices. The Euclidean and infinity norm of any vector b ∈ R

n will
be denoted by ‖b‖ and ‖b‖∞, respectively. The Euclidean norm of matrix B ∈
R

m×n with columns (bi)i≤n is ‖B‖ = maxi≤n ‖bi‖. When B has full column-
rank, we let ˜B denote its Gram-Schmidt orthogonalization.
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When S is a finite set, we denote by U(S) the uniform distribution over S
and by x ←↩ U(S) the action of sampling x according to this distribution.

For any x ∈ Z
m
q , the notation �x�p stands for the result of the rounding

operation �x�p = �(p/q)·x� mod p. Intuitively, the mapping �·�p : Zm
q → Z

m
p can

be seen as dividing Zq into p intervals of size (q/p) and sending each coordinate
of x ∈ Z

m
q to the interval it belongs to.

The column concatenation of matrices A ∈ R
n×k and B ∈ R

n×m is denoted
by [A |B] ∈ R

n×(k+m). When concatenating column vectors x ∈ R
k and y ∈ R

m,
for simplicity, we often use the notation (x‖y) ∈ R

k+m (instead of (x�‖y�)�).

2.1 Lattices

A lattice L is the set of integer linear combinations of linearly independent basis
vectors (bi)i≤n living in R

m. We work with q-ary lattices, for some prime q.

Definition 1. Let m ≥ n ≥ 1, a prime q ≥ 2 and A ∈ Z
n×m
q and u ∈ Z

n
q ,

define Λq(A) := {e ∈ Z
m | ∃s ∈ Z

n
q s.t. AT · s = e mod q} as well as

Λ⊥
q (A) := {e ∈ Z

m | A · e = 0n mod q}, Λu
q (A) := {e ∈ Z

m | A · e = u mod q}

For any arbitrary t ∈ Λu
q (A), we also define the shifted lattice Λu

q (A) =
Λ⊥

q (A) + t.

For a lattice L, a vector c ∈ R
m and a real number σ > 0, define the function

ρσ,c(x) = exp(−π‖x−c‖2/σ2). The discrete Gaussian distribution of support L,
center c and parameter σ is defined as DL,σ,c(y) = ρσ,c(y)/ρσ,c(L) for any
y ∈ L, where ρσ,c(L) =

∑

x∈L ρσ,c(x). We denote by DL,σ(y) the distribution
centered in c = 0m and exploit the fact that samples from DL,σ are short w.h.p.

Lemma 1 [6, Lemma 1.5]. For any lattice L ⊆ R
m and positive real number σ >

0, we have Prb←↩DL,σ
[‖b‖ ≤ √

mσ] ≥ 1 − 2−Ω(m).

It is well-known that Gaussian distributions with lattice support can be effi-
ciently sampled from a sufficiently short basis of the lattice.

Lemma 2 [20, Lemma 2.3]. There exists a PPT algorithm GPVSample that
takes as inputs a basis B of a lattice L ⊆ Z

n and a rational σ ≥ ‖˜B‖·Ω(
√

log n),
and outputs vectors b ∈ L with distribution DL,σ.

We rely on the trapdoor generation algorithm of Alwen and Peikert [4].

Lemma 3 [4, Theorem 3.2]. There exists a PPT algorithm TrapGen that takes
as inputs 1n, 1m and an integer q ≥ 2 with m ≥ Ω(n log q), and outputs a
matrix A ∈ Z

n×m
q and a basis TA of Λ⊥

q (A) such that A is within statistical
distance 2−Ω(n) to U(Zn×m

q ), and ‖˜TA‖ ≤ O(
√

n log q).

We utilize the basis delegation algorithm [31] that inputs a trapdoor for A ∈
Z

n×m
q and produces a trapdoor for any B ∈ Z

n×m′
q containing A ∈ Z

n×m
q as a

submatrix.
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Lemma 4 [31, Lemma 3.2]. There exists a PPT algorithm that inputs a
matrix B ∈ Z

n×m′
q whose first m columns span Z

n
q , and a basis TA of Λ⊥

q (A)
where A is an n × m submatrix of B, and outputs a basis TB of Λ⊥

q (B)
with ‖˜TB‖ ≤ ‖˜TA‖.
Our security proofs use a technique introduced by Agrawal et al. [1].

Lemma 5 [1, Theorem 19]. There exists a PPT algorithm that inputs matrices
A,C ∈ Z

n×m
q , a small-norm matrix R ∈ Z

m×m, a short basis TC ∈ Z
m×m

of Λ⊥
q (C), a vector u ∈ Z

n
q and a rational σ such that σ ≥ ‖˜TC‖ · Ω(

√
log n),

and outputs vectors b ∈ Z
2m such that

[

A A · R + C
] · b = u mod q and

with distribution statistically close to DL,σ where L denotes the shifted lattice
{x ∈ Z

2m :
[

A A · R + C
] · x = u mod q}.

2.2 Hardness Assumptions

Definition 2. Let m,n, q ∈ N with m > n and β > 0. The Short Integer
Solution problem SISm,q,β is, given A ←↩ U(Zn×m

q ), find x ∈ Λ⊥(A) with 0 <
‖x‖ ≤ β.

Definition 3. Let q, α be functions of a parameter n. For a secret s ∈ Z
n
q , the

distribution Aq,α,s over Z
n
q ×Zq is obtained by sampling a ←↩ U(Zn

q ) and a noise
e ←↩ DZ,αq, and returning (a, 〈a, s〉 + e). The Learning-With-Errors problem
LWEq,α is, for s ←↩ U(Zn

q ), to distinguish between arbitrarily many independent
samples from U(Zn

q × Zq) and the same number of samples from Aq,α,s.

If q ≥ √
nβ and m,β ≤ poly(n), then standard worst-case lattice prob-

lems with approximation factors γ = ˜O(β
√

n) reduce to SISm,q,β (see, e.g., [52,
See. 9]). Similarly, if αq = Ω(

√
n), standard worst-case lattice problems with

approximation factors γ = O(α/n) reduce [20,85] to LWEq,α. In the design of
deterministic primitives like PRFs, the following variant of LWE comes in handy.

Definition 4 [8]. Let q, p,m be functions of a security parameter n such that
q > p ≥ 2 and m > n. The Learning-With-Rounding (LWR) problem is to
distinguish the distribution {(A, �AT · s�p) | A ←↩ U(Zn×m

q ), s ←↩ U(Zn
q )} from

the distribution {(A, y) | A ←↩ U(Zn×m
q ), y ←↩ U(Zm

p )}.

Banerjee et al. [8] proved that LWR is as hard as LWE when q and the modulus-to-
error ratio are super-polynomial. Alwen et al. [3] showed that, when the number
m of samples is fixed in advance, LWR retains its hardness for polynomial moduli.
Bogdanov et al. [15] generalized the result of [3] to get rid of restrictions on the
modulus q. For such parameters, their result implies the security of the LWR-
based PRG, which stretches the seed s ∈ Z

n
q into �AT · s�p ∈ Z

m
p .
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2.3 Syntactic Definitions for Off-Line Compact E-Cash

An off-line e-cash system involves a bank B, many users U and merchants M. In
the syntax defined by Camenisch, Hohenberger and Lysyanskaya [22], all these
parties interact together via the following algorithms and protocols:

ParGen(1λ): inputs a security parameter 1λ and outputs public parameters par.

In the following, we assume that par are available to all parties although we
sometimes omit them from the inputs of certain algorithms.

BKeygen(par): generates a bank’s key pair (SKB, PKB) which allows B to issue
wallets of value 2L ∈ poly(λ) (we assume that L is part of par).

UKeygen(par): generates a user key pair (SKU , PKU ).
Withdraw

(U(PKB, SKU ),B(PKU , SKB)
)

: is an interactive protocol between a
user U and the bank B. The user U obtains either a wallet W of 2L coins
or an error message ⊥. The bank outputs some state information TW which
allows identifying U , should he overspend.

Spend
(U(W , PKB, PKM, info),M(SKM, PKB, 2L)

)

: is a protocol whereby
the user U , on input of public keys PKM, PKB and some transaction-specific
meta data info, spends a coin from his wallet W to merchant M. The mer-
chant obtains a coin coin comprised of a serial number and a proof of validity.
U ’s output is an updated wallet W ′.

VerifyCoin(par, PKM, PKB, coin): is a non-interactive coin verification algo-
rithm. On input of a purported coin and the public keys PKM, PKB of
the bank and the merchant, it outputs 0 or 1.

Deposit(M(SKM, coin, PKB),B(PKM, SKB, stateB))): is a protocol allowing
the merchant M to deposit a received coin coin into its account at the
bank B. M outputs ⊥ if the protocol fails and nothing if it succeeds.
The bank B outputs “accept” and updates its state stateB by adding an
entry (PKM, coin) if VerifyCoin(par, PKM, PKB, coin) = 1 and no double-
spending is detected. Otherwise, if VerifyCoin(par, PKM, PKB, coin) = 1 and
stateB already contains a coin with the same serial number, it outputs “user”.
If VerifyCoin(par, PKM, PKB, coin) = 0 or stateB already contains an entry
(PKM, coin), it outputs “merchant”.

Identify
(

par, PKB, coin1, coin2

)

: is an algorithm that allows the bank B to iden-
tify a double-spender on input of two coins coin1, coin2 with identical serial
numbers. The bank outputs the double-spender’s public key PKU and a proof
ΠG that U indeed overspent.

Like [22], we assume that wallets W contain a counter J , initialized to 0,
which indicates the number of previously spent coins. We also assume that each
coin contains a serial number S, a proof of validity π as well as some information
on the merchant’s public key PKM and some meta-data info.

Following [22], we say that an off-line e-cash system is compact if the bitlength
of the wallet W and the communication/computational complexities of all pro-
tocols is at most logarithmic in the value of the wallet (i.e., linear in L).
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We use the security definitions of [22], which formalize security requirements
called anonymity, balance, double-spender identification and exculpability.

Informally, the balance property considers colluding users interacting with
a honest bank and attempting to spend more coins than they withdraw. This
property is broken if the adversary manages to spend a coin of which the ser-
ial number does not match the serial number of any legally withdrawn coin.
Double-spender identification complements the balance property by requiring
that a malicious user be unable to output two coins with the same serial num-
ber without being caught by the Identify algorithm. Anonymity mandates that,
when a merchant returns a received coin to the bank, even if they collude, they
cannot infer anything as to when and by whom the coin was withdrawn. The
exculpability property captures that honest users cannot be falsely accused of
being double-spenders: the adversary controls the bank and wins if it outputs
two coins with the same serial number and such that Identify points to a well-
behaved user. The formal definitions of these properties are recalled in the full
version of the paper.

3 Warm-Up: Permutations, Decompositions, Extensions

This section presents various notations and techniques that appeared (in slightly
different forms) in earlier works on Stern-like protocols [66,68–71], and that will
be used extensively throughout this work.

Permutations. For any positive integer m, we define the following sets.

– Sm: the set of all permutations of m elements.
– B2

m: the set of binary vectors in {0, 1}2m with Hamming weight m. Note that
for any v ∈ Z

2m and π ∈ S2m, we have:

v ∈ B2
m ⇐⇒ π(v) ∈ B2

m. (3)

– B3
m: the set of vectors in {−1, 0, 1}3m that have exactly m coordinates equal

to j, for every j ∈ {−1, 0, 1}. Note that for any w ∈ Z
3m and φ ∈ S3m:

w ∈ B3
m ⇐⇒ φ(w) ∈ B3

m. (4)

For bit c ∈ {0, 1} and integer vector v of any dimension m, we denote by

Expand(c,v) the vector
(

c · v
c · v

)

∈ Z
2m, where c denotes the bit 1 − c.

For any positive integer m, bit b ∈ {0, 1}, and permutation π ∈ Sm, we denote

by Tb,π the permutation that transforms the vector v =
(

v0

v1

)

∈ Z
2m, where

v0,v1 ∈ Z
m, into the vector Tb,π(v) =

(

π(vb)
π(vb)

)

. Namely, Tb,π first rearranges

the 2 blocks of v according to b (it keeps the arrangement of blocks if b = 0 and
swaps them if b = 1), then it permutes each block according to π.
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Observe that the following equivalence holds for all m ∈ Z+, b, c ∈ {0, 1},
π ∈ Sm, v ∈ Z

m:

z = expand(c,v) ⇐⇒ Tb,π(z) = expand(c ⊕ b, π(v)), (5)

where ⊕ denotes the addition operation modulo 2.

Decompositions. For any B ∈ Z+, define δB := �log2 B� + 1 = �log2(B + 1)	
and the sequence B1, . . . , BδB

, where Bj = �B+2j−1

2j �, for each j ∈ [1, δB ]. As
observed in [70,72], it satisfies

∑δB

j=1 Bj = B and any integer v ∈ [0, B] can

be decomposed to idecB(v) = (v(1), . . . , v(δB))� ∈ {0, 1}δB such that
∑δB

j=1 Bj ·
v(j) = v. We describe this decomposition procedure in a deterministic manner
as follows:

1. v′ := v
2. For j = 1 to δB do:

(i) If v′ ≥ Bj then v(j) := 1, else v(j) := 0;
(ii) v′ := v′ − Bj · v(j).

3. Output idecB(v) = (v(1), . . . , v(δB))�.

Next, for any positive integers m, B, we define the matrix:

Hm,B :=

⎡

⎢

⎢

⎢

⎣

B1 . . . BδB

B1 . . . BδB

. . .
B1 . . . BδB

⎤

⎥

⎥

⎥

⎦

∈ Z
m×mδB , (6)

and the following injective functions:

(i) vdecm,B : [0, B]m → {0, 1}mδB that maps the vector v = (v1, . . . , vm) to
(

idecB(v1)‖ . . . ‖idecB(vm)
)

. Note that Hm,B · vdecm,B(v) = v.
(ii) vdec′

m,B : [−B,B]m → {−1, 0, 1}mδB that decomposes w = (w1, . . . , wm)
into the vector

(

σ(w1) · idecB(|w1|)‖ . . . ‖σ(wm) · idecB(|wm|)) such that, for
each i ∈ [m], we have: σ(wi) = 0 if wi = 0; σ(wi) = −1 if wi < 0; σ(wi) = 1
if wi > 0. Note that Hm,B · vdec′

m,B(w) = w.

Extensions. We define following extensions of matrices and vectors.

– For any m, B ∈ Z+, define ̂Hm,B ∈ Z
m×2mδB , H̆m,B ∈ Z

m×3mδB as follows:

̂Hm,B :=
[

Hm,B

∣

∣0m×mδB
]

; H̆m,B :=
[

Hm,B

∣

∣0m×2mδB
]

.

– Given v ∈ {0, 1}m, define TwoExt(v) := (v‖0m−n0‖1m−n1) ∈ B2
m, where n0,

n1 are the number of coordinates in v equal to 0 and 1, respectively.
– Given v ∈ [−1, 0, 1]m, define

ThreeExt(v) := (v‖0m−n0‖1m−n1‖−1m−n−1) ∈ B3
m,

where n0, n1, n−1 are the number of coordinates in v equal to 0, 1, and −1,
respectively.
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Note that, if x ∈ [0, B]m and y ∈ [−B,B]m, then we have:

TwoExt
(

vdecm,B(x)
) ∈ B2

mδB
and ̂Hm,B · TwoExt(vdecm,B(x)

)

= x, (7)

ThreeExt
(

vdec′
m,B(y)

) ∈ B3
mδB

and H̆m,B · ThreeExt(vdec′
m,B(y)

)

= y. (8)

In the framework of Stern-like protocols [64,68,70,71,86], the above tech-
niques are useful when it comes proving in zero-knowledge the possession of
integer vectors satisfying several different constraints:

Case 1: x ∈ [0, B]m. We equivalently prove x̂ = TwoExt
(

vdecm,B(x)
) ∈ B2

mδB
.

To do this, pick π ←↩ U(S2mδB
), and convince the verifier that π(x̂) ∈ B2

mδB
.

Case 2: x∈ [−B,B]m. We equivalently prove x̆=ThreeExt
(

vdec′
m,B(y)

)∈B3
mδB

.
To do this, pick π ←↩ U(S3mδB

), and convince the verifier that π(x̆) ∈ B3
mδB

.

Case 3: x = expand(c,v), where v satisfies one of the above two constraints. To
hide v, we use the respective decomposition-extension-permutation technique.
To hide the bit c, we pick a “one-time pad” b ←↩ U({0, 1}) and exploit the equiv-
alence observed in (5). Looking ahead, this technique will be used in Sect. 4.3 to
hide the bits of the PRF input J and those of a signature component τ ∈ {0, 1}


in Sect. 5.

4 Zero-Knowledge Arguments for Lattice-Based PRFs

Here, we first give an abstraction of Stern’s protocol [86]. With this abstraction
in mind, we then present our techniques for achieving zero-knowledge arguments
for the BLMR PRF [17].

In the full version of the paper, we adapt these techniques to the PRF
generically implied by the GGM [54] paradigm. While slightly more complex
to describe, the GGM-based construction allows for a better choice of parame-
ters since, owing to the result of Bogdanov et al. [15], it allows instantiating the
LWR-based PRG with polynomial-size moduli.

4.1 An Abstraction of Stern’s Protocol

In [86], Stern proposed a zero-knowledge protocol for the Syndrome Decoding
problem, in which the main idea is to use a random permutation over coordinates
of a secret vector to prove that the latter satisfies a given constraint (e.g., having
fixed Hamming weight). Later on, Stern’s protocol was adapted to the lattice
setting by Kawachi et al. [64] and refined by Ling et al. [70] to handle statements
related to the SIS and LWE problems. Subsequently, the protocol was further
developed to design several lattice-based systems [66,69,71]. Recently, Libert et
al. [68] suggested an abstraction that addresses the setting where one has to
prove knowledge of small secret vectors satisfying a number of modular linear
equations with respect to one modulus. While their generalization subsumes
many relations that naturally appear in privacy-preserving protocols involving



Zero-Knowledge Arguments for Lattice-Based PRFs 317

Fig. 1. Our abstract protocol.

lattices, it is not immediately applicable to the statements considered in this
paper since we have to work with more than one modulus.

We thus put forward a new abstraction of Stern’s protocol [86] that han-
dles modular equations with respect to N ≥ 1 moduli q1, . . . , qN , where secret
witnesses may simultaneously appear across multiple equations.

Let ni and di ≥ ni be positive integers, and let d = d1 + · · · + dN . Suppose
that VALID is a subset of {−1, 0, 1}d and S is a finite set such that every φ ∈ S
can be associated with a permutation Γφ of d elements satisfying the conditions
{

w ∈ VALID ⇐⇒ Γφ(w) ∈ VALID;
If w ∈ VALID and φ is uniform in S, then Γφ(w) is uniform in VALID.

(9)

In our abstract protocol, for public matrices {Mi ∈ Z
ni×di
qi

}i∈[N ] and vectors
ui ∈ Z

ni
qi

, the prover argues in zero-knowledge the possession of integer vectors
{wi ∈ {−1, 0, 1}di}i∈[N ] such that:

w =
(

w1‖ . . . ‖wN

) ∈ VALID, (10)
∀i ∈ [N ] : Mi · wi = ui mod qi. (11)
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Looking ahead, all the statements considered in Sects. 4.3, 5 will be reduced to
the above setting, wherein secret vectors w1, . . . ,wN are mutually related, e.g.,
some entries of wi also appear in wj .

The main ideas driving our protocol are as follows. To prove (10), the prover
samples φ ← U(S) and provides evidence that Γφ(w) ∈ VALID. The verifier
should be convinced while learning nothing else, owing to the aforementioned
properties of the sets VALID and S. Meanwhile, to prove that Eq. (11) hold, the
prover uses masking vectors {ri ← U(Zdi

qi
)}i∈[N ] and demonstrates instead that

Mi · (wi + ri) = ui + Mi · ri mod qi.
The interaction between prover P and verifier V is described in Fig. 1.

The common input consists of {Mi ∈ Z
ni×di
qi

}i∈[N ] and ui ∈ Z
ni
qi

, while P’s
secret input is w =

(

w1‖ . . . ‖wN

)

. The protocol makes use of a statistically
hiding and computationally binding string commitment scheme COM such as
the SIS-based commitment of [64]. For simplicity of presentation, for vectors
w =

(

w1‖ . . . ‖wN

) ∈ Z
d and r =

(

r1‖ . . . ‖rN

) ∈ Z
d, we denote by w � r

the operation that computes zi = wi + ri mod qi for all i ∈ [N ], and outputs
d-dimensional integer vector z =

(

z1‖ . . . ‖zN

)

. We note that, for all φ ∈ S, if
t = Γφ(w) and s = Γφ(r), then we have Γφ(w � r) = t � s.

The properties of our protocol are summarized in the following theorem.

Theorem 1. Suppose that COM is a statistically hiding and computationally
binding string commitment. Then, the protocol of Fig. 1 is a zero-knowledge argu-
ment of knowledge for the given statement, with perfect completeness, soundness
error 2/3, and communication cost O(∑N

i=1 di · log qi

)

. In particular:

– There exists an efficient simulator that, on input {Mi,ui}i∈[N ], outputs an
accepted transcript statistically close to that produced by the real prover.

– There exists an efficient knowledge extractor that, on input a commitment
CMT as well as valid responses (RSP1,RSP2,RSP3) to all three possible val-
ues of the challenge Ch, outputs a witness w′ = (w′

1‖ . . . ‖w′
N ) ∈ VALID such

that Mi · w′
i = ui mod qi, for all i ∈ [N ].

The proof of Theorem 1 employs standard simulation and extraction techniques
of Stern-like protocols [64,68–70], and is deferred to the full version of the paper.

4.2 Transforming the LWR Relation

Let q ≥ p ≥ 2, m ≥ 1, and let Zq = [0, q − 1] and Zp = [0, p − 1]. Consider the
LWR rounding function: �·�p : Zm

q → Z
m
p : x �→ y = �(p/q) · x� mod p.

On the road towards zero-knowledge arguments for LWR-based PRFs, we
have to build a sub-protocol that allows proving knowledge of a secret vector
x ∈ Z

m
q satisfying, among other statements, the property of rounding to a given

y ∈ Z
m
p : i.e., �x�p = y. To our knowledge, such a sub-protocol is not available

in the literature for the time being and must be designed from scratch.
Our crucial observation is that one knows x ∈ [0, q −1]m such that �x�p = y,

if and only if one can compute x, z ∈ [0, q − 1]m such that:

p · x = q · y + z mod pq. (12)
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This observation allows us to transform the LWR relation into an equivalent
form that can be handled using the Stern-like techniques provided in Sect. 3.
Let x̂ = TwoExt

(

vdecm,q−1(x)
)

and ẑ = TwoExt
(

vdecm,q−1(z)
)

. Then we have
x = ̂Hm,q−1 · x̂ and z = ̂Hm,q−1 · ẑ, so that Eq. (12) can be written as:

(p · ̂Hm,q−1) · x̂ − ̂Hm,q−1 · ẑ = q · y mod pq. (13)

Note that one knows x, z ∈ [0, q − 1]m satisfying (12) if and only if one can
compute x̂, ẑ ∈ B2

mδq−1
satisfying (13). Furthermore, Stern’s framework allows

proving the latter in zero-knowledge using random permutations.

4.3 Argument of Correct Evaluation for the BLMR PRF

We now consider the problem of proving the correct evaluation of the BLMR
pseudo-random function from [17]. Namely, we would like to prove that a given
y =

⌊∏L
i=1 PJ[L+1−i] · k

⌋

p
∈ Z

m
p is the correct evaluation for a committed seed

k ∈ Z
m
q and a secret input J [1] . . . J [L] ∈ {0, 1}L, where P0,P1 ∈ {0, 1}m×m are

public binary matrices, while revealing neither k nor J [1] . . . J [L]. We assume
public matrices D0 ∈ Z

n×m0
qs

, D1 ∈ Z
n×m̄
qs

, for some modulus qs and integers
m0 and m̄ = mδq−1, which are used to compute a KTX commitment [64] c =
D0 ·r+D1 ·k̃ ∈ Z

n
qs

to the decomposition k̃ = vdecm,q−1(k) ∈ {0, 1}m̄ of the seed
k, where r ∈ [−β, β]m0 is a discrete Gaussian vector (for some small integer β),
and k̃ satisfies Hm,q−1 · k̃ = k.

We first note that, in the evaluation process of y =
⌊∏L

i=1 PJ[L+1−i] · k⌋
p
,

one works with vectors {xi ∈ Z
m
q }L

i=0 such that x0 = k, xi = PJ[i] · xi−1 mod q
for each i ∈ {1, . . . , L}, and y = �xL�p. We further observe that the iterative
equation xi = PJ[i] · xi−1 mod q is equivalent to:

xi = P0 ·(J [i]·xi−1)+P1 ·(J [i]·xi−1) =
[

P0 |P1

] ·
(

J [i]·xi−1

J [i]·xi−1

)

mod q. (14)

Intuitively, this observation allows us to move the secret bit J [i] from the
“matrix side” to the “vector side” in order to make the equation compatible
with Stern-like protocols. Next, for each i ∈ {0, . . . , L}, we form the vector
x̂i = TwoExt

(

vdecm,q−1(xi)
) ∈ B2

m̄. Equation (14) can then be written as:

̂Hm,q−1 · x̂i =
[

P0 · ̂Hm,q−1 |P1 · ̂Hm,q−1

] · expand(J [i], x̂i−1) mod q.

Let P =
[

P0 · ̂Hm,q−1 |P1 · ̂Hm,q−1

] ∈ Z
m×4m̄
q , and {si−1 =

expand(J [i], x̂i−1)}L
i=1, we have the L equations:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

P · s0 − ̂Hm,q−1 · x̂1 = 0 mod q,
...

P · sL−1 − ̂Hm,q−1 · x̂L = 0 mod q,

(15)
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Regarding the rounding step �xL�p = y ∈ Z
m
p , using the transformations of

Sect. 4.2, we obtain the following equation for ẑ ∈ B2
m̄:

(p · ̂Hm,q−1) · x̂L − ̂Hm,q−1 · ẑ = q · y mod pq, (16)

As for the commitment relation, we have the equation c = D0 · r + D1 ·
k̃ mod qs, where Hm,q−1 · k̃ = x0. We let r̆ = ThreeExt

(

vdec′
m0,β(r)

) ∈ B3
m0δβ

and remark that TwoExt
(

k̃
)

= x̂0. Then, we have:

[D0 · H̆m0,β ] · r̆ + [D1 | 0n×m̄] · x̂0 = c mod qs. (17)

Our goal is now reduced to proving the possession of J [1] . . . J [L] ∈ {0, 1}L,
x̂0, . . . , x̂L, ẑ ∈ B2

m̄ and r̆ ∈ B3
m0δβ

, satisfying Eqs. (17), (15) and (16). Next, we
let q1 = qs, q2 = q, q3 = pq, and proceed as follows.

Regarding Eq. (17), letting M1 =
[

D0 · H̆m0,β

∣

∣D1 | 0n×m̄
]

, u1 = c and
w1 =

(

r̆‖x̂0

)

, the equation becomes:

M1 · w1 = u1 mod q1.

Next, we unify the L equations in (15). To this end, we define

M2 =

⎡

⎢

⎣

P − ̂Hm,q−1

. . . . . .
P − ̂Hm,q−1

⎤

⎥

⎦ , u2 = 0,

and w2 =
(

s0‖x̂1‖ · · · ‖sL−1‖x̂L

)

. Then, (15) can be equivalently written as:

M2 · w2 = u2 mod q2.

As for Eq. (16), let M3 =
[

(p · ̂Hm,q−1)| − ̂Hm,q−1

]

, u3 = q · y and w3 =
(

x̂L‖ẑ). Then, we obtain:

M3 · w3 = u3 mod q3.

Now, we let d1 = 3m0δβ + 2m̄, d2 = 6Lm̄ and d3 = 4m̄ be the dimensions
of w1,w2 and w3, respectively, and d = d1 + d2 + d3. We form the vector
w = (w1‖w2‖w3) ∈ {−1, 0, 1}d, which has the form:

w =
(

r̆ ‖ x̂0 ‖ s0 ‖ x̂1 ‖ · · · ‖ sL−1 ‖ x̂L ‖ x̂L ‖ ẑ
)

. (18)

At this point, we have come close to reducing our statement to an instance of
the one considered in Sect. 4.1. Next, let us specify the set VALID containing w,
the set S and the associated permutation Γφ satisfying conditions in 9.

Let VALID be the set of all vectors in {−1, 0, 1}d having the form (18), where

– r̆ ∈ B3
m0δβ

, and x̂0, . . . , x̂L, ẑ ∈ B2
m̄.

– {si−1 = expand(J [i], x̂i−1)}L
i=1, for some J [1] . . . J [L] ∈ {0, 1}L.
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It can be seen that our vector w belongs to this tailored set VALID.
Now, we define S := S3m0δβ

× (S2m̄)L+2 × {0, 1}L. Then, for any set ele-
ment φ = (φr, φ0, φ1, . . . , φL, φz, b1 . . . bL) ∈ S, let Γφ be the permutation that
transforms vector w ∈ Z

d of the form (18) to vector Γφ(w) of the form:

Γφ(w) =
(

φr(r̆)‖φ0(x̂0)‖Tb1,φ0(s0)‖φ1(x̂1)‖ · · · ‖ TbL,φL−1(sL−1)‖φL(x̂L)

‖φL(x̂L)‖φz(ẑ)
)

.

Thanks to the equivalences (3), (4), (5) from Sect. 3, we have w ∈ VALID if
and only if Γφ(w) ∈ VALID. Furthermore, if φ ← U(S), then Γφ(w) is uniform
in VALID. Said otherwise, the conditions in (9) are satisfied.

Given the above transformations and specifications, we can now run the
abstract protocol of Fig. 1 to prove knowledge of w = (w1‖w2‖w3) ∈
VALID satisfying {Mi · wi = ui mod qi}i=1,2,3, where public matrices/vectors
{Mi,ui}i=1,2,3 are as constructed above. As a result, we obtain a statisti-
cal zero-knowledge argument of knowledge for the statement described at the
beginning of this section. For simulation, we run the simulator of Theorem 1
with public input {Mi,ui}i=1,2,3. For extraction (see also the full version of
the paper), we first run the knowledge extractor of Theorem 1, to obtain
w′ = (w′

1‖w′
2‖w′

3) ∈ VALID such that {Mi · w′
i = ui mod qi}i=1,2,3 and then

reverse the witness transformations to get k′ ∈ Z
m
q , J ′[1] . . . J ′[L] ∈ {0, 1}L and

r′ ∈ [−β, β]m0 , k̃′ ∈ {0, 1}m̄ satisfying:

y =
⌊

L
∏

i=1

PJ ′[L+1−i] · k′⌋
p
, c = D0 · r′ + D1 · k′ mod qs, Hm,q−1 · k̃′ = k′.

The protocol has communication cost O(d1 · log q1 + d2 · log q2 + d3 · log q3).
For a typical setting of parameters (as in Sect. 5), this cost is of order ˜O(λ · L),
where λ is the security parameter (and L is the input length of the PRF).

5 Description of Our Compact E-Cash System

This section describes our e-cash system. We do not present a general construc-
tion from lower level primitives because such a construction is already implicit
in the work of Camenisch et al. [22] of which we follow the blueprint. To avoid
repeating it, we directly show how to apply the same design principle in lattices
using carefully chosen primitives that interact with our zero-knowledge proofs.

Like [22], our scheme combines signatures with efficient protocols and pseudo-
random functions which support proofs of correct evaluation. Our e-cash system
builds on the signature scheme with efficient protocols of Libert et al. [68]. The
latter is a variant of the SIS-based signatures described by Boyen [18] and Böhl
et al. [16]. We actually use a simplified version of their scheme which is recalled
in the full version of the paper and dispenses with the need to encode messages
in a special way.
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As in [22], our withdrawal protocol involves a step where the bank and the
user jointly compute a seed k = k0 +k1 ∈ Z

m
q , which will be uniform over Zm

q as
long as one of the two parties is honest. The reason is that the identification of
double-spenders can only be guaranteed if two distinct small-domain PRFs with
independent random keys never collide, except with negligible probability. To
jointly generate the PRF seed k, the protocol of [22] relies on the homomorphic
property of the commitment scheme used in their oblivious signing protocol.
In our setting, one difficulty is that the underlying KTX commitment [64] has
message space {0, 1}m�log q� and is not homomorphic over Z

m
q . To solve this

problem, our withdrawal protocol lets the user obtain the bank’s signature on
a message containing the binary decompositions of k0 and k1, so that the sum
k = k0 + k1 is only reconstructed during the spending phase.

At the withdrawal step, the user also chooses a second PRF seed t ∈ Z
m
q of

its own. The withdrawal protocol ends with the user obtaining a signature on
the committed messages (eu, k̃0, k̃1, t̃), where (k̃0, k̃1, t̃) are bitwise decomposi-
tions of PRF seeds and eu is the user’s private key for which the corresponding
public key is a GPV syndrome PKU = F · eu ∈ Z

m
p , for a random matrix

F ∈ Z
m×m�log q�
p .

In each spent coin, the user computes a serial number yS = Fk(J) ∈ Z
m
p

consisting of a PRF evaluation under k ∈ Z
m
p and generates a NIZK argument

that yS is the correct evaluation for the secret index J and the key k = k0 +
k1 contained in the certified wallet. Note that the argument does not require
a separate commitment to k since the bank’s signature sigB on the message
(eu, k̃0, k̃1, t̃) already contains a commitment to the bits of (k0,k1). Since sigB
and (eu, k̃0, k̃1, t̃) are part of the witnesses that the user argues knowledge of, it
is eventually the bank’s public key that commits the user to the seed k.

In each coin, the identification of double-spenders is enabled by a security tag
yT = PKU + HFRD(R) · Ft(J) ∈ Z

m
p , where HFRD(R) is a Full-Rank Difference

function [1,41] of some transaction-specific information. If two coins share the
same serial number yS , the soundness of the argument system implies that the
two security tags yT,1,yT,2 hide the same PKU . By the Full Rank Difference
property, subtracting yT,1 − yT,2 exposes Ft(J) ∈ Z

m
p and, in turn, PKU ∈ Z

m
p .

The details of the underlying argument system are given in Sect. 5.2, where
we show that the considered statement reduces to an instance of the abstraction
given in Sect. 4.1. On the way, we use a combination our transformation tech-
niques for the BLMR PRF from Sect. 4.3 and the Stern-like techniques for the
signature scheme of [68].

5.1 Description

In the description below, we use the injective function vdecn,q−1(·) defined in
Sect. 3, which maps a vector v ∈ Z

n
q to the vector vdecn,q−1(v) ∈ {0, 1}n�log2 q�.

ParGen(1λ, 1L): Given a security parameter λ > 0 and an integer L > 0 such
that 2L is the desired value of wallets, public parameters are chosen as follows.
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1. Choose a lattice parameter n = O(λ). Choose parameters that will be
used by the BLMR pseudo-random function [17]: an LWE parameter
α = 2−ω(log1+c(n)) for some constant c > 0; moduli p = 2log

1+c(n) and
q = O(

√
n/α) such that p divides q; and dimension m = �n log q	. Pick

another prime modulus qs = ˜O(n4) to be used by the signature scheme.
Pick an integer � = Θ(λ), a Gaussian parameter σ = Ω(

√
n log qs log n),

and an infinity norm bound β = σ · ω(log n). Let δqs−1 = �log2(qs)	,
δq−1 = �log2(q)	, δp−1 = �log2(p)	.

We will use an instance of the signature scheme with efficient protocols
from [68], where matrices (A, {Aj}


j=0,D), {Dk}4k=0 do not all have the
same number of columns. Specifically, let ms = m0 = 2nδqs−1 and define
the length of message blocks to be m1 = m2 = m3 = m4 = m̄ = mδq−1.
We also use an additional matrix F ∈ Z

m×mf
p , where mf = m̄ = mδq−1.

2. Choose a commitment key CK for a statistically hiding commitment
where the message space is {0, 1}m1 × {0, 1}m2 × {0, 1}m3 . This com-
mitment key CK =

(

[D′
0 | D′′

0 ], D1, D2, D3, D4

)

consists of random
matrices D′

0,D
′′
0 ←↩ U(Zn×m0

qs
), D1 ←↩ U(Zn×m1

qs
), D2 ←↩ U(Zn×m2

qs
),

D3 ←↩ U(Zn×m3
qs

), D4 ←↩ U(Zn×m4
qs

).
3. Select two binary matrices P0,P1 ∈ {0, 1}m×m uniformly among Zq-

invertible matrices.
4. Finally, choose a full-rank difference function HFRD : Zm

p → Z
m×m
p such

as [1], a collision-resistant hash function H0 : {0, 1}∗ → Z
m
p and another

hash function H : {0, 1}∗ → {1, 2, 3}κ, for some κ = ω(log λ), which will
be modeled as a random oracle in the security analysis.

We define

par :=
(

F, {P0, P1}, HFRD, H0, H, CK
)

.

where CK = (D0 = [D′
0 | D′′

0 ], D1,D2, D3, D4).
BKeygen(1λ, par): The bank B generates a key pair for the signature scheme

with efficient protocols. This is done as follows.
1. Run TrapGen(1n, 1ms , qs) to get A ∈ Z

n×ms
qs

and a short basis TA

of Λ⊥
qs

(A). This basis allows computing short vectors in Λ⊥
qs

(A) with
a Gaussian parameter σ. Next, choose matrices A0,A1, . . . ,A
 ←↩
U(Zn×ms

qs
).

2. Choose D ←↩ U
(

Z
n×(ms/2)
qs

)

and a random vector u ←↩ U(Zn
qs

).
The private key consists of SKB := TA while the public key is

PKB :=
(

A, {Aj}

j=0, D, u

)

.

UKeygen(1λ, par): As a secret key, the user picks SKU := eu ←↩ U({0, 1}mf ) at
random and computes his public key PKU as a syndrome PKU = F·eu ∈ Z

m
p .

Withdraw
(U(PKB, SKU , 2L),B(PKU , SKB, 2L)

)

: The bank B, which has a key
pair (SKB, PKB), interacts with U , who has SKU = eu, as follows.
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1. U picks t,k0 ←↩ U(Zm
q ) and computes t̃ = vdecm,q−1(t) ∈ {0, 1}m̄, k̃0 =

vdecm,q−1(k0) ∈ {0, 1}m̄. Then, he generates a commitment to the 3-block
message (eu, t̃, k̃0) ∈ {0, 1}mf ×{0, 1}m̄ ×{0, 1}m̄. To this end, U samples
r0 ←↩ DZms ,σ and computes

cU = D′
0 · r0 + D1 · eu + D2 · t̃ + D3 · k̃0 ∈ Z

n
qs

, (19)

which is sent to B. In addition, U generates an interactive zero-knowledge
argument of knowledge of an opening

(r0, eu, t̃, k̃0) ∈ DZms ,σ × {0, 1}mf × {0, 1}m̄ × {0, 1}m̄

of cU ∈ Z
n
qs

satisfying (19) and such that PKU = F · eu ∈ Z
m
p . We note

that this argument system is obtained via a straightforward adaptation
of the Stern-like protocol from [68].

2. If the argument of step 1 verifies, B samples r1 ←↩ DZms ,σ, k1 ←↩ U(Zm
q )

and computes k̃1 = vdecm,q−1(k1) ∈ {0, 1}m̄ and a re-randomized version
of cU which is obtained as c′

U = cU + D′′
0 · r1 + D4 · k̃1 ∈ Z

n
qs

. It defines
uU = u + D · vdecn,qs−1

(

c′
U
) ∈ Z

n
qs

. Next, B randomly picks τ ←↩ {0, 1}


and uses TA to compute a delegated basis Tτ ∈ Z
2ms×2ms for the matrix

Aτ ∈ Z
n×2ms
qs

defined as

Aτ = [A | A0 +



∑

j=1

τ [j] · Aj ] ∈ Z
n×2ms
qs

. (20)

Using Tτ ∈ Z
2ms×2ms , B samples a short vector v ∈ Z

2ms in DΛ
uU
qs (Aτ ),σ

.
It returns k1 ∈ Z

m
q and the vector (τ,v, r1) ∈ {0, 1}
 ×Z

2ms ×Z
ms to U .

3. U computes r =
[

r0
r1

]

∈ Z
2ms and verifies that

Aτ · v = u + D · vdecn,qs−1

(

D0 · r + D1 · eu + D2 · vdecm,q−1(t)

+D3 · vdecm,q−1(k0) + D4 · vdecm,q−1(k1)
)

mod qs

and ‖v‖ ≤ σ
√

2ms, ‖r1‖ ≤ σ
√

ms. If so, U saves the wallet

W :=
(

eu, t,k0,k1, sigB = (τ,v, r), J = 0
)

,

where J ∈ {0, . . . , 2L−1} is a counter initialized to 0 (otherwise, it outputs
⊥). The bank B records a debit of 2L for the account PKU .

Spend
(U(W , PKB, PKM, info),M(SKM, PKB, 2L)

)

: The user U , on input of
a wallet W =

(

eu, t,k0,k1, sigB = (τ,v, r), J
)

, outputs ⊥ if J > 2L − 1.
Otherwise, it runs the following protocol with M.
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1. Hash info ∈ {0, 1}∗ and PKM to obtain R = H0(PKM, info) ∈ Z
m
p .

2. Compute k = k0 +k1 mod q, which will serve a PRF seed k ∈ Z
m
q . Using

k, compute the serial number

yS = �
L
∏

i=1

PJ[L+1−i] · k�p ∈ Z
m
p , (21)

where J [1] . . . J [L] ∈ {0, 1}L is the representation of J ∈ {0, . . . , 2L − 1}.
3. Using the PRF seed t ∈ Z

m
q , compute the security tag

yT = PKU + HFRD(R) · �
L
∏

i=1

PJ[L+1−i] · t�p ∈ Z
m
p . (22)

4. Generate a non-interactive argument of knowledge πK to prove that:
(i) The given serial number yS is the correct output of the PRF with

key k = k0 + k1 mod q and input J [1] . . . J [L] (Eq. (21));
(ii) The same input J [1] . . . J [L] and another key t involve in the gener-

ation of the security tag yT of the form (22);
(iii) The PRF keys k0,k1, t and the secret key eu that corresponds to

PKU in (22) were certified by the bank.
This is done by running the interactive zero-knowledge argument pre-
sented in Sect. 5.2, which can be seen as a combination of 2 instances of
the protocol for the PRF layer from Sect. 4.3 and one instance of the
protocol for the signature layer from [68]. The argument is repeated
κ = ω(log λ) times to achieve negligible soundness error, and then
made non-interactive using the Fiat-Shamir heuristic [46] as a triple
πK = ({CommK,j}κ

j=1,ChallK , {RespK,j}κ
j=1) where

ChallK = H(R,yS ,yT , {CommK,j}t
j=1) ∈ {1, 2, 3}κ.

U sends coin =
(

R,yS ,yT , πK

)

to M who outputs coin if VerifyCoin accepts
it and ⊥ otherwise. U outputs an updated wallet W ′, where J is incremented.
We note that coin has bit-size ˜O(L · λ + λ2), which is inherited from that of
the underlying zero-knowledge argument system of Sect. 5.2.

VerifyCoin(par, PKM, PKB, coin): Parse the coin as coin =
(

R,yS ,yT , πK

)

and output 1 if and only if πK properly verifies.
Deposit

(M(SKM, coin, PKB)),B(PKM, SKB, stateB)
)

: coin =
(

R,yS ,yT ,

πK

)

is sent by M to the bank B. If VerifyCoin(par, PKM, PKB, coin) = 1
and if serial number yS does not already appear in any coin of the list stateB,
B accepts coin, adds (R,yS) in stateB and credits PKM’s account. Other-
wise, B returns “user” or “merchant” depending on which party is declared
faulty.

Identify
(

par, PKB, coin1, coin2)
)

: Given two coins coin1 =
(

R1,yS ,yT,1, πK,1

)

,
coin2 =

(

R2,yS ,yT,2, πK,2

)

with verifying proofs πK,1, πK,2 and the same
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serial number yS ∈ Z
m
p in distinct transactions R1 �= R2, output ⊥ if yT,1 =

yT,2. Otherwise, compute

y′
T =

(

HFRD(R1) − HFRD(R2)
)−1 · (yT,1 − yT,2) ∈ Z

m
p

and then PKU = yT,1 − HFRD(R1) ·y′
T ∈ Z

m
p . The proof ΠG that U is guilty

simply consists of the two coins coin1, coin2 and the public key PKU .

In the full version of the paper, we show how to extend the scheme with a
mechanism allowing to trace all the coins of an identified double-spender. Like
Camenisch et al. [22], we can add this feature via a verifiable encryption step
during the withdrawal phase. For this purpose, however, [22] crucially relies on
properties of groups with a bilinear map that are not available here. To overcome
this difficulty, we slightly depart from the design principle of [22] in that we rather
use a secret-key verifiable encryption based on the hardness of LWE.

5.2 The Underlying Argument System of Our E-Cash Scheme

We now present the argument system employed by the Spend algorithm of the
e-cash scheme in Sect. 5.1. This protocol is summarized as follows.

Let parameters λ, n, p, q, qs, m, β, L, �, m̄ = mδq−1, ms = 2nδqs−1 be as
specified in Sect. 5.1. The public input consists of:
{

D ∈ Z
n×(ms/2)
qs ; D0 ∈Z

n×2ms
qs

; {Dk ∈Z
n×m̄
qs

}4k=1; A, {Aj}

j=0 ∈Z

n×ms
qs

;
F∈Z

m×m̄
p ; u∈Z

n
qs

; P0,P1 ∈ {0, 1}m×m; HFRD(R) ∈ Z
m×m
p ; yS ,yT ∈ Z

m
p .

The prover’s goal is to prove in zero-knowledge the possession of
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

v1,v2 ∈ [−β, β]ms ; r ∈ [−β, β]2ms ; w̃ ∈ {0, 1}ms/2;
eu, k̃0, k̃1, t̃ ∈ {0, 1}m̄; y′

T ∈ Z
m
p ; k ∈ Z

m
q ;

k0 = Hm,q−1 · k̃0 ∈ Z
m
q ; k1 = Hm,q−1 · k̃1 ∈ Z

m
q ; t = Hm,q−1 · t̃ ∈ Z

m
q ;

τ [1] . . . τ [�] ∈ {0, 1}
; J [1] . . . J [L] ∈ {0, 1}L,

such that the following equations hold:

A · v1 + A0 · v2 +



∑

j=1

Aj · (τ [j] · v2) − D · w̃ = u ∈ Z
n
qs

, (23)

D0 · r + D1 · eu + D2 · t̃ + D3 · k̃0 + D4 · k̃1 − Hn,qs−1 · w̃ = 0 ∈ Z
n
qs

, (24)

k = k0 + k1 ∈ Z
m
q ; yS =

⌊
L
∏

i=1

PJ[L+1−i] · k
⌋

p
∈ Z

m
p , (25)

y′
T =

⌊
L
∏

i=1

PJ[L+1−i] · t
⌋

p
∈ Z

m
p , yT = F · eu + HFRD(R) · y′

T ∈ Z
m
p . (26)
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Our strategy is to reduce the above statement to an instance of the abstraction
in Sect. 4.1. To this end, we will combine the zero-knowledge proofs of signatures
from the Stern-like techniques of [68] and our techniques for the PRF layer from
Sect. 4.3. Specifically, we let q1 = qs, q2 = q, q3 = pq, q4 = p, and perform the
following transformations.

Regarding the two equations of the signature relation in (23)–(24), we apply
the following decompositions and/or extensions to the underlying secret vectors:
⎧

⎪

⎨

⎪

⎩

{v̆i = ThreeExt
(

vdec′
ms,β(vi)

) ∈ B3
msδβ

}2i=1; {cj = expand(τ [j], v̆2)}

j=1;

r̆ = ThreeExt
(

vdec′
2ms,β(r)

) ∈ B3
2msδβ

; ŵ = TwoExt
(

w̃
) ∈ B2

ms/2;
ê = TwoExt(eu) ∈ B2

m̄; ∀α ∈ {t,k0,k1} : α̂ = TwoExt
(

α̃
) ∈ B2

m̄.

(27)

At the same time, we also transform the associated public matrices A,
{Aj}


j=0, D, {Dj}4j=0, Hn,qs−1 accordingly, so that the equations are preserved.
Next, we combine the vectors obtained in (27) into:

w1 =
(

v̆1 ‖ v̆2 ‖ c1 ‖ . . . ‖ c
 ‖ r̆ ‖ ŵ ‖ ê ‖̂t ‖ ̂k0 ‖ ̂k1

) ∈ {−1, 0, 1}d1 , (28)

where d1 = 6(� + 2)msδβ + ms + 8m̄. We observe that the two equations can
be unified into just one equation of the form M1 · w1 = u1 mod q1, where
M1 ∈ Z

2n×d1
q1 is built from public matrices, and u1 = (u ‖0) ∈ Z

2n
q1 .

We now consider equations in (25) and (26), which involve PRF evaluations.
We note that, for all α ∈ {t,k0,k1} appearing in this layer, we have the connec-
tion

α = Hm,q−1 · α̃ = ̂Hm,q−1 · α̂,

where α̂ is constructed in 27. To transform the equation k = k0 + k1 ∈ Z
m
q

in (25), we let ̂k = TwoExt
(

vdecm,q−1(k)
) ∈ B2

m̄, and rewrite the equation as

̂Hm,q−1 · ̂k0 + ̂Hm,q−1 · ̂k1 − ̂Hm,q−1 · ̂k = 0 mod q.

Letting Mk,2 = [ ̂Hm,q−1 | ̂Hm,q−1 | − ̂Hm,q−1] and uk,2 = 0, we have the
equation Mk,2 · wk,2 = uk,2 mod q2, where:

wk,2 = (̂k0 ‖ ̂k1 ‖ ̂k). (29)

The evaluation process of yS in (25) is handled as in Sect. 4.3, resulting in
equations MS,2 · wS,2 = uS,2 mod q2, and MS,3 · wS,3 = uS,3 mod q3, where

wS,2 =
(

sS,0 ‖ x̂S,1 ‖ · · · ‖ sS,L−1 ‖ x̂S,L

)

; wS,3 =
(

x̂S,L ‖ ẑS

)

, (30)

satisfy {x̂S,i}L
i=1, ẑS ∈ B2

m̄ and

sS,0 = expand(J [1], ̂k); {sS,i−1 = expand(J [i], x̂S,i−1)}L
i=2.

Regarding the evaluation of y′
T in (26), equations appearing in the iteration

step can also be unified into one of the form MT,2 · wT,2 = uT,2 mod q2, where

wT,2 =
(

sT,0‖x̂T,1‖ · · · ‖sT,L−1‖x̂T,L

)

, (31)

satisfy
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{x̂T,i ∈ B2
m̄}L

i=1; sT,0 = expand(J [1],̂t); {sT,i−1 = expand(J [i], x̂T,i−1)}L
i=2.

Meanwhile, the rounding step is handled in a slightly different manner as the
output y′

T ∈ Z
m
p is hidden. Letting ŷ′

T = TwoExt
(

vdecm,p−1(y′
T )
) ∈ B2

mδp−1
, we

are presented with the equation

(p · ̂Hm,q−1) · x̂T,L − ̂Hm,q−1 · ẑT − (q · ̂Hm,p−1) · ŷ′
T = 0 mod pq,

where ẑT ∈ B2
m̄. This equation can be written as MT,3 · wT,3 = uT,3 mod q3,

where MT,3 =
[

p · ̂Hm,q−1 | − ̂Hm,q−1 | −q · ̂Hm,p−1

]

, uT,3 = 0, and

wT,3 = (x̂T,L ‖ ẑT ‖ ŷ′
T ). (32)

Furthermore, we observe that, the three equations modulo q2, as well as the
two equations modulo q3 we have obtained above can be unified as follows. Let

M2 =

⎡

⎣

Mk,2

MS,2

MT,2

⎤

⎦ ; u2 =

⎛

⎝

uk,2

uS,2

uT,2

⎞

⎠ ; M3 =
[

MS,3

MT,3

]

; u3 =
(

uS,3

uT,3

)

,

then we have M2 · w2 = u2 mod q2 and M3 · w3 = u3 mod q3, where

w2 = (wk,2 ‖ wS,2 ‖ wT,2) ∈ {−1, 0, 1}d2 ; (33)
w3 = (wS,3 ‖ wT,3) ∈ {−1, 0, 1}d3 , (34)

for wk,2,wS,2,wT,2,wS,3,wT,3 defined by (29)–(32), and for d2 = 6m̄(2L + 1),
d3 = 8m̄ + 2mδp−1.

Now, the remaining equation in (26) can be written as:
[

F | 0m×m̄
] · ê +

(

HFRD(R) · ̂Hm,p−1

) · ŷ′
T = yT mod p,

where ê and ŷ′
T are as constructed earlier. We therefore obtain the equation

M4 · w4 = u4 mod q4, where M4 =
[

HFRD(R) · ̂Hm,p−1 | F | 0m×m̄
]

, u4 = yT

and, for d4 = 2m̄ + 2mδp−1,

w4 = (ŷ′
T ‖ ê) ∈ {−1, 0, 1}d4 . (35)

At this point, we have transformed all the considered equations into four equa-
tions {Mi ·wi = ui mod qi}4i=1. We then let d =

∑4
i=1 di and, for w1,w2,w3,w4

defined by (28), (33), (34), (35), respectively, let

w = (w1‖w2‖w3‖w4) ∈ {−1, 0, 1}d. (36)

Let us now specify the set VALID containing w, the set S and the associated
permutation Γφ, satisfying conditions in 9.

Let VALID be the set of all vectors in {−1, 0, 1}d having the form (36) (which
follows from (28)–(35)), whose block-vectors satisfy the following conditions:
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

v̆1, v̆2 ∈ B3
msδβ

; r̆ ∈ B3
2msδβ

; ŵ ∈ B2
ms/2; y′

T ∈ B2
mδp−1

;
ê, ̂t, ̂k0, ̂k1, ̂k, x̂S,1, . . . , x̂S,L, x̂T,1, . . . , x̂T,L, ẑS , ẑT ∈ B2

m̄;
{cj = expand(τ [j], v̆2)}


j=1; sS,0 = expand(J [1], ̂k); sT,0 = expand(J [1],̂t);
{sS,i−1 = expand(J [i], x̂S,i−1), sT,i−1 = expand(J [i], x̂T,i−1)}L

i=2,
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for some τ [1] . . . τ [�] ∈ {0, 1}
 and some J [1] . . . J [L] ∈ {0, 1}L. By construction,
our vector w belongs to this tailored set VALID.

Now, we define

S := (S3msδβ
)2 × S6msδβ

× Sms
× S2mδp−1 × (S2m̄)2L+7 × {0, 1}
 × {0, 1}L.

Then, for any element φ ∈ S of the form

φ =
(

φv̆1 , φv̆2 , φr̆, φŵ, φy′
T
, φê, φ

̂t, φ
̂k0

, φ
̂k1

, φ
̂k, φx̂S,1 , . . . , φx̂S,L

,

φx̂T,1 , . . . , φx̂T,L
, φẑS

, φẑT
, a[1] . . . a[�], b[1] . . . b[L]

)

,

let Γφ be the permutation that, on input vector w ∈ Z
d of the form (18) (which

is implied by (28)–(35)), it transforms the block-vectors of w as follows:

– Apply permutation φα to block α, for all

α∈{

v̆1, v̆2, r̆, ŵ, y′
T , ê, ̂t, ̂k0, ̂k1, ̂k, x̂S,1, . . . , x̂S,L, x̂T,1, . . . , x̂T,L, ẑS , ẑT

}

.

– For j ∈ [�], apply permutation Ta[j],φv̆2
to block cj .

– Apply permutation Tb[1],φ
̂k

to block sS,0, and Tb[1],φ
̂t

to block sT,0.
– For i ∈ [2, L], apply permutation Tb[i],φx̂S,i−1

to block sS,i−1, and permutation
Tb[i],φx̂T,i−1

to block sT,i−1.

It can be checked that, we have w ∈ VALID if and only if Γφ(w) ∈ VALID,
thanks to the equivalences (3), (4), (5) from Sect. 3. Furthermore, if φ ← U(S),
then Γφ(w) is uniform in VALID. In other words, the conditions in 9 are satisfied.

Given the above transformations and specifications, we can run the abstract
protocol of Fig. 1 to prove knowledge of w = (w1‖w2‖w3w4) ∈ VALID satisfying
{Mi · wi = ui mod qi}i∈[4], where public matrices/vectors {Mi,ui}i∈[4] are as
constructed above. As a result, we obtain a statistical zero-knowledge argument
of knowledge for the considered statement.

Each round of the protocol has communication cost O(
∑4

i=1 di · log qi). For
the parameters in Sect. 5.1, this cost is of order ˜O(L · λ + λ2). In the Spend
algorithm, the protocol is repeated κ = ω(log λ) to achieve negligible soundness
error. The global communication cost is ˜O(L · λ + λ2) · ω(log λ) = ˜O(L · λ + λ2).

6 Security

We now state the security results for which proofs are available in the full version
of the paper.

Theorem 2. The scheme guarantees balance under the SIS assumption in the
random oracle model.
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Theorem 3 shows that, under the SIS assumption and assuming the collision-
resistance of H0, double-spenders can always be identified by the bank. Anal-
ogously to the security proof of Camenisch et al. [22] which relies on a similar
feature of the Dodis-Yampolskiy PRF [44], the proof uses some range-disjointness
property of the underlying small-domain PRF: namely, two functions keyed by
independent keys should have disjoint ranges with high probability. In the full
paper, we prove this property unconditionally for the BLMR PRF [17].

Theorem 3. If H0 is a collision-resistant hash function and H is modeled as a
random oracle, the scheme guarantees the identification of double spenders under
the SIS assumption.

Theorem 4. The scheme provides strong exculpability under the SIS assumption
in the random oracle model.

Theorem 5. The scheme provides anonymity under the LWE assumption in the
random oracle model.

Our scheme can be modified so as to use the more efficient LWR-based PRF
based on the GGM technique. This allows significantly improving the choice of
parameters at the expense of a longer description and a more complex proof
for the identification property. The reason is that, in the GGM-based PRF, the
range disjointness property (for small domains) does not appear to be provable in
the statistical sense. This can be addressed by relying on the pseudo-randomness
of the function, as in the security proof of Belenkiy et al. [10]. Relying on the
pseudo-randomness is perhaps counter-intuitive since the adversary knows the
PRF seed in the proof of the identification property. Nevertheless, the reduction
still works as in [10, Appendix F] when the domain has polynomial size.
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