
The Sleepy Model of Consensus

Rafael Pass(B) and Elaine Shi

Cornell Tech, Cornell University, New York, USA
rafael@cs.cornell.edu

Abstract. The literature on distributed computing (as well as the cryp-
tography literature) typically considers two types of players—honest
players and corrupted players. Resilience properties are then analyzed
assuming a lower bound on the fraction of honest players. Honest play-
ers, however, are not only assumed to follow the prescribed the proto-
col, but also assumed to be online throughout the whole execution of
the protocol. The advent of “large-scale” consensus protocols (e.g., the
blockchain protocol) where we may have millions of players, makes this
assumption unrealistic. In this work, we initiate a study of distributed
protocols in a “sleepy” model of computation where players can be either
online (awake) or offline (asleep), and their online status may change at
any point during the protocol. The main question we address is:

Can we design consensus protocols that remain resilient under
“sporadic participation”, where at any given point, only a subset
of the players are actually online?

As far as we know, all standard consensus protocols break down under
such sporadic participation, even if we assume that 99% of the online
players are honest.

Our main result answers the above question in the affirmative. We
present a construction of a consensus protocol in the sleepy model,
which is resilient assuming only that a majority of the online players
are honest. Our protocol relies on a Public-Key Infrastructure (PKI),
a Common Random String (CRS) and is proven secure in the timing
model of Dwork-Naor-Sahai (STOC’98) where all players are assumed
to have weakly-synchronized clocks (all clocks are within Δ of the “real
time”) and all messages sent on the network are delivered within Δ time,
and assuming the existence of sub-exponentially secure collision-resistant
hash functions and enhanced trapdoor permutations. Perhaps surpris-
ingly, our protocol significantly departs from the standard approaches
to distributed consensus, and we instead rely on key ideas behind
Nakamoto’s blockchain protocol (while dispensing the need for “proofs-
of-work”). We finally observe that sleepy consensus is impossible in the
presence of a dishonest majority of online players.

Keywords: Blockchains · Distributed consensus · Protocol · Adaptive
security

c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part II, LNCS 10625, pp. 380–409, 2017.
https://doi.org/10.1007/978-3-319-70697-9_14

The Sleepy Model of Consensus 381

1 Introduction

Consensus protocols are at the core of distributed computing and also provide a
foundational building protocol for multi-party cryptographic protocols. In this
paper, we consider consensus protocols for realizing a “linearly ordered log”
abstraction—often referred to as state machine replication or linearizability in
the distributed systems literature. Such protocols must respect two important
resiliency properties, consistency and liveness. Consistency ensures that all hon-
est nodes have the same view of the log, whereas liveness requires that transac-
tions will be incorporated into the log quickly.

The literature on distributed computing as well as the cryptography literature
typically consider two types of players—honest players and corrupted/adversarial
players. The above-mentioned resiliency properties are then analyzed assuming
a lower bound on the fraction of honest players (e.g., assuming that at least
a majority of the players are honest). Honest players, however, are not only
assumed to follow the prescribed the protocol, but also assumed to be online
throughout the whole execution of the protocol. Whereas this is a perfectly rea-
sonable assumption for the traditional environments in which consensus proto-
cols typically were deployed (e.g., within a company, say “Facebuck”, to support
an application, say “Facebuck Credit”, where the number of nodes/players is
roughly a dozen), the advent of “large-scale” consensus protocols (such as e.g.,
the blockchain protocol)—where want to achieve consensus among thousands of
players—makes this latter assumption unrealistic. For instance, in Bitcoin, only a
small fraction of users having bitcoins are actually participating as miners. More
generally, although it has not been explicitly articulated, an implicit desiderata
for “permissioned blockchains” seems to be a notion of “availability-friendliness”
where the blockchain should be able to confirm new transaction even if only a
small fraction of participants are actually actively running the protocol.

1.1 The Sleepy Model of Consensus

Towards addressing this issue, and formalizing the notion of “availability-
friendliness”, we here initiate a study of distributed protocols in a “sleepy” model
of computation. We here focus on the “standard” permission setting with a fixed
number of player and the existence of a PKI. In the sleepy model, players can
be either online (“awake/active”) or offline (“asleep”), and their online status
may change at any point during the protocol execution. The main question we
address is:

Can we design consensus protocols that remain resilient under “sporadic
participation”—where at any given point, only a subset of the players are
actually online—assuming an appropriate fraction (e.g., majority) of the
online players are honest?

382 R. Pass and E. Shi

As far as we know, this question was first raised by Micali [19] in a recent
manuscript1—he writes “... a user missing to participate in even a single round
is pessimistically judged malicious—although, in reality, he may have only expe-
rienced a network-connection problem, or simply taken a “break”. [..] One possi-
bility would be to revise the current Honest Majority of Users assumption so as it
applies only to the “currently active” users rather than the “currently existing”
users.” In Micali’s work, however, a different path is pursued.2 In contrast, our
goal here is to address this question. We believe that such a sleepy model of com-
putation is the “right way” to formalize the availability-friendliness desiderata
informally articulated for permissioned blockchains, and elucidates the resistence
in the blockchain community to adopt classic consensus protocols for permis-
sioned blockchains.

We note that it is easy to show that consensus in the sleepy model is impossi-
ble, even in a PKI model, unless we assume that at least a majority of the awake
players are honest (if the set of awake players can arbitrarily change through-
out the execution)—briefly, the reason for this is that a player that wakes up
after being asleep for a long time cannot distinguish the real execution by the
honest player and an emulated “fake” execution by the malicious players, and
thus must choose the “fake” one with probability at least 1

2 . We formalize this
in the online full version [25]. (Note that this simple result already demonstrates
a sharp contrast with the classic (non-sleepy) model, where Dolev-Strong’s [7]
protocol can be used to realize a linearly ordered log of transactions assuming
just the existence of a single honest player [25,27].)

We then consider the following question:

Can we design a consensus protocol that achieves consistency and liveness
assuming only that a majority of the online players are honest?

As far as we know, all standard consensus protocols break down in the sleepy
model, even if we assume that 99% of the online players are honest! Briefly, the
standard protocols can be divided into two types: (1) protocols that assume syn-
chronous communication, where all messages sent by honest players are guaran-
teed to be received by all other honest nodes in the next round; or, (2) protocols
handling partially synchronous or asynchronous communication, but in this case
require knowledge of a tight bound on the number of actually participating hon-
est players. In more detail:

– Traditional synchronous protocols (e.g., [7,10,12]) crucially rely on messages
being delivered in the next round (or within a known, bounded delay Δ) to

1 Although our paper is subsequent, at the original time of writing this paper, we
were actually not aware of this; this discussion was present in the arXiv version from
August 2016, but is no longer present in the most recent version of his manuscript.

2 Briefly, rather than designing a protocol that remains resilient under this relaxed
honesty assumption, he designs a protocol under an incomparable “honest-but-lazy”
assumption, where honest players only are required to participate at infrequent but
individually prescribed rounds (and if they miss participation in their prescribed
round, they are deemed corrupted). Looking forward, the honest strategy in our
protocols also satisfies such a laziness property.

The Sleepy Model of Consensus 383

reach agreement. By contrast, in the sleepy model, consider an honest player
that falls asleep for a long time (greater than Δ) and then wakes up at some
point in the future; it now receives all “old” messages with a significantly
longer delay (breaking the synchrony assumption). In these protocols, such a
player rejects all these old messages and would never reach agreement with
the other players. It may be tempting to modify e.g., the protocol of [7] to
have the players reach agreement on some transaction if some threshold (e.g.,
majority) of players have approved it—but the problem then becomes how
to set the threshold, as the protocol is not aware of how many players are
actually awake!

– The partially synchronous or asynchronous protocols (e.g., [3,5,8,18,21,28])
a-priori seem to handle the above-mentioned issue with the synchronous pro-
tocol: we can simply view a sleeping player as receiving messages with a long
delay (which is allowed in the asynchronous model of communication). Here,
the problem instead is the fact that the number of awake players may be
significantly smaller than the total number of players, and this means that
no transactions will ever be approved! A bit more concretely, these protocols
roughly speaking approve transactions when a certain number of nodes have
“acknowledged” them—for instance, in the classic BFT protocol of Castro
and Liskov [5] (which is resilient in the standard model assuming a fraction 2

3
of all players are honest), players only approve a transaction when they have
heard 2N

3 “confirmations” of some message where N is the total number of
parties. The problem here is that if, say, only half of the N players are awake,
the protocols stalls. (And again, as for the case of synchronous protocols, it
is not clear how to modify this threshold without knowledge of the number
of awake players.)

1.2 Main Result

Our main result answers the above question in the affirmative. We present con-
structions of consensus protocols in the sleepy model, which are resilient assum-
ing only that a majority of the awake players are honest. Our protocols relies on
the existence of a “bare” Public-Key Infrastructure (PKI)3, the existence of a
Common Random String (CRS)4 and is proven secure in a simple version of the
timing model of Dwork-Naor-Sahai [22] where all players are assumed to have
weakly-synchronized clocks—all clocks are within Δ of the “real time”, and all
messages sent on the network are delivered within Δ time.

Our first protocol relies only on the existence of collision-resistant hash func-
tions (and it is both practical and extremely simple to implement, compared to
standard consensus protocols); it, however, only supports static corruptions and

3 That is, players have some way of registering public keys; for honest players, this
registration happens before the beginning of the protocol, whereas corrupted players
may register their key at any point. We do not need players to e.g., prove knowledge
of their secret-key.

4 That is a commonly known truly random string “in the sky”.

384 R. Pass and E. Shi

a static (fixed) schedule of which nodes are awake at what time step—we refer
to this as a “static sleep schedule”.

Theorem 1 (Informal). Assume the existence of families of collision-resistant
hash functions (CRH). Then, there exists a protocol for state-machine replication
in the Bare PKI, CRS and in the timing model, which achieves consistency and
liveness assuming a static sleep schedule and static corruptions, as long as at
any point in the execution, a majority of the awake players are honest.

Our next construction enhances the first one by achieving also resilience
against an arbitrary adversarial selection of which nodes are online at what
time; this protocol also handles adaptive corruptions of players. This new proto-
col, however, does so at the price of assuming subexponentially secure collision-
resistant hash functions and enhanced trapdoor permutations (the latter are
needed for the constructions of non-interactive zero-knowledge proofs); addition-
ally, we here require using a large security parameter (greater than the bound
on the total number of players), leading to a less efficient protocol.

Theorem 2 (Informal). Assume the existence of families of sub-exponentially
secure collision-resistant hash functions (CRH), and enhanced trapdoor permuta-
tions (TDP). Then, there exists a state-machine replication protocol in the Bare
PKI, CRS and timing model, which achieves consistency and liveness under
adaptive corruptions as long as at any point in the execution, a majority of the
awake players are honest.

We finally point out that if the CRS is selected after the public keys have been
registered, and if we only need security w.r.t. static corruption but adaptive sleep
schedules, we do not need to use a subexponential security or a large security
parameter. (In fact, we can also get security w.r.t. adaptive corruptions with
erasure if we additionally assuming the existence of a forward-secure signature,
and consider a protocol in the random oracle model.)

Perhaps surprisingly, our protocol significantly departs from the standard
approaches to distributed consensus, and we instead rely on key ideas behind
Nakamoto’s beautiful blockchain protocol [23], while dispensing the need for
“proofs-of-work” [9]. As far as we know, our work demonstrates for the first time
how the ideas behind Nakamoto’s protocol are instrumental in solving “stan-
dard” problems in distributed computing; we view this as our main conceptual
contribution (and hopefully one that will be useful also in other contexts).

Our proof will leverage and build on top of the formal analysis of the
Nakamoto blockchain by Pass et al. [24], but since we no longer rely on proofs-of-
work, several new obstacles arise. Our main technical contribution, and the bulk
of our analysis, is a new combinatorial analysis for dealing with these issues.

We finally mention that ad-hoc solutions for achieving consensus using ideas
behind the blockchain (but without proof-of-work) have been proposed [1,2,15],
none of these come with an analysis, and it is not clear to what extent they
improve upon standard state-machine replication protocols (and more seriously,
whether they even achieve the standard notion of consensus).

The Sleepy Model of Consensus 385

1.3 Technical Overview

We start by providing an overview of our consensus protocol which only handles
a static online schedule and static corruptions; we next show how to enhance
this protocol to achieve adaptive security.

As mentioned, the design of our consensus protocols draws inspiration from
Bitcoin’s proof-of-work based blockchain [23]—the so-called “Nakamoto consen-
sus” protocol. This protocol is designed to work in a so-called “permissionless
setting” where anyone can join the protocol execution. In contrast, we here study
consensus in the classic “permissioned” model of computation with a fixed set
[N] of participating players; additionally, we are assuming that the players can
register public keys (whose authenticity can be verified). Our central idea is to
eliminate the use of proofs of work in this protocol. Towards this goal, let us
start by providing a brief overview of Nakamoto’s beautiful blockchain protocol.

Nakamoto Consensus in a Nutshell. Roughly speaking, in Nakamoto’s
blockchain, players “confirm” transactions by “mining blocks” through solving
some computational puzzle that is a function of the transactions and the his-
tory so far. More precisely, each participant maintains its own local “chain” of
“blocks” of transactions—called the blockchain. Each block consists of a triple
(h−1, η, txs) where h−1 is a pointer to the previous block in chain, txs denotes
the transactions confirmed, and η is a “proof-of-work”—a solution to a compu-
tational puzzle that is derived from the pair (h−1, txs). The proof of work can
be thought of as a “key-less digital signature” on the whole blockchain up until
this point. At any point of time, nodes pick the longest valid chain they have
seen so far and try to extend this longest chain.

Removing Proofs-of-Work. Removing the proof-of-work from the Nakamoto
blockchain while maintaining provable guarantees turns out to be subtle and
the proof non-trivial. To remove the proof-of-work from Nakamoto’s protocol,
we proceed as follows: instead of rate limiting through computational power,
we impose limits on the type of puzzle solutions that are admissible for each
player. More specifically, we redefine the puzzle solution to be of the form (P, t)
where P is the player’s identifier and t is referred to as the block-time. An honest
player will always embed the current time step as the block-time. The pair (P, t)
is a “valid puzzle solution” if H(P, t) < Dp where H denotes a random oracle
(for now, we provide a protocol in the random oracle model, but as we shall see
shortly, the random oracle can be instantiated with a CRS and a pseudorandom
function), and Dp is a parameter such that the hash outcome is only smaller
than Dp with probability p. If H(P, t) < Dp, we say that P is elected leader at
time t. Note that several nodes may be elected leaders at the same time steps.

Now, a node P that is elected leader at time step t can extend a chain with a
block that includes the “solution” (P, t), as well as the previous block’s hash h−1

and the transactions txs to be confirmed. To verify that the block indeed came
from P, we require that the entire contents of the block, (i.e., (h−1, txs, t,P)),
are signed under P’s public key. Similarly to Nakamoto’s protocol, nodes then
choose the longest valid chain they have seen and extend this longest chain.

386 R. Pass and E. Shi

Whereas honest players will only attempt to mine solutions of the form (P, t)
where t is the current time step, so far there is nothing that prevents the adver-
sary from using incorrect block-times (e.g., time steps in past or the future). To
prevent this from happening, we additionally impose the following restriction on
the block-times in a valid chain:

1. A valid chain must have strictly increasing block-times;
2. A valid chain cannot contain any block-times in the “future” (where “future”

is adjusted to account for nodes’ clock offsets)

There are now two important technical issues to resolve. First, it is important
to ensure that the block-time rules do not hamper liveness. In other words, there
should not be any way for an adversary to leverage the block-time mechanism
to cause alert nodes to get stuck (e.g., by injecting false block-times).

Second, although our block-time rules severely constrain the adversary, the
adversary is still left with some wiggle room, and gets more advantages than
honest nodes. Specifically, as mentioned earlier, the honest nodes only “mine” in
the present (i.e., at the actual time-step), and moreover they never try to extend
different chains of the same length. By contrast, the adversary can try to reuse
past block-times in multiple chains. (In the proof of work setting, these types
of attacks are not possible since there the hash function is applied also to the
history of the chain, so “old” winning solutions cannot be reused over multiple
chains; in contrast, in our protocol, the hash function is no longer applied to the
history of the chain as this would give the attacker too many opportunities to
become elected a leader by simply trying to add different transactions.)

Our main technical result shows that this extra wiggle room in some sense
is insignificant, and the adversary cannot leverage the wiggle room to break
the protocol’s consistency guarantees. It turns out that dealing with this extra
wiggle room becomes technically challenging, and none of the existing analysis
for proof-of-work blockchains [11,24] apply. More precisely, since we are using a
blockchain-style protocol, a natural idea is to see whether we can directly borrow
proof ideas from existing analyses of the Nakamoto blockchains [11,24]. Exist-
ing works [11,24] define three properties of blockchains—chain growth (roughly
speaking that the chain grows at a certain speed), chain quality (that the adver-
sary cannot control the content of the chain) and consistency (that honest players
always agree on an appropriate prefix of the chain)—which, as shown in earlier
works [24,26] imply the consistency and liveness properties needed for state-
machine replication. Thus, by these results, it will suffice to demonstrate that
our protocol satisfies these properties.

The good news is that chain growth and chain quality properties can be
proven in almost identically the same way as in earlier Nakamoto blockchain
analysis [24]. The bad news is that the consistency proofs of prior works [11,24]
break down in our setting (as the attacker we consider is now more powerful
as described above). The core of our proof is a new, and significantly more
sophisticated analysis for dealing with this.

The Sleepy Model of Consensus 387

Removing the Random Oracle. The above-described protocol relies on a random
oracle. We note that we can in fact instantiate the random oracle with a PRF
whose seed is selected and made public in a common reference string (CRS).
Roughly speaking, the reason for this is that in our proof we actually demonstrate
the existence of some simple polynomial-time computable events—which only
depend on the output of the random oracle/PRF—that determine whether any
(even unbounded) attacks can succeed. Our proof shows that with overwhelming
probability over the choice of the random oracle, these events do not happen.
By the security of the PRF, these events thus also happen only with negligible
probability over the choice of the seed of the PRF.

Dealing with Adaptive Sleepiness and Corruption. We remark that the above-
described protocol only works if the choice of when nodes are awake is made
before the PRF seed is selected. If not, honest players that are elected leaders
could simply be put to sleep at the time step when they need to act. The problem
is that it is preditcable when a node will become a leader. To overcome this
problem, we take inspiration from a beautiful idea from Micali’s work [19]—we
let each player pick its own secret seed to a PRF and publish a commitment to
the seed as part of its public key; the player can then evaluate its own private
PRF and also prove in zero-knowledge that the PRF was correctly evaluated
(so everyone else can verify the correctness of outputs of the PRF);5. Finally,
each player now instantiates the random oracle with their own “private” PRF.
Intuitively, this prevents the above-mentioned attack, since even if the adversary
can adaptively select which honest nodes go to sleep, it has no idea which of them
will become elected leaders before they broadcast their block.

Formalizing this, however, is quite tricky (and we will need to modify the
protocol). The problem is that if users pick their own seed for the PRF, then
they may be able to select a “bad seed” which makes them the leader for a long
period of time (there is nothing in the definition of a PRF that prevents this).
To overcome this issue, we instead perform a “coin-tossing into the well” for the
evaluation of the random oracle: As before, the CRS specifies the seed k0 of a
PRF, and additionally, each user P commits to the seed k[P] of a PRF as part
of their public key; node P can then use the following function to determine if
it is elected in time t

PRFk0(P, t) ⊕ PRFk[P](t) < Dp

where Dp is a difficulty parameter selected such that any single node is elected
with probability p in a given time step. P additionally proves in zero-knowledge
that it evaluated the above leader election function correctly in any block it
produces.

But, have we actually gained anything? A malicious user may still pick its
seed k[P] after seeing k0 and this may potentially cancel out the effect of having
PRFk0(·) there in the first place! (For instance, the string PRFk0(P, t)⊕PRFk[P](t)

5 In essence, what we need is a VRF [20], just like Micali [19], but since we anyway
have a CRS, we can rely on weaker primitives.

388 R. Pass and E. Shi

clearly is not random any more.) We note, however, that if the user seed k[P]
is significantly shorter than the seed k0, and the cryptographic primitives are
subexponentially secure, we can rely on the same method that we used to replace
the random oracle with a PRF to argue that even if k[P] is selected as a function
of k0, this only increases the adversary’s success probability by a factor 2L for
each possibly corrupted user where L := |k[P]| is the bit-length of each user’s
seed (and thus at most 2NL where N is the number of players) which still will
not be enough to break security, if using a sufficiently big security parameter for
the underlying protocol. We can finally use a similar style of a union bound to
deal also with adaptive corruptions.

Better Efficiency and Assumption in Stronger Models. We note that the loss
in efficiency due to the above-mentioned union bounds is non-trivial: the secu-
rity parameter must now be greater than N ; if we only require security with
respect to static corruption, and allow the CRS to be selected after all public
keys are registered—which would be reasonable in practice—then, we can deal
with adaptive sleepiness without this union bound and thus without the loss in
efficiency.

In fact, we can even deal with adaptive corruption of players in a model with
erasures if we let players sign using a forward secure signature scheme (and at
each step erase the old key). For technical reasons, we here, however, can only
provide a proof of security in the random oracle model.6 We defer the details of
these approaches to the online full version [25].

1.4 Applications in Permissioned and Permissionless Settings

As mentioned, the variants of our protocols that deal with static corruption (and
adaptive corruption with erasures) need not employ a large security parameter
and can be implemented and adopted in real-world systems. We believe that
our sleepy consensus protocol would be desirable in the following application
scenarios.

Permissioned Setting: Consortium Blockchains. At the present, there is a major
push where blockchain companies are helping banks across the world build “con-
sortium blockchains”. In a consortium blockchain, a consortium of banks each
contribute some nodes and jointly run a consensus protocol, on top of which one
can run distributed ledger and smart contract applications. Since enrollment is
controlled, consortium blockchain falls in the classical “permissioned” model of
consensus. Since the number of participating nodes may be large (e.g., typically
involve hundreds of banks and possibly hundreds to thousands of nodes), many
conjecture that classical protocols such as PBFT [5], Byzantine Paxos [16], and
others where the total bandwidth scales quadratically w.r.t. the number of play-
ers might not be ideal in such settings. Our sleepy consensus protocol provides a

6 Technically, the issue is that we need to rely on a PRF that is secure with respect
to “selective-opening” and we can only construct this in the random oracle model.

The Sleepy Model of Consensus 389

compelling alternative in this setting—with sleepy consensus, tasks such as com-
mittee re-configuration can be achieved simply without special program paths
like in classical protocols [17], and each bank can also administer their nodes
without much coordination with other banks.

Permissionless Setting: Proof-of-Stake. The subsequent work Snow White by
Daian et al. [6] adapted our protocol to a permissionless setting, and obtained
one of the first provably secure proof-of-stake protocols. A proof-of-stake protocol
is a permissionless consensus protocol to be run in an open, decentralized set-
ting, where roughly speaking, each player has voting power proportional to their
amount of “stake” in the cryptocurrency system (c.f. proof-of-work is where play-
ers have voting power proportional to their available computing power). Major
cryptocurrencies such as Ethereum are eager to switch to a proof-of-stake model
rather than proof-of-work to dispense with wasteful computation. To achieve
proof-of-stake, the Snow White [6] extended the our sleepy consensus protocol
by introducing a mechanism that relies on the distribution of stake in the system
to periodically rotate the consensus committee.

Comparison with Independent Work. Although proof-of-stake is not a focus of
our paper, we compare with a few independent works on proof-of-stake [14,19]
due to the superficial resemblance of some elements of their protocol in com-
parison with ours. Specifically, the elegant work by Micali proposes to adapt
classical style consensus protocols to realize a proof-of-stake protocol [19]; the
concurrent and independent work by Kiayias et al. [14] proposes to use a com-
bination of blockchain-style protocol and classical protocols such as coin toss
to realize proof-of-stake. Both these works would fail in the sleepy model like
any classical style protocol. We also point out that if we were to replace Kiayias
et al.’s coin toss protocol with an ideal random beacon, their proof would still
fail in the sleepy model. Other proof-of-stake protocols [1,2,15] may also bear
superficial resemblance but they do not have formal security models or provable
guarantees, and these protocols may also miss elements that turned out essential
in our proofs. As far as we are aware, we are the first to formally show how to
remove proof-of-work from Nakamoto’s protocol in a provably secure way, while
maintaining its desirable “availiability-friendliness” property.

1.5 Paper Organization

The remainder of the paper is organized as follows. In Sect. 2, we formally
define the sleepy execution model. In Sect. 3, we define the abstraction real-
ized by a blockchain protocol and a state machine replication protocol. Our
goal in this paper is to realize state machine replication where a set of nodes
agree on an growing log of transactions—but we achieve this through realizing
a blockchain protocol—as previous works show [26], blockchains give a direct
method of instantiating state machine replication.

Then, in Sect. 4, we describe the sleepy consensus protocol that implements
the blockchain abstraction in the sleepy execution model, assuming a static sleep

390 R. Pass and E. Shi

schedule and static corruptions. We present an overview of our proof for this
statically secure protocol in Sect. 5, and defer the full proofs to the online full
version [25].

Finally, in Sect. 6, we describe intuitively how to achieve adaptive security by
leveraging additional cryptographic building blocks such as non-interactive zero-
knowledge proofs and by relying on subexponential security and large security
parameters (and the above-mentioned union bounds).

We defer the full presentation of the adaptively secure sleepy consensus pro-
tocol, as well as the more efficient variants mentioned above, to the online full
version [25]. The full version also contain new lower bounds for the sleepy model.

2 Definitions

2.1 Protocol Execution Model

We assume a standard Interactive Turing Machine (ITM) model often adopted
in the cryptography literature. A protocol specifies a set of instructions for the
protocol participants to interact with each other. The protocol’s execution is
directed by an environment denoted Z who is in charge of activating a number
of parties (also referred to as nodes) that will interact with each other.

Notations for Randomized Protocol Execution. We use the notation
view←$EXEC

Π(A,Z, λ) to denote a randomized execution of the protocol Π
with security parameter λ and w.r.t. to an (A,Z) pair. Specifically, view is a
random variable containing an ordered sequence of all inputs, outputs, and mes-
sages sent and received by all Turing Machines during the protocol’s execution.
We use the notation |view| to denote the number of time steps in the execution
trace view.

Weak Clock Synchrony Assumptions. We assume the protocol execution pro-
ceeds in atomic time steps called rounds. Henceforth in the paper, we will use
the terms “round” and “time” interchangably. We assume that all honest nodes
are aware of the present round number (i.e., time). As is well-known, such a
model can also capture the case of weak clock synchrony by treating the clock
offset as part of the network delay. Specifically, in a setting where the maximum
network delay and the maximum clock offset are both Δ (and if the clock offset
is larger than the maximum network delay, we take the maximum of the two
to be Δ), we can equivalently treat it as a setting with perfectly synchronized
clocks but 3Δ maximum network delay. Our clock synchrony assumptions are
similar to those described by Dwork et al. [8].

Public-Key Infrastructure. We assume the existence of a public-key infrastruc-
ture (PKI). Specifically, we adopt the same technical definition of a PKI as in the
Universal Composition framework [4]. Specifically, we shall assume that the PKI
is an ideal functionality FCA (available only to the present protocol instance)
that does the following:

The Sleepy Model of Consensus 391

– On receive register(upk) from P: remember (upk,P) and ignore any future
message from P.

– On receive lookup(P): return the stored upk corresponding to P or ⊥ if none
is found.

In this paper, we will consider a Bare PKI model, nodes are allowed register
their public keys with FCA any time during the execution—although typically,
the honest protocol may specify that honest nodes register their public keys
upfront at the beginning of the protocol execution (nonetheless, corrupt nodes
may still register late).

Corruption Model. At the beginning of any time step t, Z can issue instructions
of the form

(corrupt, i) or (sleep, i, t0, t1) where t1 ≥ t0 ≥ t

(corrupt, i) causes node i to become corrupt at the current time, whereas
(sleep, i, t0, t1) where t1 ≥ t0 ≥ t will cause node i to sleep during [t0, t1].
Note that since corrupt or sleep instructions must be issued at the very begin-
ning of a time step, Z cannot inspect an honest node’s message to be sent in the
present time step, and then retroactively make the node sleep in this time step
and erase its message.

Following standard cryptographic modeling approaches, at any time, the
environment Z can communicate with corrupt nodes in arbitrary manners. This
also implies that the environment can see the internal state of corrupt nodes.
Corrupt nodes can deviate from the prescribed protocol arbitrarily, i.e., exhibit
byzantine faults. All corrupt nodes are controlled by a probabilistic polynomial-
time adversary denoted A, and the adversary can see the internal states of
corrupt nodes. For honest nodes, the environment cannot observe their internal
state, but can observe any information honest nodes output to the environment
by the protocol definition.

To summarize, a node can be in one of the following states:

1. Honest. An honest node can either be awake or asleep (or sleeping/sleepy).
Henceforth we say that a node is alert if it is honest and awake. When we say
that a node is asleep (or sleeping/sleepy), it means that the node is honest
and asleep.

2. Corrupt. Without loss of generality, we assume that all corrupt nodes are
awake.

Henceforth, we say that corruption (or sleepiness resp.) is static if Z must
issue all corrupt (or sleep resp.) instructions before the protocol execu-
tion starts. We say that corruption (or sleepiness resp.) is adaptive if Z can
issue corrupt (or sleep resp.) instructions at any time during the protocol’s
execution.

392 R. Pass and E. Shi

Communication Model. The adversary is responsible for delivering messages
between nodes. We assume that the adversary A can delay or reorder messages
arbitrarily, as long as it respects the constraint that all messages sent from honest
nodes must be received by all honest nodes in at most Δ time steps.

When a sleepy node wakes up, (A,Z) is required to deliver an unordered set
of messages containing

– all the pending messages that node i would have received (but did not receive)
had it not slept; and

– any polynomial number of adversarially inserted messages of (A,Z)’s choice.

Henceforth in this paper, we assume that our protocol is aware of the max-
imum network delay Δ—in fact, we prove that no protocol without knowledge
of Δ can reach consensus in the sleepy model (see our online version [25]).

2.2 Compliant Executions

Parameters of an Execution. Globally, we will use N to denote (an upper bound
on) the total number of nodes, and Ncrupt to denote (an upper bound on) the
number of corrupt nodes, and Δ to denote the maximum delay of messages
between alert nodes. More formally, we can define a (N,Ncrupt,Δ)-respecting
(A,Z) as follows.

Definition 1 ((N,Ncrupt,Δ)-respecting (A,Z)). Henceforth, we say that
(A,Z) is (N,Ncrupt,Δ)-respecting w.r.t. protocol Π, iff the following holds: for
any view in the support of EXECΠ(A,Z, λ),

– (A,Z) spawns a total of N nodes in view among which Ncrupt are corrupt
and the remaining are honest.

– If an alert node i multicasts a message at time t in view, then any node j alert
at time t′ ≥ t +Δ (including ones that wake up after t) will have received the
message.

Henceforth when the context is clear, we often say that (A,Z) is (N,Ncrupt,Δ)-
respecting omitting stating explicitly the protocol Π of interest.

Protocol-Specific Compliance Rules. A protocol Π may ensure certain security
guarantees only in executions that respect certain compliance rules. Compliance
rules can be regarded as constraints imposed on the (A,Z) pair. Henceforth, we
assume that besides specifying the instructions of honest parties, a protocol Π
will additionally specify a set of compliance rules. We will use the notation a

Π-compliant (A,Z) pair

to denote an (A,Z) pair that respects the compliance rules of protocol Π—we
also say that (A,Z) is compliant w.r.t. to the protocol Π.

The Sleepy Model of Consensus 393

2.3 Notational Conventions

Negligible Functions. A function negl(·) is said to be negligible if for every poly-
nomial p(·), there exists some λ0 such that negl(λ) ≤ 1

p(λ) for every λ ≥ λ0.

Variable Conventions. In this paper, unless otherwise noted, all variables are
by default functions of the security parameter λ. Whenever we say var0 > var1,
this means that var0(λ) > var1(λ) for every λ ∈ N. Similarly, if we say that a
variable var is positive or non-negative, it means positive or non-negative for
every input λ. Variables may also be functions of each other. How various vari-
ables are related will become obvious when we define derived variables and when
we state parameters’ admissible rules for each protocol. Importantly, whenever
a parameter does not depend on λ, we shall explicitly state it by calling it a
constant.

Unless otherwise noted, we assume that all variables are non-negative (func-
tions of λ). Further, unless otherwise noted, all variables are polynomially
bounded (or inverse polynomially bounded if smaller than 1) functions of λ.

3 Problem Definitions

In this section, we first formally define a state machine replication protocol;
roughly speaking, in state machine replication, nodes agree on a linearly ordered
log over time, in a way that satisfies consistency and liveness. We next define a
blockchain abstraction following Pass et al. [24] (which in turn relies on proper-
ties from Garay et al. [11]). For both of these definitions, we extend the definitions
to the sleepy model of computation. Finally, as shown by Pass and Shi [26], any
protocol satisfying the blockchain abstraction can be turned (by simply truncat-
ing the last few blocks) into a state machine replication protocol, and the same
results applies also in the sleepy model. As a consequence, it will later suffice to
simply prove that our protocol securely implements the blockchain abstraction.

3.1 State Machine Replication

We turn to formalizing the notion of state machine replication; we use the def-
inition from [26] and extend it to the sleepy model by simply replacing honest
nodes for alert nodes.

Inputs and Outputs. The environment Z may input a set of transactions txs to
each alert node in every time step. In each time step, an alert node outputs to
the environment Z a totally ordered LOG of transactions (possibly empty).

Security Definitions. Let Tconfirm be a polynomial function in λ,N,Ncrupt, and
Δ. We say that a state machine replication protocol Π is secure and has
transaction conformation time Tconfirm if for every Π-compliant (A,Z) that is
(N,Ncrupt,Δ)-respecting, there exists a negligible function negl such that for
every sufficiently large λ ∈ N, all but negl(λ) fraction of the views sampled from
EXECΠ(A,Z, λ) satisfy the following properties:

394 R. Pass and E. Shi

– Consistency: An execution trace view satisfies consistency if the following
holds:

• Common prefix. Suppose that in view, an alert node i outputs LOG to
Z at time t, and an alert node j (same or different) outputs LOG′ to Z
at time t′, it holds that either LOG ≺ LOG′ or LOG′ ≺ LOG. Here the
relation ≺ means “is a prefix of”. By convention we assume that ∅ ≺ x
and x ≺ x for any x.

• Self-consistency. Suppose that in view, a node i is alert at time t and
t′ ≥ t, and outputs LOG and LOG′ at times t and t′ respectively, it holds
that LOG ≺ LOG′.

– Liveness: An execution trace view satisfies Tconfirm-liveness if the following
holds: suppose that in view, the environment Z inputs some set that contains
tx to an alert node at time t ≤ |view| − Tconfirm, or that tx appears in some
honest node’s LOG at time t. Then, for any node i alert at any time t′ ≥
t + Tconfirm, let LOG be the output of node i at time t′, it holds that any
tx ∈ LOG.
Intuitively, liveness says that transactions input to an alert node get included
in their LOGs within Tconfirm time; further, if some transaction shows up in
an honest node’s LOG, it will show up in all other alert nodes’ logs quickly.

3.2 Blockchain Formal Abstraction

In this section, we define the formal abstraction and security properties of a
blockchain. Our definitions is identical to the abstraction of Pass et al. [24]
(which in turn is based on earlier definitions from Garay et al. [11], and Kiayias
and Panagiotakos [13]), and again simply replaces honest nodes with alert nodes.

Inputs and Outputs. We assume that in every time step, the environment Z
provides a possibly empty input to every alert node. Further, in every time step,
an alert node sends an output to the environment Z. Given a specific execution
trace view where |view| ≥ t, let i denote a node that is alert at time t in view, we
use the following notation to denote the output of node i to the environment Z
at time step t,

output to Z by node i at time t in view : chaint
i(view)

where chain denotes an extracted ideal blockchain where each block contains an
ordered list of transactions. Sleepy nodes stop outputting to the environment
until they wake up again.

Chain Growth. The first desideratum is that the chain grows proportionally
with the number of time steps. Let,

min-chain-increaset,t′
(view) = min

i,j

(
|chaint+t′

j (view)| − |chaint
i(view)|

)

max-chain-increaset,t′
(view) = max

i,j

(
|chaint+t′

j (view)| − |chaint
i(view)|

)

The Sleepy Model of Consensus 395

where we quantify over nodes i, j such that i is alert in time step t and j is alert
in time t + t′ in view.

Let growtht0,t1(view,Δ, T) = 1 iff the following two properties hold:

– (consistent length) for all time steps t ≤ |view| − Δ, t + Δ ≤ t′ ≤ |view|,
for every two players i, j such that in view i is alert at t and j is alert at t′,
we have that |chaint′

j (view)| ≥ |chaint
i(view)|

– (chain growth lower bound) for every time step t ≤ |view| − t0, we have

min-chain-increaset,t0(view) ≥ T.

– (chain growth upper bound) for every time step t ≤ |view| − t1, we have

max-chain-increaset,t1(view) ≤ T.

In other words, growtht0,t1 is a predicate which tests that (a) alert parties have
chains of roughly the same length, and (b) during any t0 time steps in the
execution, all alert parties’ chains increase by at least T , and (c) during any t1
time steps in the execution, alert parties’ chains increase by at most T .

Definition 2 (Chain growth). A blockchain protocol Π satisfies (T0, g0, g1)-
chain growth, if for all Π-compliant pair (A,Z), there exists a negligible function
negl such that for every sufficiently large λ ∈ N, T ≥ T0, t0 ≥ T

g0
and t1 ≤ T

g1
the following holds:

Pr
[
view ← EXECΠ(A,Z, λ) : growtht0,t1(view,Δ, λ) = 1

]
≥ 1 − negl(λ)

Additionally, we say that a blockchain protocol Π satisfies (T0, g0, g1)-chain
growth w.r.t. failure probability negl(·) if the above definition is satisfied when
the negligible function is fixed to negl(·) for any Π-compliant (A,Z).

Chain Quality. The second desideratum is that the number of blocks con-
tributed by the adversary is not too large.

Given a chain, we say that a block B := chain[j] is honest w.r.t. view and
prefix chain[: j′] where j′ < j if in view there exists some node i alert at some
time t ≤ |view|, such that (1) chain[: j′] ≺ chaint

i(view), and (2) Z input B to
node i at time t. Informally, for an honest node’s chain denoted chain, a block
B := chain[j] is honest w.r.t. a prefix chain[: j′] where j′ < j, if earlier there is
some alert node who received B as input when its local chain contains the prefix
chain[: j′].

Let qualityT (view, μ) = 1 iff for every time t and every player i such that i is
alert at t in view, among any consecutive sequence of T blocks chain[j+1..j+T] ⊆
chaint

i(view), the fraction of blocks that are honest w.r.t. view and chain[: j] is at
least μ.

Definition 3 (Chain quality). A blockchain protocol Π has (T0, μ)-chain
quality, if for all Π-compliant pair (A,Z), there exists some negligible function

396 R. Pass and E. Shi

negl such that for every sufficiently large λ ∈ N and every T ≥ T0 the following
holds:

Pr
[
view ← EXECΠ(A,Z, λ) : qualityT (view, μ) = 1

]
≥ 1 − negl(λ)

Additionally, we say that a blockchain protocol Π satisfies (T0, μ)-chain qual-
ity w.r.t. failure probability negl(·) if the above definition is satisfied when the
negligible function is fixed to negl(·) for any Π-compliant (A,Z).

Consistency. Roughly speaking, consistency stipulates common prefix and
future self-consistency. Common prefix requires that all honest nodes’ chains,
except for roughly O(λ) number of trailing blocks that have not stabilized, must
all agree. Future self-consistency requires that an honest node’s present chain,
except for roughly O(λ) number of trailing blocks that have not stabilized, should
persist into its own future. These properties can be unified in the following for-
mal definition (which additionally requires that at any time, two alert nodes’
chains must be of similar length).

Let consistentT (view) = 1 iff for all times t ≤ t′, and all players i, j (poten-
tially the same) such that i is alert at t and j is alert at t′ in view, we
have that the prefixes of chaint

i(view) and chaint′
j (view) consisting of the first

� = |chaint
i(view)| − T records are identical—this also implies that the following

must be true: chaint′
j (view) > �, i.e., chaint′

j (view) cannot be too much shorter
than chaint

i(view) given that t′ ≥ t.

Definition 4 (Consistency). A blockchain protocol Π satisfies T0-consistency,
if for all Π-compliant pair (A,Z), there exists some negligible function negl such
that for every sufficiently large λ ∈ N and every T ≥ T0 the following holds:

Pr
[
view ← EXECΠ(A,Z, λ) : consistentT (view) = 1

]
≥ 1 − negl(λ)

Additionally, we say that a blockchain protocol Π satisfies T0-consistency
w.r.t. failure probability negl(·) if the above definition is satisfied when the neg-
ligible function is fixed to negl(·) for any Π-compliant (A,Z).

Note that a direct consequence of consistency is that at any time, the chain
lengths of any two alert players can differ by at most T (except with negligible
probability).

3.3 Blockchain Implies State Machine Replication

Following [26], we note that a blockchain protocol implies state machine repli-
cation, if alert nodes simply output the stablized part of their respective chains
(i.e., chain[: −λ]) as their LOG.

Lemma 1 (Blockchains imply state machine replication [26]). If there
exists a blockchain protocol that satisfies (TG, g0, g1)-chain growth, (TQ, μ)-chain
quality, and TC-consistency, then there exists a secure state machine replication
protocol with confirmation time Tconfirm := O(TG+TQ+TC

g0
+ Δ).

The Sleepy Model of Consensus 397

Proof. This lemma was proved in the hybrid consensus paper [26] for a different
execution model, but the same proof effectively holds in our sleepy execution
model. Specifically, let Πblockchain be such a blockchain protocol. We can consider
the following state machine replication protocol denoted Π ′: whenever an alert
node is about to output chain to the environment Z in Πblockchain, it instead
outputs chain[: −TC]. Further, suppose that Π ′’s compliance rules are the same
as Πblockchain’s. Using the same argument as the hybrid consensus paper [26], it
is not hard to see that the resulting protocol is a secure state machine replication
protocol with confirmation time O(TG+TQ+TC

g0
+ Δ).

As a consequence, henceforth, we will focus on realizing a blockchain protocol
as this directly yields a state machine replication protocol.

4 Sleepy Consensus Under Static Corruptions

In this section, we will describe our basic Sleepy consensus protocol that is secure
under static corruptions and static sleepiness. In other words, the adversary
(and the environment) must declare upfront which nodes are corrupt as well as
which nodes will go to sleep during which intervals. Furthermore, the adversary
(and the environment) must respect the constraint that at any moment of time,
roughly speaking the majority of online nodes are honest.

For simplicity, we will first describe our scheme pretending that there is a
random oracle H; and then describe how to remove the random oracle assuming
a common reference string.

4.1 Valid Blocks and Blockchains

Before we describe our protocol, we first define the format of valid blocks and
valid blockchains.

We use the notation chain to denote a real-world blockchain. Our protocol
relies on an extract function that extracts an ordered list of transactions from
chain which alert nodes shall output to the environment Z at each time step.
A blockchain is obviously a chain of blocks. We now define a valid block and a
valid blockchain.

Valid Blocks. We say that a tuple B := (h−1, txs, time,P, σ, h) is a valid block
iff7

1. Σ.verpk((h−1, txs, time);σ) = 1 where pk := FCA.lookup(P); an
2. h = d(h−1, txs, time,P, σ), where d : {0, 1}∗ → {0, 1}λ is a collision-resistant

hash function—technically collision resistant hash functions must be defined
for a family, but here for simplicity we pretend that the sampling from the
family has already been done before protocol start, and therefore d is a single
function.

7 Note that since corrupt nodes can register their public keys with FCA late into the
protocol, validity is actually defined w.r.t. a point of time during the execution.

398 R. Pass and E. Shi

Valid Blockchain. Let eligiblet(P) be a function that determines whether a
party P is an eligible leader for time step t (see Fig. 1 for its definition). Let
chain denote an ordered chain of real-world blocks, we say that chain is a valid
blockchain w.r.t. eligible and time t iff

– chain[0] = genesis = (⊥,⊥, time = 0,⊥,⊥, h = 0), commonly referred to as
the genesis block;

– chain[−1].time ≤ t; and
– for all i ∈ [1..�] where � := |chain|, the following holds:

1. chain[i] is a valid block;
2. chain[i].h−1 = chain[i − 1].h;
3. chain[i].time > chain[i − 1].time, i.e., block-times are strictly increasing;

and
4. let t := chain[i].time, P := chain[i].P, it holds that eligiblet(P) = 1.

4.2 The Basic Sleepy Consensus Protocol

We present our basic Sleepy consensus protocol in Fig. 1. The protocol takes
a parameter p as input, where p corresponds to the probability each node is
elected leader in a single time step. All nodes that just spawned will invoke the
init entry point. During initialization, a node generates a signature key pair
and registers the public key with the public-key infrastructure FCA.

Now, our basic Sleepy protocol proceeds very much like a proof-of-work
blockchain, except that instead of solving computational puzzles, in our pro-
tocol a node can extend the chain at time t iff it is elected leader at time t. To
extend the chain with a block, a leader of time t simply signs a tuple containing
the previous block’s hash, the node’s own party identifier, the current time t, as
well as a set of transactions to be confirmed. Leader election can be achieved
through a public hash function H that is modeled as a random oracle.

Removing the Random Oracle. Although we described our scheme assuming a
random oracle H, it is not hard to observe that we can replace the random
oracle with a common reference string crs and a pseudo-random function PRF.
Specifically, the common reference string k0←${0, 1}λ is randomly generated
after Z spawns all corrupt nodes and commits to when each honest node shall
sleep. Then, we can simply replace calls to H(·) with PRFk0(·).

Remark on How to Interpret the Protocol for Weakly Synchronized Clocks. As
mentioned earlier, in practice, we would typically adopt the protocol assuming
nodes have weakly synchronized clocks instead of perfect synchronized clocks.
Section 2.1 described a general protocol transformation that allows us to treat
weakly synchronized clocks as synchronized clocks in formal reasoning (but
adopting a larger network delay). Specifically, when deployed in practice assum-
ing weakly synchronized clocks with up to Δ clock offset, alert nodes would
actually queue each received message for Δ time before locally delivering the
message. This ensures that alert nodes will not reject other alert nodes’ chains
mistakenly thinking that the block-time is in the future (due to clock offsets).

The Sleepy Model of Consensus 399

Protocol Πsleepy(p)

On input init() from Z:

let (pk, sk) := Σ.gen(), register pk with FCA, let chain := genesis

On receive chain ′:
assert |chain ′| > |chain| and chain ′ is valid w.r.t. eligible and the current time t;
chain := chain ′ and multicast chain

Every time step:

– receive input transactions(txs) from Z
– let t be the current time, if eligiblet(P) where P is the current node’s party

identifier:
let σ := Σ.sign(sk, chain[−1].h, txs, t), h′ := d(chain[−1].h, txs, t, P, σ),
let B := (chain[−1].h, txs, t, P, σ, h′), let chain := chain||B and multicast
chain

– output extract(chain) to Z where extract is the function outputs an ordered list
containing the txs extracted from each block in chain

Subroutine eligiblet(P):
return 1 if H(P, t) < Dp and P is a valid protocol participanta; else return 0

a Without loss of generality, we may assume protocol participants are numbered 1
to N .

Fig. 1. The sleepy consensus protocol. The difficulty parameter Dp is defined
such that the hash outcome is less than Dp with probability p. For simplicity, here we
describe the scheme with a random oracle H—however as we explain in this section,
H can be removed and replaced with a pseudorandom function and a common reference
string.

Remark on Foreknowledge of Δ. Note that our protocol Πsleepy(p) is parame-
trized with a parameter p, that is, the probability that any node is elected leader
in any time step. Looking ahead, due to our compliance rules explained later in
Sect. 4.3, it is sufficient for the protocol to have foreknowledge of both N and Δ,
then to attain a targeted resilience (i.e., the minimum ratio of alert nodes over
corrupt ones in any time step), the protocol can choose an appropriate value for
p based on the “resilience” compliance rules (see Sect. 4.3).

In our online version [?], we will justify why foreknowledge of Δ is necessary:
we prove a lower bound showing that any protocol that does not have fore-
knowledge of Δ cannot achieve state machine replication even when all nodes
are honest.

400 R. Pass and E. Shi

4.3 Compliant Executions

Our protocol can be proven secure as long as a set of constraints are expected,
such as the number of alert vs. corrupt nodes. Below we formally define the
complete set of rules that we expect (A,Z) to respect to prove security.

Compliant Executions. We say that (A,Z) is Πsleepy(p)-compliant if the follow-
ing holds:

– Static corruption and sleepiness. Z must issue all corrupt and sleep instruc-
tions prior to the start of the protocol execution. We assume that A cannot
query the random oracle H prior to protocol start.

– Resilience. There are parameters (N,Ncrupt,Δ) such that (A,Z) is
(N,Ncrupt,Δ)-respecting w.r.t. Πsleepy(p), and moreover, the following con-
ditions are respected:

• There is a positive constant φ, such that for any view in the support of
EXECΠsleepy(p)(A,Z, λ), for every t ≤ |view|,

alertt(view)
Ncrupt

≥ 1 + φ

1 − 2pNΔ

where alertt(view) denotes the number of nodes that are alert at time t in
view.

• Further, there is some constant 0 < c < 1 such that 2pNΔ < 1 − c.

Informally, we require that at any point of time, there are more alert nodes
than corrupt ones by a small constant margin.

Useful Notations. We define additional notations that will become useful later.

1. Let Nalert := Ncrupt · 1+φ
1−2pNΔ be a lower bound on the number of alert nodes

in every time step;
2. Let α := pNalert be a lower bound on the expected number of alert nodes

elected leader in any single time step;
3. Let β := pNcrupt ≥ 1− (1−p)Ncrupt be the expected number of corrupt nodes

elected leader in any single time step; notice that β is also an upper bound
on the probability that some corrupt node is elected leader in one time step.

4.4 Theorem Statement

We now state our theorem for static corruption.

Theorem 3 (Security of Πsleepy under static corruption). Assume the
existence of a common reference string (CRS), a bare public-key infrastructure
(PKI), and that the signature scheme Σ is secure against any p.p.t. adversary.
Then, for any constants ε, ε0 > 0, any 0 < p < 1, any T0 ≥ ε0λ, Πsleepy(p)
satisfies (T0, g0, g1)-chain growth, (T0, μ)-chain quality, and T 2

0 consistency with
exp(−Ω(λ)) failure probability for the following set of parameters:

The Sleepy Model of Consensus 401

– chain growth lower bound parameter g0 = (1 − ε)(1 − 2pNΔ)α;
– chain growth upper bound parameter g1 = (1 + ε)Np; and
– chain quality parameter μ = 1 − 1−ε

1+φ .

where N,Δ,α and φ are parameters that can be determined by (A,Z) as well as
p as mentioned earlier.

The proof of this theorem will be presented in Sect. 5.

Corollary 1 (Statically secure state machine replication in the sleepy
model). Assume the existence of a common reference string (CRS), a bare
public-key infrastructure (PKI), and that the signature scheme Σ is secure
against any p.p.t. adversary. For any constant ε > 0, there exists a protocol
that achieves state machine replication assuming static corruptions and static
sleepiness, and that 1

2 + ε fraction of awake nodes are honest in any time step.

Proof. Straightforward from Theorem3 and Lemma 1.

5 Proofs for Static Security

In this section, we present the proofs for the basic sleepy consensus protocol
presented in Sect. 4. We assume static corruption and static sleepiness and the
random oracle model. Later in our paper, we will describe how to remove the
random oracle, and further extend our protocol and proofs to adaptive sleepiness
and adaptive corruptions.

We start by analyzing a very simple ideal protocol denoted Πideal, where
nodes interact with an ideal functionality Ftree that keeps track of all valid
chains at any moment of time. Later in our online version [25], we will show that
the real-world protocol Πsleepy securely emulates the ideal-world protocol.

5.1 Simplified Ideal Protocol Πideal

Ideal Protocol. Following [24], we first define a simplified protocol Πideal para-
metrized with an ideal functionality Ftree—see Figs. 2 and 3. Looking forward,
our ideal functionality, Ftree, gives more power to the adversary than the ideal
functionality used in [24] (i.e., our ideal functionality is weaker than the one in
[24]); we provide a more detailed comparison below. As a consequence, our proof
of security in this idealized model will be (significantly) more complicated than
the one in [24]. We mention that the reason for using this weaker functionality is
that we later aim to implement it without using proofs-of-work (and in particu-
lar, without assuming that a majority of the computing power is held by honest
player, but rather under the assumption that a majority of the registered public
keys are held by honest players).

Roughly speaking, Ftree flips random coins to decide whether a node is the
elected leader for every time step, and an adversary A can query this information
(i.e., whether any node is a leader in any time step) through the leader query

402 R. Pass and E. Shi

Ftree(p)

On init: tree := genesis, time(genesis) := 0

On receive leader(P, t) from A or internally:

if Γ [P, t] has not been set, let Γ [P, t] :=

{
1 with probability p

0 o.w.
return Γ [P, t]

On receive extend(chain,B) from P: let t be the current time:

assert chain ∈ tree, chain||B /∈ tree, and leader(P, t) outputs 1
append B to chain in tree, record time(chain||B) := t, and return “succ”

On receive extend(chain,B, t′) from corrupt party P∗: let t be the current time

assert chain ∈ tree, chain||B /∈ tree, leader(P∗, t′) outputs 1, and time(chain) <
t′ ≤ t
append B to chain in tree, record time(chain||B) = t′, and return “succ”

On receive verify(chain) from P: return (chain ∈ tree)

Fig. 2. Ideal functionality Ftree.

interface. Finally, alert and corrupt nodes can call Ftree.extend to extend known
chains with new blocks—Ftree will then check if the caller is a leader for the time
step to decide if the extend operation is allowed. Ftree keeps track of all valid
chains, such that alert nodes will call Ftree.verify to decide if any chain they
receive is valid. Alert nodes always store the longest valid chains they have
received, and try to extend it.

Observe that Ftree has two entry points named extend—one of them is the
honest version and the other is the corrupt version. In this ideal protocol, alert
nodes always mine in the present, i.e., they always call the honest version of
extend that uses the current time t. In this case, if the honest node succeeds
in mining a new chain denoted chain, Ftree records the current time t as chain’s

Protocol Πideal

On init: chain := genesis

On receive chain′: if |chain′| > |chain| and Ftree.verify(chain
′) = 1: chain := chain′,

multicast chain

Every time step:

– receive input B from Z
– if Ftree.extend(chain,B) outputs “succ”: chain := chain||B and multicast chain
– output chain to Z

Fig. 3. Ideal protocol Πideal

The Sleepy Model of Consensus 403

block-time by setting Ftree(view).time(chain) = t. On the other hand, corrupt
nodes are allowed to call a malicious version of extend and supply a past time
step t′. When receiving an input from the adversarial version of extend, Ftree

verifies that the new block’s purported time t′ respects the strictly increasing
rule. If the corrupt node succeeds in mining a new block, then Ftree records the
purported time t′ as the chain’s block-time.

Notations. Given some view sampled from EXECΠideal(A,Z, λ), we say that a
chain ∈ Ftree(view).tree has a block-time of t if Ftree(view).time(chain) = t. We
say that a node P (alert or corrupt) mines a chain′ = chain||B in time t if P
called Ftree.extend(chain,B) or Ftree.extend(chain,B,) at time t, and the call
returned “succ”. Note that if an alert node mines a chain at time t, then the
chain’s block-time must be t as well. By contrast, if a corrupt node mines a chain
at time t, the chain’s block-time may not be truthful—it may be smaller than t.

We say that (A,Z) is Πideal(p)-compliant iff the pair is Πsleepy(p)-compliant.
Since the protocols’ compliance rules are the same, we sometimes just write
compliant for short.

Theorem 4 (Security of Πideal). For any constant ε0, ε > 0, any T0 ≥
ε0λ, Πsleepy satisfies (T0, g0, g1)-chain growth, (T0, μ)-chain quality, and T 2

0 -
consistency against any Πideal-compliant, computationally unbounded pair
(A,Z), with exp(−Ω(λ)) failure probability and the following parameters:

– chain growth lower bound parameter g0 = (1 − ε)(1 − 2pNΔ)α;
– chain growth upper bound parameter g1 = (1 + ε)Np; and
– chain quality parameter μ = 1 − 1−ε

1+φ .

where N,Δ,α and φ are parameters that can be determined by (A,Z) as well as
p as mentioned earlier.

In the remainder of this section, we will now prove the above Theorem4.

Intuitions and Differences from the Ideal Protocol in [24]. The key difference
between our ideal protocol and Nakamoto’s ideal protocol as described by Pass
et al. [24] is the following. In Nakamoto’s ideal protocol, if the adversary succeeds
in extending a chain with a block, he cannot reuse this block and concatenate it
with other chains. Here in our ideal protocol, if a corrupt node is elected leader
in some time slot, he can reuse the elected slot in many possible chains. He can
also instruct Ftree to extend chains with times in the past, as long as the chain’s
block-times are strictly increasing.

Although our Ftree allows the adversary to claim potentially false block-times,
we can rely on the following block-time invariants in our proofs: (1) honest blocks
always have faithful block-times; and (2) any chain in Ftree must have strictly
increasing block-times. Having observed these, we show that Pass et al.’s chain
growth and chain quality proofs [24] can be adapted for our scenario.

Unfortunately, the main challenge is how to prove consistency. As men-
tioned earlier, our adversary is much more powerful than the adversary for the

404 R. Pass and E. Shi

Nakamoto blockchain and can launch a much wider range of attacks where he
reuses the time slots during which he is elected. In our online version [25], we
present new techniques for analyzing the induced stochastic process.

5.2 Overview of Ideal-World Proofs

As mentioned, chain growth and chain quality follow essentially in the same was
as in [24], we thus here focus on giving an overview of the consistency proof.

Review: Consistency Proof for the Nakamoto Blockchain. We first review how
Garay et al. [11] and Pass et al. [24] proved consistency for a proof-of-work
blockchain, and explain why their proof fails in our setting. To prove consistency,
[24] relies on a notion of a convergence opportunity (and [11] relies on an analog
of this notion in the synchronous setting). Roughly speaking, a convergence
opportunity is a period of time in which (1) there is a Δ-long period of silence
in which no honest node mines a block; and (2) followed by a time step in which
a single honest (or in our setting, alert) node mines a block; and (3) followed by
yet another Δ-long period of silence in which no honest node mines a block.

Intuitively, convergence opportunities are a “good pattern” that helps with
consistency. In particular, if the unique honest block mined during a convergence
opportunity (henceforth denoted B∗) is at length �, then the adversary must mine
a block also at length �, otherwise all honest nodes’ chains must have a unique
block, that is, B∗ at length �—and this forces convergence of the entire prefix of
the chain up to block B∗.

Finally, to prove consistency, we need to show that in any sufficiently long
window, there must be more convergence opportunities than there are adversar-
ially mined blocks. [24] provides a lower bound on the number of convergence
opportunities (this is the difficult part of the proof); in contrast, providing an
upper bound on the number of adversarially mined blocks is easy and directly
follows from a Chernoff bound due to the honest majority of computing power
assumption.

Why the Proof Breaks Down in Our Setting. The above-mentioned bound on the
number of adversarial blocks, however, relies on the fact that when an adver-
sary successfully extends a chain with a block, he cannot simply transfer this
block to some other chain: each mined block requires a separate “computational
effort” (i.e., a successful mining), and thus the upperbound simply follows by
upperbounding the number of “successful calls” to Ftree.

In contrast, in our setting, if a corrupt node is elected leader in a certain
time step t, he can now reuse this credit to extend multiple chains, possibly even
at different lengths.

As such, the above argument (and the proofs of [11,24]) can no longer be
applied: we cannot use an upperbound on the number of times the adversary
is elected leader (the direct analogy of how many times an adversary mines a
block in a proof-of-work blockchain) to get an upperbound on how many chain
lengths the adversary can attack.

The Sleepy Model of Consensus 405

To overcome this, we devise a different proof strategy. The notion of a conver-
gence opportunity will still be important to us (as well as the lower bound on the
number of convergence opportunities), but our method for showing convergence
will be more sophisticated.

Roadmap of Our Proof. We will define a good event called a (strong) pivot
point. Roughly speaking, a (strong) pivot is a point of time t, such that if one
draws any window of time [t0, t1] that contains t, the number of adversarial time
slots in that window, if non-zero, must be strictly smaller than the number of
convergence opportunities in the same window. We will show the following:

– A pivot forces convergence: for any view where certain negligible-probability
bad events do not happen: if there is such a pivot point t in view, then the
adversary cannot have caused divergence prior to t.

– Pivots happen frequently: for all but negligible fraction of the views, pivot
points happen frequently in time—particularly, in any sufficiently long time
window there must exist such a pivot point. This then implies that if one
removes sufficiently many trailing blocks from an alert node’s chain (recall
that by chain growth, block numbers and time roughly translate to each
other), the remaining prefix must be consistent with any other alert node.

We defer the full proofs for chain quality, chain growth, and consistency for
the ideal-world protocol Πideal to our online version [25].

5.3 Real-World Emulates Ideal-World

So far, we have argued security properties for the ideal world protocol. We next
need to prove that the same properties, namely, chain growth, chain quality, and
consistency translate to the real-world protocol as well. To show this, we rely on
a standard simulation argument. For any real-world adversary A, we construct
an ideal-world adversary S (i.e., a simulator), such that no p.p.t. environment
Z can distinguish whether it is in the real- or ideal-world. Recall that the secu-
rity properties for our protocols are defined w.r.t. honest nodes’ output to the
environment Z. Thus, such a simulation proof would immediately imply that all
relevant security properties we have proven for the ideal world immediately hold
in the real world as well. In essence, we prove the following lemma:

Lemma 2 (Real world emulates the ideal world). For any p.p.t. adversary
of the real-world protocol Πsleepy, there exists a p.p.t. simulator S of the ideal-
world protocol Πideal, such that for any p.p.t. environment Z, for any λ ∈ N, we
have the following where

c≡ denotes computational indistinguishability.

{viewZ(EXECΠideal(S,Z, λ))}λ
c≡ {viewZ(EXECΠsleepy(A,Z, λ))}λ

We defer the proof of this lemma to our online version [25].

406 R. Pass and E. Shi

5.4 Removing the Random Oracle

It is not difficult to modify our proof when the random oracle query H(P, t) is
actually instantiated with PRFk0(P, t) where k0 denotes a sufficiently long com-
mon reference string. Specifically, the formal proof introduces a hybrid world in
which Ftree’s internal random coins are replaced with outcomes from evaluating
the PRF. Although the PRF key k0 is observable by the adversary, we stress that
our ideal-world protocol is secure against a computationally unbounded adver-
sary. Moreover, our ideal-world protocol is secure as long as certain polynomial-
time checkable properties, defined over the outcome of the random function or
the PRF, are respected. Due to the pseudo-randomness of the PRF, if these
polynomial-time checkable properties are respected for all but a negligible frac-
tion of the random functions, then they are respected for all but a negligible
fraction of the PRF family too. In our online version [25], we formalize this
intuition and present a formal proof.

6 Achieving Adaptive Security

So far, we have assumed that the adversary issues both corrupt and sleep
instructions statically upfront. In this section, we will show how to achieve
adaptive security with complexity leveraging. It turns out even with complexity
leveraging the task is non-trivial.

6.1 Intuition: Achieving Adaptive Sleepiness

To simplify the problem, let us first consider how to achieve adaptive sleepiness
(but static corruption). In our statically secure protocol Πsleepy, the adversary
can see into the future for all honest and corrupt players. In particular, the
adversary can see exactly in which time steps each honest node is elected leader.
If sleep instructions could be adaptively issued, the adversary could simply put
a node to sleep whenever he is elected leader, and wake up him when he is not
leader. This way, the adversary can easily satisfy the constraint that at any time,
the majority of the online nodes must be honest, while ensuring that no alert
nodes are ever elected leader (with extremely high probability).

To defeat such an attack and achieve adaptive sleepiness (but static corrup-
tion), we borrow an idea that was (informally) suggested by Micali [19]. Basically,
instead of computing a “leader ticket” η by hashing the party’s (public) identifier
and the time step t and by checking η < Dp to determine if the node is elected
leader, we will instead have an honest node compute a pseudorandom “leader
ticket” itself using some secret known only to itself. In this way, the adversary
is no longer able to observe honest nodes’ future. The adversary is only able to
learn that an honest node is elected leader in time step t when the node actually
sends out a new chain in t—but by then, it will be too late for the adversary to
(retroactively) put that node to sleep in t.

The Sleepy Model of Consensus 407

A Näıve Attempt. Therefore, a näıve attempt would be the following.

– Each node P picks its own PRF key k[P], and computes a commitment c :=
comm(k[P]; r) and registers c as part of its public key with the public-key
infrastructure FCA. To determine whether it is elected leader in a time step
t, the node computes PRFk[P](t) < Dp where Dp is a difficulty parameter
related to p, such that any node gets elected with probability p in a given
time step.

– Now for P to prove to others that it is elected leader in a certain time step t, P
can compute a non-interactive zero-knowledge proof that the above evaluation
is done correctly (w.r.t. to the commitment c that is part of P’s public key).

A Second Attempt. This indeed hides honest nodes’ future from the adversary;
however, the adversary may not generate k[P∗] at random for a corrupt player
P∗. In particular, the adversary can try to generate k[P∗] such that P∗ can get
elected in more time steps. To defeat such an attack, we include a relatively long
randomly chosen string k0 in the common reference string. For a node P to be
elected leader in a time step t, the following must hold:

PRFk0(P, t) ⊕ PRFk[P](t) < Dp

As before, a node can compute a non-interactive zero-knowledge proof (to be
included in a block) to convince others that it computed the leader election
function correctly.

Now the adversary can still adaptively choose k[P∗] after seeing the common
reference string k0 for a corrupt node P∗ to be elected in more time steps;
however, it can only manipulate the outcome to a limited extent: in particular,
since k0 is much longer than k[P∗], the adversary does not have enough bits in
k[P∗] to manipulate to defeat all the entropy in k0.

Parametrization and Analysis. Using the above scheme, we can argue for security
against an adaptive sleepiness attack. However, as mentioned above, the adver-
sary can still manipulate the outcome of the leader election to some extent. For
example, one specific attack is the following: suppose that the adversary controls
O(N) corrupt nodes denoted P∗

0 , . . . ,P∗
O(N) respectively. With high probability,

the adversary can aim for the corrupt nodes to be elected for O(N) consec-
utive time slots during which period the adversary can sustain a consistency
and a chain quality attack. To succeed in such an attack, say for time steps
[t : t + O(N)], the adversary can simply try random user PRF keys on behalf of
P∗
0 until it finds one that gets P∗

0 to be elected in time t (in expectation only
O(1p) tries are needed); then the adversary tries the same for node P∗

1 and time
t + 1, and so on.

Therefore we cannot hope to obtain consistency and chain quality for O(N)-
sized windows. Fortunately, as we argued earlier, since the adversary can only
manipulate the leader election outcome to a limited extent given that the length
of k0 is much greater than the length of each user’s PRF key, it cannot get
corrupt nodes to be consecutively elected for too long. In our proof, we show

408 R. Pass and E. Shi

that as long as we consider sufficiently long windows of N c blocks in length (for
an appropriate constant c and assuming for simplicity that N = ω(log λ), then
consistency and chain quality will hold except with negligible probability.

6.2 Intuition: Achieving Adaptive Corruption

Once we know how to achieve adaptive sleepiness and static corruption, we can
rely on complexity leveraging to achieve adaptive corruption. This part of the
argument is standard: suppose that given an adversary under static corruption
that can break the security properties of the consensus protocol, there exists a
reduction that breaks some underlying complexity assumption. We now modify
the reduction to guess upfront which nodes will become corrupt during the course
of execution, and it guesses correctly with probability 1

2N
. This results in a 2N

loss in the security reduction, and therefore if we assume that our cryptographic
primitives, including the PRF, the digital signature scheme, the non-interactive
zero-knowledge proof, the commitment scheme, and the collision-resistant hash
family have sub-exponential hardness, we can lift the static corruption to adap-
tive corruption.

6.3 Detailed Protocol and Proofs

We defer the detailed presentation of our adaptively secure protocol and proofs
to our online version [25]—however, we state our main theorem for adaptive
security below.

Theorem 5 (Adaptively secure state machine replication in the sleepy
model). Assume the existence of a Bare PKI, a CRS; the existence of sub-
exponentially hard collision-resistant hash functions, and sub-exponentially hard
enhanced trapdoor permutations. Then, for any constant ε > 0, there exists a
protocol that achieves state machine replication against adaptive corruptions and
adaptive sleepiness, as long as 1

2 + ε fraction of awake nodes are honest in any
time step.

References

1. U. “BCNext”: NXT (2014). http://wiki.nxtcrypto.org/wiki/Whitepaper:Nxt
2. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In:

Financial Cryptography Bitcoin Workshop (2016)
3. Cachin, C., Kursawe, K., Petzold, F., Shoup, V.: Secure and efficient asynchronous

broadcast protocols. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 524–
541. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 31

4. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: FOCS (2001)

5. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI (1999)
6. Daian, P., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. https://

eprint.iacr.org/2016/919.pdf

http://wiki.nxtcrypto.org/wiki/Whitepaper:Nxt
https://doi.org/10.1007/3-540-44647-8_31
https://eprint.iacr.org/2016/919.pdf
https://eprint.iacr.org/2016/919.pdf

The Sleepy Model of Consensus 409

7. Dolev, D., Strong, H.R.: Authenticated algorithms for byzantine agreement. SIAM
J. Comput. SIAMCOMP 12(4), 656–666 (1983)

8. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. J. ACM 35, 288–323 (1988)

9. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In:
Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 10

10. Feldman, P., Micali, S.: An optimal probabilistic protocol for synchronous byzan-
tine agreement. SIAM J. Comput. 26, 873–933 (1997)

11. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analy-
sis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 10

12. Katz, J., Koo, C.-Y.: On expected constant-round protocols for byzantine agree-
ment. J. Comput. Syst. Sci. 75(2), 91–112 (2009)

13. Kiayias, A., Panagiotakos, G.: Speed-security tradeoffs in blockchain protocols.
IACR Cryptology ePrint Archive 2015:1019 (2015)

14. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

15. King, S., Nadal, S.: PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-Stake,
August 2012

16. Lamport, L.: Fast paxos. Distrib. Comput. 19(2), 79–103 (2006)
17. Lamport, L., Malkhi, D., Zhou, L.: Vertical paxos and primary-backup replication.

In: PODC, pp. 312–313 (2009)
18. Martin, J.-P., Alvisi, L.: Fast byzantine consensus. IEEE Trans. Dependable Secur.

Comput. 3(3), 202–215 (2006)
19. Micali, S.: Algorand: the efficient and democratic ledger (2016). https://arxiv.org/

abs/1607.01341
20. Micali, S., Vadhan, S., Rabin, M.: Verifiable random functions. In: FOCS (1999)
21. Miller, A., Xia, Y., Croman, K., Shi, E., Song, D.: The honey badger of BFT

protocols. In: ACM CCS (2016)
22. Mockapetris, P., Dunlap, K.: Development of the domain name system. In: SIG-

COMM, Stanford, CA, pp. 123–133 (1988)
23. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
24. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchro-

nous networks. https://eprint.iacr.org/2016/454
25. Pass, R., Shi, E.: The sleepy model of consensus (2016). https://eprint.iacr.org/

2016/918
26. Pass, R., Shi, E.: Hybrid consensus: efficient consensus in the permissionless model.

In: DISC (2017)
27. Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation.

Manuscript (2017)
28. Song, Y.J., van Renesse, R.: Bosco: one-step byzantine asynchronous consensus.

In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438–450. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87779-0 30

https://doi.org/10.1007/3-540-48071-4_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://arxiv.org/abs/1607.01341
https://arxiv.org/abs/1607.01341
https://eprint.iacr.org/2016/454
https://eprint.iacr.org/2016/918
https://eprint.iacr.org/2016/918
https://doi.org/10.1007/978-3-540-87779-0_30

	The Sleepy Model of Consensus
	1 Introduction
	1.1 The Sleepy Model of Consensus
	1.2 Main Result
	1.3 Technical Overview
	1.4 Applications in Permissioned and Permissionless Settings
	1.5 Paper Organization

	2 Definitions
	2.1 Protocol Execution Model
	2.2 Compliant Executions
	2.3 Notational Conventions

	3 Problem Definitions
	3.1 State Machine Replication
	3.2 Blockchain Formal Abstraction
	3.3 Blockchain Implies State Machine Replication

	4 Sleepy Consensus Under Static Corruptions
	4.1 Valid Blocks and Blockchains
	4.2 The Basic Sleepy Consensus Protocol
	4.3 Compliant Executions
	4.4 Theorem Statement

	5 Proofs for Static Security
	5.1 Simplified Ideal Protocol ideal
	5.2 Overview of Ideal-World Proofs
	5.3 Real-World Emulates Ideal-World
	5.4 Removing the Random Oracle

	6 Achieving Adaptive Security
	6.1 Intuition: Achieving Adaptive Sleepiness
	6.2 Intuition: Achieving Adaptive Corruption
	6.3 Detailed Protocol and Proofs

	References

