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Abstract. We propose new key recovery attacks on the two minimal
two-round n-bit Even-Mansour ciphers that are secure up to 22n/3 queries
against distinguishing attacks proved by Chen et al. Our attacks are
based on the meet-in-the-middle technique which can significantly reduce
the data complexity. In particular, we introduce novel matching tech-
niques which enable us to compute one of the two permutations with-
out knowing a part of the key information. Moreover, we present two
improvements of the proposed attack: one significantly reduces the data
complexity and the other reduces the time complexity. Compared with
the previously known attacks, our attack first breaks the birthday bar-
rier on the data complexity although it requires chosen plaintexts. When
the block size is 64 bits, our attack reduces the required data from 245

known plaintexts to 226 chosen plaintexts with keeping the time com-
plexity required by the previous attacks. Furthermore, by increasing the
time complexity up to 262, the required data is further reduced to 28,
and DT = 270, where DT is the product of data and time complexities.
We show that our low-data attack on the minimal n-bit two-round Even-
Mansour ciphers requires DT = 2n+6 in general cases. Since the proved
lower bound on the required DT for the one-round n-bit Even-Mansour
ciphers is 2n, our results imply that adding one round to the one-round
Even-Mansour ciphers does not sufficiently improve the security against
key recovery attacks.

Keywords: Block cipher · Even-Mansour ciphers · Meet-in-the-middle
attack · Key recovery · Partial invariable pair · Matching with the input-
restricted public permutation

1 Introduction

1.1 Even-Mansour Cipher

The Even-Mansour cipher consisting of two direct key XORs separated by one
public permutation was proposed in 1991 [9,10]. Since then, it has been consid-
ered as one of the simplest block cipher design. Indeed, its description is rather
simple:

EK0,K1(x) = P (x ⊕ K0) ⊕ K1,
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where P is an n-bit fixed and public permutation with two n-bit secret keys K0

and K1.
Bogdanov et al. generalized it as the multiple-round Even-Mansour construc-

tions, and presented the first security bounds against distinguishing attacks for
them [1]. As opposed to the original Even-Mansour cipher, the multiple-round
Even-Mansour construction can comprise t independent public permutations on
n-bit words separated by n-bit independent key additions:

E(t)(x) = EK0,...,Kt
(x) = Pt(· · · (P2(P1(x ⊕ K0) ⊕ K1) ⊕ K2) · · · ) ⊕ Kt.

There has been a series of results towards the provable security of the iterated
Even-Mansour ciphers with independently and randomly drawn permutations
since then. The aforementioned work [1] proves that at least 2

2n
3 queries are

required to distinguish E(t) with t ≥ 2 from a random permutation and conjec-
tures that the bound is roughly 2

t
t+1n. Steinberger [16] improves this result by

proving that the bound of 2
3
4n holds for t ≥ 3. Lampe et al. [14] prove a secu-

rity of 2
t

t+2n for all even values of t, which is slightly lower than conjectured.
Chen and Steinberger [4] have managed to prove the conjectured 2

t
t+1n bound

on the number of queries required for a distinguishing attack, and then Hoang
and Tessaro proved the exact bound of it [12].

1.2 Minimal Construction

The original Even-Mansour cipher, which only consists of a single permutation
surrounded by key XORs, ensures security up to 2n/2 queries of the adver-
sary who has access to the encryption function EK and the internal permuta-
tion P [9,10]. Even and Mansour proved an information-theoretic bound that
any attack on the scheme must satisfy the equation of DT = Ω(2n), where
D and T are the data and time complexities, i.e. the number of queries to
the encryption function EK and the permutation P , respectively. The case of
(D,T ) = (2n/2, 2n/2) satisfies the bound of 2n/2 queries. Shortly after the intro-
duction of the scheme, Daemen [5] presented a key recovery attack matching the
bound DT = O(2n) in the chosen-plaintext model. Dunkelman et al. [8] pro-
posed the slidex attack and its application to close the gap between the upper
and lower bounds on the security of the Even-Mansour scheme for a variety of
tradeoff points. Moreover, they specifically consider the minimalistic single-key
Even-Mansour, with K0 = K1, which provides exactly the same security. As
pointed out by Dunkelman et al. [8], this construction is minimal in the sense
that if one removes any component, i.e. either the addition of one of the keys,
or the permutation P , the construction becomes trivially breakable.

Chen et al. [3] proved that two variants of two-round Even-Mansour ciphers
are secure up to 22n/3 queries against distinguishing attacks, while the one-round
Even-Mansour cipher guarantees security up to birthday bound, namely 2n/2.
One consists of two independent n-bit permutations P1 and P2, and a single
n-bit key K:

(2EM-1) E
(2)
K (x) = P2(P1(x ⊕ K) ⊕ K) ⊕ K.
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The other consists of a single n-bit permutation P , and a single n-bit key K
with a simple key scheduling function π,

(2EM-2) E
′(2)
K (x) = P (P (x ⊕ K) ⊕ π(K)) ⊕ K,

where π is any linear orthomorphism of Fn
2 . Hereafter we refer to E

(2)
K and E

′(2)
K

as 2EM-1 and 2EM-2, respectively. These constructions can be considered as
minimal two-round Even-Mansour ciphers delivering security beyond the birth-
day bound, since they have no redundant component for the security. The proved
lower bounds of 2EM-1 and 2EM-2 for distinguishing attacks by Chen et al. [3]
are captured in Fig. 1. Regarding tightness of their security bounds for distin-
guishing attacks, Gazi proposed a generic distinguishing attack with the time
complexity of 2n−1/2 log2D for any D [11], i.e. DT 2 = 22n. The attack matches
the proved bound only in the specific case (D,T ) = (22n/3, 22n/3).

Along with the distinguishing attacks, several key recovery attacks on 2EM-
1 construction have been presented [7,15]. Unlike the one-round Even-Mansour
construction, for the two-round Even-Mansour ciphers, a dedicated information-
theoretic bound on D and T for any attack including key recovery attacks has
not been known. At least, D and T required for key recovery attacks on the two-
round constructions must satisfy DT = Ω(2n) which is the bound for the one-
round construction. Moreover, since a distinguishing attack is directly derived
from a key recovery attack, D and T for the key recovery attacks must follow
the lower bounds for distinguishing attacks on 2EM-1 and 2EM-2 given by Chen
et al. [3]. For n = 64, Nikolić et al. proposed the first key recovery attacks on
2EM-1 requiring the time complexity of 261 with 259 known plaintexts [15]. Dinur
et al. generalized it and reduced the data requirements to 245, while keeping
the time complexity [7]. Therefore, the published best upper bound on DT is
estimated as 2105 for n = 64. Since it is much larger than the lower bound
for the one-round Even-Mansour (DT = 264), the two-round Even-Mansour
cipher seems more secure against key recovery attacks than the one-round Even-
Mansour cipher. However, due to the gap between the proved lower bound and
the presented upper bound, the accurate security of the two-round construction
is still unknown and it is an important open problem in the field of symmetric
cryptography.

1.3 Our Contributions

In this paper, we propose new key recovery attacks on the two minimal two-round
Even-Mansour ciphers 2EM-1 and 2EM-2. First, we present a basic attack on
2EM-1 by using the advanced meet-in-the-middle technique which potentially
reduces the data complexity. In particular, we introduce novel matching tech-
niques called partial invariable pair and matching with input-restricted public
permutation, which enable us to compute one of the two permutations without
knowing a part of the key information. Then, we improve the basic attack: one
significantly reduces data complexity (low-data attack) and the other reduces
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Table 1. Summary of our results for 2-round Even-Mansour ciphers.

Time T Data D DT Condition of the parameters of a, b, and d

Basic attack (Sect. 3)

2n−a−1 2n−a CP 22(n−a−1) a · 2a − 1 ≤ n − a

Low-data attack (Sect. 4)

2n−a 2n−(a+d) CP 22(n−a)−d a · 2a + d ≤ n − a

Time-optimized attack (Sect. 5)

2n−b †1 2n−a CP 22n−a−b b · 2a + (b − a) ≤ n − b
†1: The attack includes 2n−a memory access. CP: Chosen Plaintext

Fig. 1. Comparison of the previous results and our results when n = 64. The blue solid
line is the lower bound of the one-round Even-Mansour cipher, i.e. DT = Ω(2n) [9,10].
The blue dashed and dot lines are the lower bound for distinguishing attacks on 2EM-1
and 2EM-2 by Chen et al. [3], respectively. The black solid line is the upper bound for
distinguishing attacks on 2EM-1 and 2EM-2 by Gazi [11] (Color figure online).

time complexity (time-optimized attack) by dynamically finding partial invari-
able pairs. Our results are summarized in Table 1. In our attacks, there are some
tradeoff points of data and time complexities by choosing the parameters of a, b
and d under the conditions. We emphasize that all of our attacks do not contain
any operation over 2n, and can be regarded as exponential-advantage attacks as
with the previous attack [7,15].

Figure 1 and Table 2 show the comparative results with the previous attacks
when n = 64. Our attacks can drastically reduce the required data from 245 to
226 with keeping the time complexity of the previous attacks [7,15], although
our attacks require chosen plaintexts. By increasing time complexity up to 262,
the required data is further reduced to 28. Since the previous attacks are based
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Table 2. Comparison of the previous results and our results for key recovery attacks
on 2-round Even-Mansour ciphers when n = 64.

Time T Data D DT Reference

One-round EM: E
(1)
K (x) = P (x ⊕ K) ⊕ K) [9,10]

264−x 2xCP 264 [5]

264−x 2xKP 264 [8]

Two-round EM1: E
(2)
K (x) = P2(P1(x ⊕ K) ⊕ K) ⊕ K

261 259KP 2120 [15]

260.1 245KP 2105.1 [7]

260 226CP 286 Sect. 4

262 28 CP 270 Sect. 4

258 †2 261 CP 2119 Sect. 5

253 †3 262 CP 2115 Sect. 5

Two-round EM2: E
′(2)
K (x) = P (P (x ⊕ K) ⊕ π(K)) ⊕ K

260 226CP 286 Sect. 6

262 28 CP 270 Sect. 6

258 †2 261 CP 2119 Sect. 6

253 †3 262 CP 2115 Sect. 6
†2: The attack includes 261 memory accesses.
†3: The attack includes 262 memory accesses.
KP: Known Plaintext, CP: Chosen Plaintext

on multi collisions of the n-bit state, they cannot break the birthday barrier of
data and time complexity. On the other hand, our attacks essentially exploit
multi collisions of one part of the state, which we call partial invariable pairs in
this paper. The required time and data complexity for finding such invariable
pairs are much less than those required for finding multi collisions of the whole
state. Therefore, our attacks are feasible even if the required data is restricted to
be less than 2n/2. In the time-optimized attacks, we can reduce the computation
cost of the internal permutation to 253, but it requires 262 memory accesses.
Basically, it is hard to fairly compare the costs of one encryption and one mem-
ory access, because these costs strongly depend on the execution environments,
the size of the table, and the underlying permutation. Thus, we do not claim
that our time-optimized attacks sufficiently reduce the time complexity required
for the previously known key recovery attacks. However, obviously the cost of
encryptions is non trivially reduced. We believe that it is an interesting tradeoff
to know the concrete security of the minimal two-round Even-Mansour construc-
tion. Finally, we show that all of our attacks on 2EM-1 can be applied to the
other minimal variant 2EM-2.

The minimum value of DT for n = 64 is estimated as 270, which is close
to the proved lower bound for the single Even-Mansour cipher DT = 264

and Chen et al.’s lower bounds for distinguishing attacks on the two-round
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Even-Mansour ciphers as shown in Fig. 1. Table 1 shows that our low-data
attack requires DT = 22(n−a)−d and DT 2 = 23(n−a)−d for any n as long as
a · 2a + d ≤ n−a. When choosing a = 2, the maximum d is d = n− 10, and thus
DT and DT 2 are estimated as DT = 2n+6 and DT 2 = 22n+4 for any n, respec-
tively. These results reveal that adding one round does not sufficiently improve
the key recovery security with respect to the product of D and T , while there
has not been attacks with time complexity less than the birthday bound unlike
the single Even-Mansour cipher.

1.4 Outline of the Paper

The remainder of the paper is organized as follows. In Sect. 2, we introduce
the specification of Even-Mansour ciphers and review previous work. In Sect. 3,
we explain a basic attack on 2EM-1. Then Sects. 4 and 5 present the improved
attacks on 2EM-1 with respect to data and time complexities, respectively. In
Sect. 6, we show that our attacks on 2EM-1 are applicable to 2EM-2. Section 7
is the conclusion.

2 Even-Mansour Ciphers

In this section, we introduce the two minimal two-round Even-Mansour ciphers
we focus on this paper, and review the previous results on the ciphers.

2.1 Two-Round Even-Mansour Ciphers

Let P1, . . . , Pt: {0, 1}n → {0, 1}n be independent public permutations and let
K0, . . . ,Kt ∈ {0, 1}n be round keys. The t-round Even-Mansour cipher E(t):
{0, 1}n ×{0, 1}n(t+1) → {0, 1}n consists of t public permutations and (t+1) key
injections is defined as follows [1]:

E(t)(x) = EK0,...,Kt
(x) = Pt(· · · (P2(P1(x ⊕ K0) ⊕ K1) ⊕ K2) · · · ) ⊕ Kt,

where x is an n-bit input of E(t).
In this paper, we focus on the following two variants of two-round Even-

Mansour ciphers (t = 2), which are provably secure up to 22n/3 queries of the
encryption function and the internal permutation(s) [3]:

(2EM-1) E
(2)
K (x) = P2(P1(x ⊕ K) ⊕ K) ⊕ K,

(2EM-2) E
′(2)
K (x) = P (P (x ⊕ K) ⊕ π(K)) ⊕ K,

where P1, P2 and P are independent n-bit permutations, K is n-bit key, and π is
any linear orthomorphism of Fn

2 . As examples of orthomorphism, a simple rota-
tion, Feistel-like construction (e.g. π: (x, y) �→ (y, x⊕y)), field multiplication (e.g.
π: (x) �→ (x × c), where c �= 0, 1) are well known. Figure 2 illustrates these con-
structions. These constructions are regarded as minimal Even-Mansour ciphers
delivering security beyond the birthday bound, since removing any component
causes security to drop back to O(2n/2) queries.
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Fig. 2. Minimal two-round Even-Mansour ciphers, 2EM-1 and 2EM-2.

2.2 Previous Key Recovery Attacks on 2EM-1

Along with results on provable security of 2EM-1 [1,3,4,11,14,16], several key
recovery attacks on the construction have been published [7,15].

Nikolić et al. proposed the first key recovery attacks on 2EM-1 [15]. They
considered the graph of the function P ′(x) = x ⊕ P (x) and showed that vertices
with a large in-degree in this graph can be exploited to bypass an additional
round of 2EM-1. Specifically, they define a keyed function inside of E

(2)
K (x) as

Q(K,x) = K ⊕ P (x ⊕ K). Since the same key K is XORed before and after the
first permutation P , the relation of x ⊕ Q(K,x) = (x ⊕ K) ⊕ P (x ⊕ K) holds
for any key K. If some output values of P ′ appear more than the average, then
we can predict the value of Q(K,x) with a higher probability than expected
even when K is unknown. Then, K can be recovered by using the relation of
K = Q(K,x) ⊕ E

(2)
K (x). In this attack, they exploit t-way multi collisions on

the value P ′(x) = x ⊕ P (x), namely x1, x2, . . . , xt such that x1 ⊕ P (x1) =
x2 ⊕ P (x2) =, . . . ,= xt ⊕ P (xt) = v for some value of v. Using it, Q(K,x) can
be guessed with a probability which is t times higher than the expected 2−n

without knowing K. For n = 64, their attack can recover the key of E
(2)
K (x)

with time complexity of 261 and 259 known plaintexts [15]. After that, Dinur et
al. generalized their attack using concepts from graph theory [7]. In particular,
they estimated the highest expected in-degree in the bipartite graph of P ′(x) =
x ⊕ P (x) depending on the number of input size. By considering all the vertices
with an in-degree of at least 8, they reduced the data requirements to 245, while
keeping the time complexity. Therefore, the published upper bound of DT is
estimated as 2105(= 260 ×245) for n = 64. Since it is significantly larger than the
bound of one-round Even-Mansour (DT = 264), two-round Even-Mansour cipher
seems to sufficiently improve the key recovery security of the one-round Even-
Mansour cipher. However, due to the gap between the proved lower bound [3,9,
10] and the presented upper bound [7,15], the accurate security of the two-round
construction is still unknown and it is an important open problem.

3 Basic Attacks on 2EM-1

This section presents a basic attack on 2EM-1, E
(2)
K consisting of two public

permutations P1 and P2 interleaved with three identical key injections by K.
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Our attack is based on the meet-in-the-middle (MitM) framework [2,13], i.e., two
functions f and g from E

(2)
K are independently computable while the previous

attacks [6] use a multi-collision technique.
In our attack, we introduce a novel matching technique called matching with

input-restricted public permutation, which enables us to compute one of two
permutations without knowing a part of the key information. Our new matching
technique is based on partial invariable pairs, which is used for constructing an
input restricted table for any permutation.

3.1 Definitions of Invariable Pair

Let f be an n-bit keyed function using a k-bit key, namely fK : {0, 1}n → {0, 1}n,
where K ∈ {0, 1}k. We use the following two notations for an input-output pair.

Definition 1 (Invariable Pair [13]). If there exists an input-output pair (x, y)
of f such that fK(x) = y for any K, such an input-output pair (x, y) is defined
by an invariable input-output pair of f .

Definition 2 ((Target) Partial Invariable Pair). If there exists a pair of a
fixed input and a b-bit partial output (x, y′) of f such that trb(fK(x)) = y′ for
any K, such a pair (x, y′) is defined by a partial b-bit invariable input-output
pair of f , where y′ ∈ {0, 1}b (b ≤ n) and trb(y) represents a b-bit truncation of
an n-bit output y.

If the value of b bits to be fixed is predetermined, it is called a target partial
b-bit invariable input-output pair.

3.2 How to Find Partial Invariable Pair

Assuming that an a-bit key is involved in f , the procedure for finding a b-bit
partial invariable input-output pair is given as follows:

Step 1: Set an n-bit input x randomly.
Step 2: Compute y1 = fK(x) with a key K from the set of 2a keys.
Step 3: Store b bits of y1 (b ≤ n) as y′(= trb(y1)).
Step 4: Compute y2 = fK′(x) with another key K ′ from the set of 2a keys,

where K ′ �= K.
Step 5: Check whether b bits of y2 are equal to y′ at the same position. If so,

repeat Steps 4 and 5. Then, if all possible K ′ are checked, output (x, y′) as a
b-bit partial invariable input-output pair of f . Otherwise, go back to Step 1
and restart with a different x.

The probability of the matching in Step 5 is 2−b assuming that f is a suffi-
ciently random function. Thus, the complexity of finding a b-bit partial invari-
able pair is estimated as 1/(2−b)2

a−1. If b bits of y1 are predetermined, which is
called target partial b-bit invariable input-output pair, the required complexity
of finding such a pair is estimated as 1/(2−b)2

a

.
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Fig. 3. Attack overview of 2EM-1.

3.3 Attack Overview

As illustrated in Fig. 3, we first divide the n-bit key K into an a-bit k0 and
the remaining (n − a)-bit k1. Then, we introduce a function f that consists of
P1 and two key injections by k0, and a function g that consists of an initial
key injection by k1 and a final key injection by k1. Note that f and g are
independently computed with k0 and k1, respectively. An output of f and an
input of g are represented as (x0|x1) and (y0|y1), also an input and an output
of P2 are denoted as (v0|v1) and (z0|z1), respectively, where x0, v0, k0, z0, y0 ∈
{0, 1}a, x1, v1, k1, z1, y1 ∈ {0, 1}n−a.

At first glance, it seems to be difficult to do the matching between f and
g, because f and g need k1 and k0 to compute the matching state around P2,
respectively. Thus, if the underlying permutation has sufficiently good diffusion
property such as AES-128 with a fixed-key, it seems infeasible to construct the
matching. To overcome this problem, we introduce a novel matching technique
called matching with input-restricted public permutation.

Matching with Input-Restricted Public Permutation. The idea behind
our new technique is to construct the input-restricted table of P2 to find the
corresponding n-bit value (v0|v1) from only an (n − a)-bit value y1(= z1) with-
out knowing k0 while computing g. In a straightforward way, given a value
of y1(= z1), 2a(= 2n/2n−a) candidates of (v0|v1) are found with 2a P2 com-
putations. Since all k0 values are tested in the function g, it totally requires
2n(= 2n−a × 2a) P2 computations. Thus, two functions f and g from E

(2)
K are

not independently computed.
In order to get rid of this problem, b bits of inputs (v0|v1) are fixed, then

the precomputation table of P2, indexed by values of (n − a)-bit y1, is con-
structed with less than 2n P2 computations, namely 2n−b. Given an (n − a)-bit
y1, 2n−b/2n−a = 2a−b candidates of (v0|v1) are found with only one memory
access of the precomputation table without the knowledge of k0. If a = b, it is
expected that one candidate is left. If a ≤ b, it is expected that less than one
candidate is left.

Since a partial invariable pair in function f allows us to fix b bits of inputs
(v0|v1) during the MitM procedure, the combination use of two techniques, the
partial invariable pair and the matching with precomputation, enables us to
mount a MitM attack on 2EM-1.
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In summary, we mount the attack on E
(2)
K by using partial invariable pair to

the permutation P1 in conjunction with the matching with the input-restricted
public permutation technique to the permutation P2.

3.4 Attack Procedure

The attack consists of an offline and an online phase. In the offline phase, a b-bit
partial invariable pair of f is found, then an input-restricted precomputation
table of P2 is constructed. In the online phase, the MitM attack is mounted by
using the precomputation table and querying the encryption oracle E

(2)
K .

In this attack, more than a bits of input of P2 are not fixed by k0, because
an (n − a)-bit k1 is used between f and P2. Thus we consider the case where a
is equal to b, which is optimal with respect to the time complexity.

Offline Phase

Step 1: Find an a-bit partial invariable pair of f , (S, x0) such that
tra(fk0(S)) = x0 for any a-bit k0.

Step 2: For all a-bit k0, compute the remaining data of the invariable pair, and
make a table of (k(i)

0 , x
(i)
1 ) such that f

k
(i)
0

(S) = (x0|x(i)
1 ), where 1 ≤ i ≤ 2a.

Step 3: For all (n − a)-bit v1, compute (n − a)-bit value z1 by P2, then make a
table of (v(j)

1 , z
(j)
1 ), where v0 = x0, P2(v0|v(j)

1 ) = (z(j)
0 |z(j)

1 ) and 1 ≤ j ≤ 2n−a.

Online Phase

Step 1: Guess an (n − a)-bit k1 and compute the corresponding plaintext P
from the start state S and k1.

Step 2: Send P to the encryption oracle E
(2)
K , then obtain the corresponding

ciphertext C.
Step 3: Compute an (n − a)-bit y1 from C and k1.
Step 4: Look for an index d in the table of (v(j)

1 , z
(j)
1 ) such that z

(d)
1 = y1. If

there is no such index, go back to Step 1.
Step 5: Compute x′

1 = v
(d)
1 ⊕ k1, and check if there exists an index e in the

table of (k(i)
0 , x

(i)
1 ) satisfying x′

1 = x
(e)
1 . If there is no such index, go back to

Step 1.
Step 6: Check if P2(v0|v(d)

1 ) = (z′
0|z(d)

1 ) holds, where z′
0 is computed from C

and k
(e)
0 . If so, K ′ = (k(e)

0 |k1) is regarded as the correct key. Otherwise, go
back to Step 1.

3.5 Evaluation

Here, we evaluate the cost required in each phase.

Offline Phase. In Steps 1 and 2, the time complexity required for finding an
a-bit partial invariable pair is (2a)2

a−1 P1 computations and the required
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Table 3. Summary of computational costs for the basic attack on 2EM-1.

Offline Online

Time Memory Time Data Memory

((2a)2
a−1 + 2n−a) P 2a and 2n−a (2n−a) MA 2n−a 2a and 2n−a

n = 32, a = 3 228 enc. 229 229 MA 229 229

n = 64, a = 4 260 enc. 260 260 MA 260 260

n = 128, a = 4 2123 enc. 2124 2124 MA 2124 2124

n = 256, a = 5 2250 enc. 2251 2251 MA 2251 2251

P: Internal permutation call, MA: Memory Access.
enc.: encryption function call (= 2 permutation calls).

memory is 2a blocks. In Step 3, the required time complexity is 2n−a P2 com-
putations and the required memory is 2n−a blocks.

-Time complexity: ((2a)2
a−1 + 2n−a) P computations, where P denotes P1

or P2,
-Memory: 2a and 2n−a blocks.

For simplicity, hereafter computation costs for P1 and P2 are assumed to be the
same and it denotes P computations. In addition, the cost of one encryption call
is approximately estimated as two P computations.

Online Phase. Steps 1 to 4 are performed 2n−a times. These steps include two
XOR operations in Steps 1 and 3 and one memory access in Step 4. Note that, in
Step 4, about one candidate is expected to be found due to the relation of a = b,
if P2 is a sufficiently good permutation. Step 5 is performed 2n−a times with one
XOR operation and one memory access. It is expected that 2a/2n−a = 2−n+2a

candidates will survive in Step 5.
We assume that the cost of one memory access in step 4 is sufficiently larger

than one XOR operation and memory access in step 5, because the size of table in
step 4 for the matching with input-restricted public permutation is much larger
than one in step 5. Then, the time complexity of Steps 1 to 5 is approximately
estimated as (2n−a) memory accesses (MA). Step 6 is mounted only 2−n+2a ×
2n−a = 2a times with P computations. Step 2 requires 2n−a data, since a bits
of state S are fixed when computing the function g with each k1.

-Time complexity: 2a P computations + (2n−a) MA,
-Data complexity: 2n−a chosen plaintexts.

Summary. The computational costs of offline and online phases for the basic
attacks on the 2EM-1 are estimated as Table 3, where we choose a so that time
complexity is minimized. Specifically, we freely choose a as long as it holds
the condition of (2a)2

a−1 ≤ 2n. If (2a)2
a−1 is less than 2n−a, time complexity is

estimated as 2n−a P computations (2n−a−1 encryptions) in the offline phase and
2n−a memory accesses in the online phase. Thus, maximizing a is optimal with
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Fig. 4. Attack overview of low-data attacks on 2EM-1.

respect to time complexity. Assuming the cost of memory access is sufficiently
smaller than that of the encryption1, DT is expressed as DT = 2n−a/2×2n−a =
22(n−a−1) under the condition of (2a)2

a−1 ≤ 2n−a.

4 Low-Data Attacks on 2EM-1

In this section, we introduce low-data attacks on 2EM-1 based on the attack
in Sect. 3. The low-data attacks aim to reduce data requirement (i.e. access to
encryption oracle E

(2)
K ) by fixing parts of plaintexts while keeping lower time

complexity than that of the brute force attack. In our attacks, the (n−a)-bit k1

is further divided into a d-bit k1L and an (n−(a+d))-bit k1R. A start state S and
a plaintext P are represented as S = (s0|s1L|s1R) and P = (p0|p1L|p1R), respec-
tively, where s0, p0 ∈ {0, 1}a, s1L, p1L ∈ {0, 1}d and s1R, p1R ∈ {0, 1}n−(a+d).

The main idea is to control s1L depending on k1L so that the d bits of
(s1L⊕k1L) are always fixed. If s0 is also fixed, (a+d) bits of a plaintext are always
fixed, i.e., the required data is reduced to 2n−(a+d). To be more specific, given a
value k1L, a b-bit target partial invariable pair of f , (S, x0) is dynamically found
in the online phase, where s0 is fixed and s1L is chosen such that (s1L ⊕ k1L) is
fixed (Fig. 4).

4.1 Attack Procedure

In the offline phase, a b-bit input-restricted precomputation table of P2 is con-
structed, where b is assumed to be equal to a. In the online phase, the MitM
attack is mounted by dynamically finding a b-bit target partial invariable pair
of f by the precomputation table.

1 For example, if the underlying permutation is AES-128 with a fixed-key, one P
computation requires about 160 memory accesses to compute 160 S-boxes. However,
since the comparison of these costs heavily depends on the execution environments,
the size of the table, and underlying permutation, we just assume that the cost of
memory access is sufficiently smaller than that of the encryption.
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Offline Phase

Step 1: Fix a-bit v0 and (a + d)-bit of plaintext to p0|p1L.
Step 2: For all (n−a)-bit v1, compute an (n−a)-bit value z1 by P2, then make

a table of (v(j)
1 , z

(j)
1 ), where P2(v0|v(j)

1 ) = (z(j)
0 |z(j)

1 ) and 1 ≤ j ≤ 2n−b.

Online Phase

Step 1: Guess a d-bit k1L, and compute the c-bit s1L as s1L = k1L ⊕ p1L.
Step 2: Find a a-bit target partial invariable pair of f , trb(fk0(S)) = (x0)

where s0 and s1L are fixed. Then make a table of (ki
0, x

i
1) for all a-bit k0,

where 1 ≤ i ≤ 2a.
Step 3: Guess k1R and compute the corresponding plaintext P from the start

state S and k1.
Step 4: Send P to the encryption oracle E2

K , then obtain the corresponding
ciphertext C.

Step 5: Compute (n − a)-bit y1 from k1 and C.
Step 6: Look for an index d in the table of (v(j)

1 , z
(j)
1 ) such that z

(d)
1 = y1. If

there is no such index, go back to Step 3.
Step 7: Compute x′

1 = v
(j)
1 ⊕ k1, and check if there exists an index e in the

table of (k(i)
0 , x

(i)
1 ) satisfying x′

1 = x
(e)
1 . If there is no such index, go back to

Step 3.
Step 8: Check if P2(v0|v(d)

1 ) = (z′
0|z(d)

1 ) holds, where z′
0 is computed from C

and ke
1. If so, K ′ = (k(e)

0 |k1) is regarded as the correct key. Otherwise go back
to Step 3.

Step 9: For all d-bit k1L, repeat Steps 1 to 8.

4.2 Evaluation

This section gives estimations of the cost required for our low-data attacks on
2EM-1.

Offline Phase. Step 2 in the offline phase requires 2n−a P computations and
2n−a blocks memory.

-Time complexity: (2n−a) P computations,
-Memory: 2n−a blocks.

Online Phase. Step 2 requires (2a)2
a P computations to find a-bit target

partial invariable pair of f by changing n − (a + d)-bit s1R. Thus, it should
hold the equation of (2a)2

a

< 2n−(a+d), namely a × 2a < n − (a + d). Step 2 is
performed 2d times with (2a)2

a P computations and 2a memory. Steps 3 to 6
are performed 2n−a times. These steps include two XOR operations in Steps 3
and Step 5, one memory access in Step 6. Note that Step 4 is performed under
the chosen-plaintext setting. Step 7 is performed 2a−a ×2n−a = 2n−a times with
one XOR and one memory access. The required time complexity of Steps 3 to 7
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Table 4. Summary of computational costs for the low-data attack on the 2-round
Even-Mansour cipher.

Offline Online

Time Memory Time Data Memory

(2n−a) P 2a and 2n−a ((2a)2
a · 2d + 2a) P + (2n−a) MA 2n−(a+d) 2n−a

n = 32

a = 3, d = 9 228 enc. 229 230 enc. + 229 MA 220 229

a = 2, d = 22 229 enc. 230 230 enc. + 230 MA 28 230

n = 64

a = 3, d = 35 260 enc. 261 258 enc. + 261 MA 226 261

a = 2, d = 54 261 enc. 262 261 enc. + 262 MA 28 262

n = 128

a = 4, d = 60 2123 enc. 2124 2123 enc. + 2124 MA 264 2124

a = 3, d = 101 2124 enc. 2125 2124 enc. + 2125 MA 224 2125

a = 2, d = 118 2125 enc. 2126 2125 enc. + 2126 MA 28 2126

n = 256

a = 5, d = 160 2250 enc. 2251 2250 enc. + 2251 MA 2160 2251

a = 2, d = 118 2253 enc. 2254 2253 enc. + 2254 MA 28 2254

is approximately estimated as (2n−a) memory accesses because the size of table
in step 6 for the matching with input-restricted public permutation is assumed
to be much larger than one in step 7. Step 8 is mounted only 2−n+2a×2n−a = 2a

times with P computations. The 2n−(a+d) data is required in Step 4.

-Time complexity: ((2a)2
a · 2d + 2a) P computations + (2n−a) MA,

-Memory: 2a blocks,
-Data: 2n−(a+d) chosen plaintexts.

Summary. The computational costs for the low-data attack on 2EM-1 are esti-
mated as Table 4. For n = 64, 128, 256, data complexity is drastically reduced
compared to the basic attack and previous attacks [7,15] while keeping the time
complexity of basic attacks. Moreover, by increasing time complexity, i.e. choos-
ing small a, the required data can be reduced to 28, where it does not include any
2n operations. Assuming the cost of memory access is sufficiently smaller than
that of the encryption, DT is expressed as DT = 2n−a × 2n−(a+d) = 22(n−a)−d

under the condition of (2a)2
a · 2d ≤ 2n−a. Once n and a are determined, the

maximal d is easily obtained from the condition. The minimal value of DT of
n = 64, 128, and 256 are 270(= 262×28), 2134(= 2126×28), and 2262(= 2254×28),
respectively. These are very close to the bound for single Even-Mansour cipher,
i.e. 264, 2128, and 2256.

The bounds by low-data attacks can be generalized for any n as follows: when
choosing a = 2, the maximum d is d = n − a − 8, and then DT is estimated as
DT = 2n+6 for any value of n, respectively.
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Fig. 5. Attack overview of time-optimized attacks on 2EM-1.

5 Time-Optimized Attacks on 2EM-1

In this section, we try to reduce the cost of P computations (i.e. access to
the internal permutation oracle) of the basic attacks presented in Sect. 3. In this
attack, an (n−a)-bit k1 is further divided into a c-bit k1L and an (n−(a+c))-bit
k1R. Similarly, x1 and v1 are represented as x1 = (x1L|x1R) and v1 = (v1L|v1R),
respectively, where x1L, v1L ∈ {0, 1}c and x1R, v1R ∈ {0, 1}n−(a+c) (see Fig. 5).

The cost for P computations is dominated by the cost for constructing an
input-restricted public permutation table in the offline phase, whose cost is esti-
mated as 2n−a P computations and 2n−a memory. If additional c bits of the
input of P2 can also be fixed, it is reduced to 2n−(a+c) P computations and
memory. However, the additional c bits are not fixed in the online phase even if
a c-bit x1L is fixed in f , since such a c-bit input of P depends on k1L between
f and P2, and all values of k1L are tested during the MitM procedure. To solve
this problem, we control x1L depending on k1L so that the c bits of x1L ⊕ k1L

are always fixed in order to reduce the computational cost. In particular, given
a value k1L in the online phase, a b(= a + c)-bit target partial invariable pair of
f is dynamically found.

5.1 Attack Procedure

In the offline phase, a b(= a+ c)-bit input-restricted precomputation table of P2

is constructed. In the online phase, the MitM attack is mounted by dynamically
finding a b-bit target partial invariable pair of f by using the precomputation
table.

Offline Phase

Step 1: Fix an a-bit v0 and a c-bit v1L.
Step 2: For all (n − b)-bit v1R, compute (n − a)-bit values z1 by P2, then make

a table of (v(j)
1R, z

(j)
1 ), where P2(v0|v1L|v(j)

1R) = (z(j)
0 |z(j)

1 ) and 1 ≤ j ≤ 2n−b
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Online Phase

Step 1: Guess a c-bit k1L, and choose a c-bit x1L as x1L = k1L ⊕ v1L.
Step 2: Find a b-bit target partial invariable pair of f , trb(fk0(S)) = (x0|x1L)

where b-bit x0|x1L is fixed as v0|(k1L ⊕ v1L), and make a table of (ki
0, x

i
1R)

for all a-bit k0, where 1 ≤ i ≤ 2a.
Step 3: Guess k1R and compute the corresponding plaintext P from the start

state S and k1.
Step 4: Send P to the encryption oracle E2

K , then obtain the corresponding
ciphertext C.

Step 5: Compute an (n − a)-bit y1 from k1 and C.
Step 6: Look for an index d in the table of (v(j)

1R, z
(j)
1 ) such that z

(d)
1 = y1. If

there is no such index, go back to Step 3.
Step 7: Compute x′

1R = v
(j)
1R ⊕ k1R, and check if there exists an index e in the

table of (k(i)
0 , x

(i)
1R) satisfying x′

1R = x
(e)
1R. If there is no such index, go back to

Step 3.
Step 8: Check if P2(v0|v1L|v(d)

1R ) = (z′
0|z(d)

1 ) holds, where z′
0 is computed from

C and k
(e)
1R . If so, K ′ = (k(e)

0 |k1) is regarded as the correct key. Otherwise go
back to Step 3.

Step 9: For all c-bit k1L, repeat Steps 1 to 8.

5.2 Evaluation

We evaluate each cost of our time-optimized attack on 2EM-1.

Offline Phase. Step 2 requires 2n−b P computations and 2n−b blocks memory.

-Time complexity: (2n−b) P computations,
-Memory: 2n−b blocks.

Online Phase. Step 2 is performed 2c times with (2b)2
a P computations and

2a memory. Steps 3 to 6 are performed 2n−a times. These steps include two
XOR operations in Steps 3 and 5 and one memory access in Step 6. Note that,
in Step 6, it is expected that there exist 2a−b(= 2n−b/2n−a) desired pairs, if P2

is a sufficiently good permutation. Step 7 is performed 2a−b×2n−a = 2n−b times
with one XOR operation and one memory access. The required time complexity
of Steps 3 to 7 is approximately estimated as (2n−a) memory accesses, assuming
2n−a is sufficiently larger than 2n−b. Step 8 is mounted only 2−n+2a ×2n−a = 2a

times with P computations. Step 4 requires 2n−a data, since a bits of state S
are fixed when computing the g function with each k1.

-Time complexity: ((2b)2
a · 2c + 2a) P computations + (2n−a) MA,

-Memory: 2a blocks,
-Data: 2n−a chosen plaintexts.
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Table 5. Summary of computational costs for the time-optimized attack on the
2-round Even-Mansour cipher.

Offline Online

Time Memory Time Data Memory

(2n−b) P 2n−b ((2b)2
a · 2b−a + 2a) P + (2n−a ) MA 2n−a 2n−b

n = 32

a = 2, b = 6 225 enc 226 227 enc. + 230 MA 230 226

n = 64

a = 3, b = 6 257 enc 258 260 enc. + 261 MA 261 258

a = 2, b = 11 252 enc 252 252 enc. + 262 MA 262 253

n = 128

a = 4, b = 7 2120 enc 2121 2115 enc. + 2124 MA 2124 2121

a = 2, b = 20 2107 enc 2103 298 enc. + 2126 MA 2126 2103

n = 256

a = 5, b = 7 2248 enc 2249 2226 enc. + 2251 MA 2251 2249

a = 2, b = 42 2213 enc 2206 2208 enc. + 2254 MA 2254 2205

Summary. The computational costs for the time-optimized attack on the 2EM-
1 are estimated as Table 5. For n = 64, 128, 256, time complexity is reduced
by properly choosing the values of b, although number of memory access is
unchanged. Basically, it is very hard to compare the cost of encryption and
memory access because it strongly depend on the execution environments, the
size of table and the underlying permutation. Thus, we do not claim that time
complexity is sufficiently improved by this algorithm. However, obviously the
cost of encryptions are significantly reduced. We believe that it is an interesting
tradeoff.

6 Application to 2EM-2

Our key recovery attacks on 2EM-1 are applicable to the other minimized con-
struction 2EM-2:

E
′(2)
K (x) = P (P (x ⊕ K) ⊕ π(K)) ⊕ K,

where π is any linear orthomorphism of Fn
2 . In this section, we consider the 2EM-

2 whose π is Feistel-like construction (π: (x, y) �→ (x⊕ y, x)) as an example. The
same idea is naturally applied to another candidate of π.

Recall that the point of our attacks is to find (target) partial invariable
pairs to mount the matching with input-restricted public permutations in the
line of the meet-in-the-middle attack. To take care of the key scheduling func-
tion π, we further divide the (n − a)-bit k1 into an (n/2 − a)-bit k1L and
an (n/2)-bit k1R in the basic attack on 2EM-1. Then, π(K) is expressed
as (k1R ⊕ (k1L||k0))||(k1L||k0), and 2EM-2 is illustrated as shown in Fig. 6.
Here, a-bit k0, which is for partial invariable pairs, is used twice after the first
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permutation P . Since the bottom a-bit input of the second permutation P is
affected by only the value of k0 after the first permutation, i.e. k1L and k1R

does not affect the a-bit input of the second permutation, we can use partial
invariable pairs of a-bit k0 to fix a bits of inputs of second permutation. Using
it, we can mount basic attacks on 2EM-2 in the same manner of 2EM-1. For
low-data attacks or time-optimized attacks, by dynamically finding invariable
pairs of k0 in the online phase to fix the part of the plaintext or inputs of the
second permutation, we can mount the same attacks of 2EM-1 to 2EM-2.

In the case of different linear orthomorphism functions as a key scheduling
function, our attacks are feasible as long as we can find partial invariable pairs
that fix the part of inputs of the second permutation. In the other examples
such as a simple rotation and a field multiplication (e.g. π: (x) �→ (x × c), where
c �= 0, 1), there exist such invariable pairs of a-bit k0 that is able to fix a-bit of
inputs of the second permutation, because these orthomorphism functions are
not full diffusion function in which an input bit affect any bit of the output.

7 Conclusion

In this paper, we proposed new key recovery attacks on the two minimal two-
round Even-Mansour ciphers. Our attacks are based on the advanced meet-in-
the-middle technique combined with our novel matching approach called partial
invariable pair and the matching with the input-restricted public permutation.
We presented the first attack that the data complexity is less than the birth-
day barrier, i.e. 2n/2, on the minimal two-round n-bit Even-Mansour ciphers,
although in the chosen-plaintext setting. Then, by dynamically finding partial
invariable pairs, the further improvements on the attacks that require the less
data or the less time complexity were shown. We emphasize that our low-data
attack on the two-round 64-bit Even-Mansour ciphers requires only 28 chosen
plaintexts. In this case, the minimum value of the product of time and data
complexity is 270 which is close to the proved lower bound on the product of
time and data complexity for the one-round Even-Mansour ciphers (264). Our
results revealed that adding one round to the one-round Even-Mansour ciphers
does not sufficiently improve the security against the key recovery attacks.
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