
Consolidating Inner Product Masking

Josep Balasch1(B), Sebastian Faust2,3, Benedikt Gierlichs1,
Clara Paglialonga2,3, and François-Xavier Standaert4

1 imec-COSIC KU Leuven, Leuven, Belgium
{josep.balasch,benedikt.gierlichs}@esat.kuleuven.be

2 Ruhr-Universität Bochum, Bochum, Germany
{sebastian.faust,clara.paglialonga}@rub.de

3 Technische Universität Darmstadt, Darmstadt, Germany
4 Université catholique de Louvain, ICTEAM/ELEN/Crypto Group,

Louvain-la-Neuve, Belgium
fstandae@uclouvain.be

Abstract. Masking schemes are a prominent countermeasure to defeat
power analysis attacks. One of their core ingredients is the encoding func-
tion. Due to its simplicity and comparably low complexity overheads,
many masking schemes are based on a Boolean encoding. Yet, several
recent works have proposed masking schemes that are based on alterna-
tive encoding functions. One such example is the inner product mask-
ing scheme that has been brought towards practice by recent research.
In this work, we improve the practicality of the inner product mask-
ing scheme on multiple frontiers. On the conceptual level, we propose
new algorithms that are significantly more efficient and have reduced
randomness requirements, but remain secure in the t-probing model of
Ishai, Sahai and Wagner (CRYPTO 2003). On the practical level, we
provide new implementation results. By exploiting several engineering
tricks and combining them with our more efficient algorithms, we are
able to reduce execution time by nearly 60% compared to earlier works.
We complete our study by providing novel insights into the strength of
the inner product masking using both the information theoretic evalu-
ation framework of Standaert, Malkin and Yung (EUROCRYPT 2009)
and experimental analyses with an ARM microcontroller.

1 Introduction

Physical side-channel attacks where the adversary exploits, e.g., the power con-
sumption [34] or the running time [33] of a cryptographic device are one of the
most powerful cyberattacks. Researchers have shown that they can extract secret
keys from small embedded devices such as smart cards [22,34], and recent reports
illustrate that also larger devices such as smart phones and computers can be
attacked [4,24]. Given the great threat potential of side-channel attacks there
has naturally been a large body of work proposing countermeasures to defeat
them [35]. One of the most well-studied countermeasures against side-channel
attacks – and in particular, against power analysis – are masking schemes [12,29].
c© International Association for Cryptologic Research 2017
T. Takagi and T. Peyrin (Eds.): ASIACRYPT 2017, Part I, LNCS 10624, pp. 724–754, 2017.
https://doi.org/10.1007/978-3-319-70694-8_25

Consolidating Inner Product Masking 725

The basic idea of a masking scheme is simple. Since side-channel attacks attempt
to learn information about the intermediate values that are produced by a cryp-
tographic algorithm during its evaluation, a masking scheme conceals these val-
ues by hiding them with randomness.

Masking schemes have two important ingredients: a randomized encoding
function and a method to securely compute with these encodings without reveal-
ing sensitive information. The most common masking scheme is Boolean mask-
ing [12,32], which uses a very simple additive n-out-of-n secret sharing as its
encoding function. More concretely, to encode a bit b we sample uniformly at
random bits (b1, . . . , bn) such that

∑
i bi = b (where the sum is in the binary

field). The basic security property that is guaranteed by the encoding function
is that if the adversary only learns up to n − 1 of the shares then nothing is
revealed about the secret b. The main challenge in developing secure masking
schemes has been in lifting the security properties guaranteed by the encoding
function to the level of the entire masked computation. To this end, we usually
define masked operations for field addition and field multiplication, and show
ways to compose them securely.

The most standard security property that we want from a masking scheme
is to resist t-probing attacks. To analyze whether a masking scheme is secure
against t-probing attacks we can carry out a security analysis in the so-called
t-probing model – introduced in the seminal work of Ishai et al. [32]. In the t-
probing model the adversary is allowed to learn up to t intermediate values of the
computation, which shall not reveal anything about the sensitive information,
and in particular nothing about the secret key used by a masked cryptographic
algorithm. In the last years, there has been a flourishing literature surrounding
the topic of designing better masking schemes, including many exciting works
on efficiency improvements [11,14,16,37,42], stronger security guarantees [18,
21,39,41] and even fully automated verification of masking schemes [5,6] – to
just name a few.

As mentioned previously, the core ingredient of any masking scheme is its
encoding function. We can only hope to design secure masking schemes if we start
with a strong encoding function at first place. Hence, it is natural to ask what secu-
rity guarantees can be offered by our encoding functions and to what extent these
security properties can be lifted to the level of the masked computation. Besides
the Boolean masking which is secure in the t-probing model, several other encod-
ing functions which can be used for masking schemes have been introduced in the
past. This includes the affine masking [23], the polynomial masking [28,40] and
the inner product masking [1,2,20]. Each of these masking functions offers differ-
ent trade-offs in terms of efficiency and what security guarantees it can offer.

The goal of this work, is to provide novel insights into the inner product mask-
ing scheme originally introduced by Dziembowski and Faust [20] and Goldwasser
and Rothblum [25], and later studied in practice by Balasch et al. [1,2]. Our main
contribution is to consolidate the work on inner product masking thereby improv-
ing the existing works of Balasch et al. [1,2] on multiple frontiers and providing
several novel insights. Our contributions can be summarized as follows.

726 J. Balasch et al.

New algorithms with t–SNI security property. On a conceptual level we pro-
pose simplified algorithms for the multiplication operation protected with inner
product masking. In contrast to the schemes from [1,2] they are resembling the
schemes originally proposed by Ishai et al. [32] (and hence more efficient and
easier to implement than the schemes in [1]), but work with the inner product
encoding function. We prove that our new algorithms satisfy the property of
t-strong non-interference (t–SNI) introduced by Barthe et al. [5,6], and hence
can safely be used for larger composed computation. An additional contribution
is that we provide a new secure multiplication algorithm – we call it IPMult

(2)
L

shown in Algorithm 7 – that can result in better efficiency when composed with
certain other masked operations. Concretely, when we want to compose a linear
function g() with a multiplication, then either we can use IPMult

(1)
L and require

an additional refreshing operation at the output of g(), or we use our new algo-
rithm IPMult

(2)
L that eliminates the need for the additional refreshing. This can

save at least O(n2) in randomness.

New implementation results. We leverage on the proposed algorithms for the
multiplication operation to build new software implementations of AES-128 for
embedded AVR architectures. Compared to earlier works [1], we are able to
reduce the execution times by nearly a factor 60% (for 2 shares) and 55% (for
3 shares). The improvements stem not only from a decrease in complexity of
the new algorithms, but also from an observation that enables the tabulation of
the AES affine transformation. We additionally provide various flavors of AES-
128 implementations protected with Boolean masking, using different addition
chains that have been proposed to compute the field inversion. Our performance
evaluation allow us to quantify the current gap between Boolean and IP masking
schemes in terms of execution time as well as non-volatile storage.

Information theoretic evaluation. We continue our investigations with a com-
prehensive information theoretic evaluation of the inner product encoding. Com-
pared to the previous works of Balasch et al., we consider the mutual information
between a sensitive variable and the leakage of its inner product shares for an
extended range of noises, for linear and non-linear leakage functions and for
different values of the public vector of the encoding. Thanks to these evalua-
tions, we refine the understanding of the theoretical pros and cons of such mask-
ing schemes compared to the mainstream Boolean masking. In particular, we
put forward interesting properties of inner product masking regarding “security
order amplification” in the spirit of [9,10,31] and security against transition-
based leakages [3,15]. We also highlight that these interesting properties are
quite highly implementation-dependent.

Experimental evaluation. Eventually, we confront our new algorithms and their
theoretical analyses with practice. In particular, we apply leakage detection
techniques on measurements collected from protected AES-128 routines run-
ning on an ARM Cortex-M4 processor. Our results reveal the unequivocal pres-

Consolidating Inner Product Masking 727

ence of leakage (univariate, first-order) in the first-order Boolean masked imple-
mentation. In contrast the first-order inner product masked implementation
shows significantly less evidence of leakage (with the same number of measure-
ments). Combined with the previous proofs and performance evaluations, these
results therefore establish inner product masking as an interesting alternative
to Boolean masking, with good properties for composability, slight performance
overheads and significantly less evidence of leakage.

2 Notation

In the following we denote by K a field of characteristic 2. We denote with upper-
case letters the elements of the field K and with bold notation that one in the
K-vector spaces. The field multiplication is represented by the dot · while the
standard inner product over K is denoted as 〈X,Y 〉 =

∑
i Xi ·Yi, where Xi and

Yi are the components of the vectors X and Y .
The symbol δij corresponds to the element 0 when i = j and 1 otherwise.

3 New Algorithm

Our new multiplication scheme is based on the inner product construction of
Dziembowski and Faust [20] and constitutes an improvement to the works [1,
2]. The encoding of a variable S ∈ K consists of a vector S ∈ Kn such that
S = 〈L,S〉, where L is a freely chosen, public non-zero parameter with first
component L1 = 1.

The algorithms for initialization and masking are depicted in the IPSetup
and IPMask procedures. The subroutine rand(K) samples an element uniformly
at random from the field K. The algorithms for addition and refreshing are kept

Algorithm 1. Setup the masking scheme: L ← IPSetupn(K)
Input: field description K
Output: random vector L

L1 = 1;
for i = 2 to n do

Li ← rand(K \ {0});
end for

the same as in [1], while a new multiplication scheme IPMult(1) is proposed in
Algorithm 3. The schemes achieves security order t = n − 1 in the t-probing
model.

Our starting point for the Algorithm 3 is the multiplication scheme from [32].
We reuse the idea of summing the matrix of the inner products of the inputs
with a symmetric matrix of random elements, in order to compute the shares of

728 J. Balasch et al.

Algorithm 2. Masking a variable: S ← IPMaskL(S)
Input: variable S ∈ K
Output: vector S such that S = 〈L,S〉

for i = 2 to n do
Si ← rand(K);

end for
S1 = S +

∑n
i=2 Li · Si;

the output in a secure way. In particular we design these two matrices (T and
U ′ in the algorithm) to be consistent with our different masking model.

Algorithm 3. Multiply masked values: C ← IPMult
(1)
L (A,B)

Input: vectors A and B of length n
Output: vector C such that 〈L,C〉 = 〈L,A〉 · 〈L,B〉

� Computation of the matrix T
for i = 1 to n do

for j = 1 to n do
Ti,j = Ai · Bj · Lj ;

end for
end for
� Computation of the matrices U and U ′

for i = 1 to n do
for j = 1 to n do

if i < j then
U ′

ij ← rand(K);
end if
if i > j then

U ′
i,j = −U ′

j,i;
end if
Ui,j = U ′

i,j · δijL
−1
i ;

end for
end for
� Computation of the matrix V
V = T + U ;
� Computation of the output vector C
for i = 1 to n do

Ci =
∑

j Vi,j ;
end for

The correctness of the scheme is proved in the following lemma.

Lemma 1. For any L,A,B ∈ Kn and C = IPMult
(1)
L (A,B), we have

〈L,C〉 = 〈L,A〉 · 〈L,B〉.

Consolidating Inner Product Masking 729

Proof. For all i �= j it holds:

〈L,C〉 =
∑

i

Li · Ci =
∑

i

Li

∑

j

Vi,j =
∑

i

Li

∑

j

(Tij + Uij)

=
∑

i

Li

∑

j

(AiBjLj + U ′
ijL

−1
i) =

∑

i

Li

∑

j

AiBjLj +
∑

ij

U ′
ij

=
∑

i

LiAi

∑

j

BjLj = 〈L,A〉〈L,B〉

��

3.1 Security Proof

We analyze the security of our new multiplication scheme in the t-probing model,
introduced in the seminal work of Ishai et al. [32], in which the adversary is
allowed to learn up to t intermediate values that are produced during the com-
putation. In particular we prove our algorithm to be secure also when composed
with other gadgets in more complex circuits, by proving the stronger property of
t− Strong Non-Interference (t–SNI) defined by Barthe et al. in [5] and recalled
in the following.

Definition 1 (t− Strong Non-Interferent). An algorithm A is t− Strong
Non-Interferent (t–SNI) if and only if for any set of t1 probes on intermediate
variables and every set of t2 probes on output shares such that t1 + t2 ≤ t, the
totality of the probes can be simulated by only t1 shares of each input.

In a few words the property requires not only that an adversary can simulate
d < t probes with d inputs, like in the classical t-probing model, but also that
the number of input shares needed in the simulation are independent from the
number of probes on the output shares.

The following lemma shows the t–SNI security of IPMult(1)L .

Lemma 2. The algorithm IPMult
(1)
L is t–SNI with t = n − 1.

Proof. Let Ω = (I,O) be a set of t observations respectively on the internal and
on the output wires, where |I| = t1 and in particular t1 + |O| ≤ t. We construct
a perfect simulator of the adversary’s probes, which makes use of at most t1
shares of the secrets A and B.

Let w1, . . . , wt be the probed wires. We classify the internal wires in the
following groups:

(1) Ai, Bi,
(2) Ui,j , U

′
i,j ,

(3) Ai · Bj , Ti,j , Vi,j ,
(4) Ci,j , which represents the value of Ci at iteration i, j of the last for loop.

730 J. Balasch et al.

We define two sets of indices I and J such that |I| ≤ t1, |J | ≤ t1 and the values
of the wires wh with h = 1, . . . , t can be perfectly simulated given only the
knowledge of (Ai)i∈I and (Bi)i∈J . The sets are constructed as follows.

– Initially I and J are empty.
– For every wire as in the groups (1), (2) and (4), add i to I and to J .
– For every wire as in the group (3) if i /∈ I add i to I and if j /∈ J add j to J .

Since the adversary is allowed to make at most t1 internal probes, we have
|I| ≤ t1 and |J | ≤ t1.

We now show how the simulator behaves, by starting to consider the internal
observed wires.

1. For each observation as in the group (1), by definition of I and J the simulator
has access to Ai, Bi and then the values are perfectly simulated.

2. For each observation as in the group (2), we distinguish two possible cases:
– If i ∈ I, J and j /∈ J , the simulator assigns a random and independent

value to U ′
i,j : if i < j this is what would happen in the real algorithm, oth-

erwise since j /∈ J the element U ′
ij will never enter into the computation

of any wh (otherwise j would be in J).
– If i ∈ I, J and j ∈ J , the values U ′

i,j and U ′
j,i can be computed as in

the actual circuit: one of them (say U ′
j,i) is assigned to a random and

independent value and the other U ′
i,j to −U ′

i,j .
The value Ui,j is computed using the simulated U ′

i,j and the public value Li.
3. For each observation as in the group (3), by definition of the sets I and J

and for the previous points, the simulator has access to Ai, Aj , Bi, Bj , to the
public value Lj and Ui,j , U

′
i,j can be simulated. Therefore Ai ·Bj , Ti,j and Vi,j

can be computed as in the real algorithm.
4. For each observation as in the group (4), by definition i ∈ I, J . At first we

assign a random value to every summand Vik, with k ≤ j and k /∈ J , entering
in the computation of any observed Cij . Then if one of the addends Vik with
k ≤ j composing Cij has been probed, since by definition k ∈ J , we can
simulate it as in Step 3. Otherwise Vik has been previously assigned at the
beginning of the current Step 4.

We now simulate the output wires Ci. We have to take into account the following
cases.

1. If the attacker has already observed some intermediate values of the output
share Ci, we note that each Ci depends on the random values in the ith row of
the matrix U ′, i.e. U ′

il for l < i and U ′
li for l > i. In particular each of the U ′

il

appears a second time in one of the remaining C1, · · · , Ci−1, Ci+1, · · · , Cn, as
shown in the following matrix.

Consolidating Inner Product Masking 731

0 U ′
1,2 U ′

1,3 . . . U ′
1,n

−U ′
1,2 0 U ′

2,3 . . . U ′
2,n

−U ′
1,3 −U ′

2,3 0 . . . U ′
3,n

...
...

...
. . .

...

−U ′
1,n −U ′

2,n −U ′
3,n . . . 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

C1

C2

Cn

Since each Ci depends on n − 1 random values and the adversary may have
probed at most n−2 of that, then independently of the intermediate elements
probed, at least one of the U ′

il doesn’t enter into the computation of Ci,j and
so Ci can be simulated as a random value.

2. If all the partial sums have been observed, we can use the values previously
simulated and add them according to the algorithm. Finally it remains to
simulate a Ci when no partial sum Cij has been observed. By definition, at
least one of the U ′

il involved in the computation of Ci is not used in any other
observed wire. Therefore we can assign a random value to Ci.

��

4 Application to AES Sbox

Since IPMult
(1)
L is proved to be t–SNI, it can be securely composed with other

t–SNI or affine gadgets. In the following we analyze more in detail the algo-
rithm for the exponentiation to the power 254 in GF(28), which constitutes
the non-linear part of the AES Sbox. We consider Rivain and Prouff’s algo-
rithm from [17,42]. We recall the squaring routine IPSquareL and the refreshing
scheme from [1]. We give in particular a t–SNI refreshing SecIPRefreshL, which
essentially consists in the execution of IPRefreshL n times. In [1] the authors
already remarked that such a scheme ensures security even if composed with
other gadgets, but no formal proof was provided. In the following we formally
analyze the security of the algorithm, by giving the proof of t–SNI.

Algorithm 4. Square masked variable: Y ← IPSquareL(X)
Input: vector X
Output: vector Y such that 〈L,Y 〉 = 〈L,X〉 · 〈L,X〉

for i = 1 to n do
Yi ← (Xi)

2 · Li;
end for

732 J. Balasch et al.

Algorithm 5. Refresh vector: X ′ ← IPRefreshL(X)
Input: vector X
Output: vector X ′ such that 〈L,X〉 = 〈L,X ′〉

(A2, · · · An) ← rand(Kn−1)
A1 ←∑n

i=2 Ai · Li;
X ′ = X + A;

Algorithm 6. Refresh vector: Y ← SecIPRefreshL(X)
Input: vector X
Output: vector Y such that 〈L,X〉 = 〈L,Y 〉

Y0 = X ;
for i = 1 to n do

Yi = IPRefreshL(Yi−1);
end for
Y = Yn;

Lemma 3. The algorithm SecIPRefreshL is t–SNI with t = n − 1.

Proof. Let Ω = (I,O) be a set of t observations respectively on the internal and
on the output wires, where |I| = t1 and in particular t1 + |O| ≤ t. We point out
the existence of a perfect simulator of the adversary’s probes, which makes use
of at most t1 shares of the secret X.

The internal wires wh are classified as follows:

(1) Xi

(2) Ai,j , which is the component i of the vector A in the jth IPRefreshL
(3) Yi,j = Xi+

∑j
k=1 Ai,k, which is the component i of Y in the jth IPRefreshL

We define a set of indices I such that |I| ≤ t1 as follows: for every observation
as in the group (1), (2) or (3) add i to I.

Now we construct a simulator that makes use only of (Xi)i∈I .

– For each observation as in the group (1), i ∈ I and then by definition of I
the simulator has access to the value of Xi.

– For each observation as in the group (2), Ai,j can be sample uniformly at
random. Indeed, this is what happens in the real execution of the algorithm
for the shares Ai,j with i = 2, . . . , n. Otherwise, since we have at most n − 1
probes, the adversary’s view of A1,j is also uniformly random.

– For each observation as in the group (3), Xi can be perfectly simulated, Ai,j

can be sampled as in the real execution of the algorithm, and then all the
partial sums Yi,j can be computed.

As for the output wires, we distinguish two cases. If some partial sum has already
been observed, we remark that each output share Yi,n involves the computation
of n − 1 random bits Ai,1, . . . , Ai,n−1. The situation can be better understood
from the following matrix, which shows the use of the random bits for each
output share.

Consolidating Inner Product Masking 733

A1,1 A1,2 . . . A1,n−1

(∑n−1
k=1 A1,kLi

)
L−1

n

A2,1 A2,2 . . . A2,n−1

(∑n−1
k=1 A1,kLi

)
L−1

n

...
...

...
...

An,1 An,2 . . . An,n−1

(∑n−1
k=1 A1,kLi

)
L−1

n

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Y1,n

Y2,n

Yn,n

Now, since the adversary can have just other n − 2 observations, there exists
at least one non-observed random bit and we can simulate Yi,n as a uniform
and independent random value. Moreover, if all the partial sums have been
observed, we can use the values previously simulated and add them according to
the algorithm. Otherwise, if no partial sum has been probed, since the random
values involved in the computation of Y1,n, . . . , Yi−1,n, Yi+1,n, . . . , Yn,n are picked
at random independently from that one of Yi,n, we can again simulate Yi,n as a
uniform and independent random value, completing the proof. ��

Now, considering that the multiplication gadget IPMult
(1)
L and the refreshing

SecIPRefreshL are both t–SNI and since the exponentiations .2, .4 and .16 are
linear functions in GF(28), we can claim that the entire algorithm for the com-
putation of .254 is t–SNI, according to the arguments in [5].

4.1 A More Efficient Scheme

We underline that for achieving (n − 1)th-order security the masked inputs A

and B of IPMult
(1)
L must be mutually independent. If this is not the case, a

refreshing of one of the factors is needed before processing the multiplication.
In this section we present an extended multiplication scheme IPMult(2)L , illus-

trated in Algorithm 7, which can securely receive in input two values of the form
A and g(A), where g is a linear function. Thanks to this property, in case of
mutual dependence of the inputs the refreshing is no longer needed and we can
save on the number of random bits. The main idea of the new algorithm is to
introduce a vector u sampled at random at the beginning of the execution and
used to internally refresh the shares of the secrets.

The correctness of IPMult
(2)
L is again quite simple and we leave it to the

reader.

Lemma 4. For any L,A ∈ Kn and C = IPMult
(2)
L (A, g(A)), we have

〈L,C〉 = 〈L,A〉 · 〈L, g(A)〉.

Lemma 5 provides the security analysis of IPMult(2)L .

Lemma 5. Let g be a linear function over K. The algorithm IPMult
(2)
L (A, g(A))

is t–SNI, with t = n − 1.

734 J. Balasch et al.

Algorithm 7. Multiply dependent masked values: C ← IPMult
(2)
L (A, g(A))

Input: vector A of length n
Output: vector C satisfying 〈L,C〉 = 〈L,A〉 · 〈L, g(A)〉, for g linear func-
tion

� Sampling at random of the vector u
for i = 1 to n do

ui ← rand(K);
end for
� Computation of the matrix A′

for i = 1 to n do
for j = 1 to n do

A′
i,j = Ai + δijuj ;

end for
end for
� Computation of the vector B′

for i = 1 to n do
B′

i = g(Ai) · ui · Li;
end for
� Computation of the matrix T
for i = 1 to n do

for j = 1 to n do
Ti,j = A′

i,j · g(Aj) · Lj ;
end for

end for
� Computation of the matrices U and U ′

for i = 1 to n do
for j = 1 to n do

if i < j then
U ′

ij ← rand(K);
end if
if i > j then

U ′
ij = −U ′

ji;
end if
Ui,j = U ′

i,j · δijL
−1
i ;

end for
end for
� Computation of the matrix V
for i = 1 to n do

for j = 1 to n do
Vi,j = (Ti,j + Ui,j) − δijB

′
j ;

end for
end for
� Computation of the output vector C
for i = 1 to n do

Ci =
∑

j Vi,j ;
end for

Consolidating Inner Product Masking 735

Proof. Let Ω = (I,O) be a set of t observations respectively on the internal and
on the output wires, where |I| = t1 and in particular t1 + |O| ≤ t. We point out
the existence of a perfect simulator of the adversary’s probes, which makes use
of at most t1 shares of the secret A.

Let w1, . . . , wt be the probed wires. We classify the internal wires in the
following groups:

(1) Ai, g(Ai), g(Ai) · ui, B
′
i, ui

(2) Ui,j , U
′
i,j

(3) A′
i,j , A

′
i,j · g(Aj), Ti,j , Ti,j + Ui,j , Vi,j

(4) Ci,j , which represents the value of Ci at iteration i, j of the last for

We now define the set of indices I with |I| ≤ t1 such that the wires wh can
be perfectly simulated given only the knowledge of (Ai)i∈I . The procedure for
constructing the set is the following:

– Initially I is empty.
– For every wire as in the groups (1), (2) and (4), add i to I.
– For every wire as in the group (3), if i /∈ I add i to I and if i ∈ I add j to I.

Since the adversary is allowed to make at most t1 internal probes, we have
that |I| ≤ t1.

In the simulation phase, at first we assign a random value to every ui entering
in the computation of any observed wh. Then the simulation for any internal
wires wh proceeds as follows.

1. For each observation in category (1), then i ∈ I and by definition we can
directly compute from Ai, ui and the public value Li.

2. For each observation in category (2), then i ∈ I and we distinguish two
possible cases:

– If j /∈ I, then we can assign a random and independent value to U ′
i,j .

Indeed if i < j this is what would happen in the real execution of the
algorithm and if i > j, since j /∈ I, U ′

i,j will never be used in the com-
putation of other observed values. We compute Ui,j using U ′

i,j and the
public value Li.

– If j ∈ I, the values U ′
i,j and U ′

j,i can be computed as in the actual circuit:
we assign one of them (say U ′

j,i) to a random and independent value
and the other U ′

i,j to −U ′
i,j . We compute Ui,j using U ′

i,j and the public
value Li.

3. For each observation in category (3), then i ∈ I and we distinguish two
possible cases:

– If j /∈ I, then we can assign a random and independent value to wh.
Indeed, since j /∈ I, one of the values composing wh has not been observed
(otherwise by construction j would be in I) and for the same reason also
any of the wh does not enter in the expression of any other observed wire.

– If j ∈ I, the value wh can be perfectly simulated by using the accessible
values Ai, g(Aj), ui, uj , Li, Lj and the values Ui,j , U

′
i,j assigned in Step 2.

736 J. Balasch et al.

4. For each observation as in the group (4), by definition i ∈ I. At first we assign
a random value to every summand Vik, with k ≤ j and k /∈ I, entering in the
computation of any observed Cij . Then if one of the addends Vik with k ≤ j
composing Cij has been probed, since by definition k ∈ I, we can simulate it
as in Step 3. Otherwise Vik has been previously assigned at the beginning of
the current Step 4.

As for the probed output wires, we distinguish the following cases.

1. If the attacker has already observed some intermediate values of Ci, using a
similar argument to the one in the proof of Lemma 2, we point out that Ci

can be simulated as a random value.
2. If all the partial sums have been observed, we can use the values previously

simulated and add them according to the algorithm. Finally, when no partial
sum Cij has been observed, again as before, by definition at least one of the
U ′

il involved in the computation of Ci is not used in any other observed wire
and then we can assign to Ci a random value.

��
We can now exploit this new scheme in the .254 algorithm, by eliminating
the first two refreshing and substituting the first two multiplications with our
IPMult

(2)
L (·, ·2) and IPMult

(2)
L (·, ·4), while using in the rest the IPMult

(1)
L . In

particular, according to the squaring routine in Algorithm 4, we point out that
in IPMult

(2)
L (·, ·2) the shares g(Ai) correspond to the products A2

i · Li and in
IPMult

(2)
L (·, ·4) the shares g(Ai) correspond to the products A4

i · Li · Li · Li. The
implementation of the gadget .254 is depicted in Fig. 1 and in Lemma 6 we prove
that it is t–SNI, using the techniques presented in [5].

Fig. 1. Gadget .254 which makes use of IPMult
(1)
L and IPMult

(2)
L

Lemma 6. Gadget .254, shown in Fig. 1, is t–SNI.

Proof. Let Ω = (
⋃7

i=1 Ii,O) a set of t observations respectively on the internal
and output wires. In particular Ii are the observations on the gadget Gi and

Consolidating Inner Product Masking 737

∑7
i=1 |Ii| + |O| ≤ t. In the following we construct a simulator which makes use

of at most
∑7

i=1 |Ii| shares of the secret, by simulating each gadget in turn.
Gadget G1 Since IPMult

(1)
L is t–SNI and |I1 ∪ O| ≤ t, then there exist two

sets of indices S1
1 ,S1

2 such that |S1
1 | ≤ |I1|, |S1

2 | ≤ |I1| and the gadget can
be perfectly simulated from its input shares corresponding to the indices in S1

1

and S1
2 .

Gadget G2 Since IPMult
(1)
L is t–SNI and |I2 ∪ S1

2 | ≤ |I1| + |I2| ≤ t, then
there exist two sets of indices S2

1 ,S2
2 such that |S2

1 | ≤ |I2|, |S2
2 | ≤ |I2| and the

gadget can be perfectly simulated from its input shares corresponding to the
indices in S2

1 and S2
2 .

Gadget G3 Since .16 is affine, there exists a set of indices S3 such that
|S3| ≤ |I3| + |S2

2 | and the gadget can be perfectly simulated from its input
shares corresponding to the indices in S3.

Gadget G4 Since .4 is affine, there exists a set of indices S4 such that |S4| ≤
|I4| + |S2

1 | and the gadget can be perfectly simulated from its input shares
corresponding to the indices in S4.

Gadget G5 Since IPMult
(2)
L is t–SNI and |I5 ∪ S3| ≤ |I5| + |I3| + |I2| ≤ t,

then there exists a set of indices S5 such that |S5| ≤ |I5| and the gadget can be
perfectly simulated from its input shares corresponding to the indices in S5.

Gadget G6 Since IPMult
(2)
L is t–SNI and |I6 ∪ S5| ≤ |I6| + |I5| ≤ t, then

there exists a set of indices S6 such that |S6| ≤ |I6| and the gadget can be
perfectly simulated from its input shares corresponding to the indices in S6.

Gadget G7 Since .2 is affine, there exists a set of indices S7 such that |S7| ≤
|I7|+ |S1

1 | ≤ |I7|+ |I1| and the gadget can be perfectly simulated from its input
shares corresponding to the indices in S7.

Each of the previous steps guarantee the existence of a simulator for the
respective gadgets. The composition of them allows us to construct a simulator
of the entire circuit which uses S6 ∪ S7 shares of the input. Since |S6 ∪ S7| ≤
|I7| + |I1| + |I6| ≤ ∑7

i=1 |Ii| we can conclude that the gadget .254 is t–SNI. ��
The advantage of the use of IPMult

(2)
L mostly consists in amortizing the ran-

domness complexity. Indeed the new scheme requires only n (for the vector
u) plus n(n−1)

2 (for the matrix U) random bits, while the previous one uses a
larger amount of randomness, corresponding to n2 (for the SecIPRefreshL) plus
n(n−1)

2 (for the IPMult
(1)
L) bits. We summarize in Table 1 the complexities of the

two schemes. The issue of providing a secure multiplication of two dependent
operands was first addressed by Coron et al. in [17]. In their work the authors
proposed a new algorithm which requires n(n−1) random bits and that has later
been proved to be t–SNI in [5]. By analyzing the amount of random generations
and comparing with IPMult

(2)
L , we can see that our scheme is more efficient

whenever n > 3, while it requires the same amount of randomness for n = 3
and more random bits for n < 3. On the other hand, from a complexity point
of view the scheme in [17] is better optimized in terms of field multiplications
since it makes use of look-up tables.

A more detailed performance analysis is provided in the next section.

738 J. Balasch et al.

Table 1. Complexity of IPMult
(1)
L and IPMult

(2)
L and comparison with the multiplica-

tion algorithms of [8,17]

#Additions # Multiplications #Random bits

IPMult
(1)
L 2n2 3n2 n(n−1)

2

IPMult
(2)
L 4n2 3n2 + 2n n(n+1)

2

SecIPRefreshL 2n2 − n 2n n2

IPMult
(1)
L

and SecIPRefreshL

4n2 − n 3n2 + 2n n(3n−1)
2

Algorithm 5 in [17] 4n(n − 1) − n(n − 1)

Algorithm 3 in [8] 4n(n − 1) 1
4
(n − 1)(7n + 3) (n odd)

1
4
n(7n − 6) (n even)

n(n − 1)

5 Performance Evaluations

In this section we analyze the performance of our improved IP masking construc-
tion. Following the lines in [1,2], we opt to protect a software implementation
of AES-128 encryption for AVR architectures. We develop protected implemen-
tations using either our new multiplication algorithm IPMult

(1)
L alone, or in

combination with IPMult
(2)
L . In order to compare performances, we also develop

protected instances of AES-128 with Boolean masking. All our implementations
have a constant-flow of operations and share the same underlying blocks. In
particular, we use log-alog tables for field multiplication and look-up tables to
implement raisings to a power. The most challenging operation to protect is the
nonlinear SubBytes transformation, which is also the bottleneck of our imple-
mentations. Similar to earlier work, we take advantage of the algebraic structure
of the AES and compute SubBytes as the composition of a power function x254

and an affine transformation. The remaining operations are straightforward to
protect and are thus omitted in what follows. Our codes can be downloaded from
http://homes.esat.kuleuven.be/∼jbalasch.

Implementation of the power function. Rivain and Prouff proposed in [42]
an algorithm to compute the inversion in F

8
2 as x254 using an addition chain

with only 4 multiplications. We select this algorithm for our implementations
protected with IP masking. Recall that to ensure t–SNI it is necessary to exe-
cute the SecIPRefreshL algorithm when using only IPMult

(1)
L , but this can be

omitted when using also IPMult
(2)
L as depicted in Fig. 1.

The same technique is used in our Boolean masking implementations, only in
this case we employ the mask refreshing algorithm proposed by Duc et al. [18].
Additionally, we provide a faster implementation using the addition chain pro-
posed by Grosso et al. [30], which leverages on the algorithm introduced by Coron
et al. [17] to securely evaluate functions of the form x · g(x), where g is a linear
function. This approach demands only 1 multiplication and 3 secure evaluations,

http://homes.esat.kuleuven.be/~jbalasch

Consolidating Inner Product Masking 739

and thus achieves significant performance gains. Note that further optimizations
are possible by combining [30] with recent techniques, e.g. the common shares
approach proposed by Coron et al. [16] or the multiplication gadget put forward
by Beläıd et al. [8]. We expect however the gains to be relatively small (see results
in [16]), and therefore have a limited impact for the purposes of comparison.

Implementation of the affine transformation. Securing the affine transfor-
mation using Boolean masking can be done in a highly efficient way by applying it
to every input share separately, that is, by computing Ax1+. . .+Axn+b. Hence,
each share xi of x is only involved in one matrix-vector multiplication, which
in practice can be tabulated. Unfortunately, such an approach is not directly
applicable to IP masking, since the sharing of x consists of two vectors L and R
with each n elements in F

8
2. The affine transformation can be computed through

a polynomial evaluation over F8
2, which is known to perform rather poorly when

compared to Boolean masking (see [1,2]).
In this work we note that since L is fixed it is possible to change the represen-

tation of A depending on the values Li. More precisely, we define n matrices Ai

and compute the affine transformation as A1x1 + . . . +Anxn + b. The matrices
Ai need only to be pre-computed once, at initialization time. Given Li ∈ F

8
2 we

first construct an 8 × 8 matrix Mi over Z2. Notice that Li is represented by a
polynomial a0+a1 ·x+ . . .+a7 ·x7, where {1, x, . . . , x7} form the basis of F8

2. The
j-th column of Mi corresponds to the coefficients of the polynomial Li × xj−1.
Given the matrix Mi as described above, we can then compute Ai = A × Mi

by simple matrix multiplication, and take advantage of tabulation in the imple-
mentation. In contrast to Boolean masking, the memory requirements of this
tabulation increase linearly with the number of shares. However, the overheads
remain reasonable for practical values of n.

Implementation results. We have developed assembly implementations for
n = 2, 3 shares tailored to the target AVR architecture and optimized for speed.
Results are summarized in Table 2. The implementation protected by IP masking
using only IPMult

(1)
L requires roughly 157 k cycles and 372 k cycles for security

levels n = 2 and n = 3, respectively. This represents a significant improvement
over earlier work [1] which demanded 375 k and 815 k cycles to protect instances
of AES-128 for the same security levels. The implementation protected by IP
masking using IPMult

(2)
L in conjunction with IPMult

(1)
L performs slightly poorer

in terms of cycles but, as mentioned earlier, has the advantage of demanding
less randomness. The results for Boolean masking with the same number of
secret shares are 110 k and 230 k, respectively. The timing gap with respect to
IP masking stems exclusively from the computation of x254, as the rest of AES
operations execute in a similar number of cycles. The reason why IP masking
is slower is mainly due to the extra operations in the multiplication gadgets.
Note that since L is fixed, it is possible to tabulate the field multiplications
with elements Li and L−1

i , given that the number of shares n is small. We
have performed this optimization which allows to reduce the cycle count at the
cost of more non-volatile storage. Thanks to this, we are able to decrease the gap
between Boolean and IP masking implementations to slightly more than a factor

740 J. Balasch et al.

2 when compared to the implementation using the addition chain from [30]. We
leave as open work whether a similar algorithm as in [17] to efficiently evaluate
functions of the form x · g(x) can be devised for IP masking.

Table 2. Performance evaluation of protected AES-128 implementations on AVR archi-
tectures (optimized in assembly code). Timings in clock cycles, memory and random-
ness requirements in bytes.

Masking Timings Memory Randomness

x254 AES-128

IP masking n =2 709 157 196 2 816 1 632

(only IPMult
(1)
L) n =3 1 752 372 225 3 328 4 864

IP masking n =2 763 167 996 2 816 1 632

(IPMult
(1)
L & IPMult

(2)
L) n =3 1 766 375 025 3 328 3 664

Boolean masking n =2 459 110 569 2 048 1 232

(addition chain [42]) n =3 1 043 230 221 2 048 3 664

Boolean masking n =2 275 73 769 1 792 1 432

(addition chain [30]) n =3 676 160 357 1 792 4 264

Lastly, we illustrate in Fig. 2 the performance trend of our implementations
for larger values of n. Cycle counts correspond in this case to a single SBox
operation. Note that the results for n = 2, 3 are significantly higher than those
provided in Table 2, the reason being that the implementations are now written
in C language (and are thus less optimized than their assembly counterparts).
Note also that the gap between Boolean and IP masking protected versions
increases almost to a factor 4. This is because we do not take advantage of

2 4 6 8 10 12 14
0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

Number of shares

C
yc

le
 c

ou
nt

Boolean masking: addition chain [43]
Boolean masking: addition chain [31]
IP masking: only IPMultL

(1)

IP masking: IPMultL
(1) and IPMultL

(2)

Fig. 2. Performance evaluation of protected AES Sbox implementations on AVR archi-
tectures (in C code) for increasing number of shares.

Consolidating Inner Product Masking 741

the tabulation of the field multiplications with elements Li and L−1
i , since the

memory requirements would grow considerably for non-small values of n. In spite
of this, we observe that the performance ratio between Boolean and IP masking
protected implementations remains constant as the number of shares increases.

6 Information Theoretic Evaluation

As a complement to the previous proofs and performance evaluations, we now
provide results regarding the information theoretic analysis of inner product
masking. As first motivated in [44], the mutual information between a secret
variable and its corresponding leakages can serve as a figure of merit for side-
channel security, since it is proportional to the success rate of a (worst-case)
Bayesian adversary exploiting these leakages (see [19] for a recent discussion).
Such a metric has been used already for the evaluation of Boolean masking [45],
affine masking [23], polynomial masking [28,40] and inner product masking [1,
2]. In this respect, and despite the encoding of our consolidated inner product
masking schemes has not changed compared to the latter two references, we aim
to improve their results in three important directions:

– Extended noise range. In [1,2], the mutual information of the inner product
encoding was evaluated for a Hamming weight leakage function and noise
variances up to 4. While this is sufficient to discuss the positive impact of the
increased algebraic complexity of inner product masking for low noise levels, it
is not sufficient to exhibit the security order (which corresponds to the lowest
key-dependent statistical moment of the leakage distribution minus one [7],
and is reflected by the slope of the information theoretic curves for high
noise levels). Therefore, we generalize the improved numerical integration
techniques from [19] to inner product encodings and compute the mutual
information metric for noise variances up to 1000 (which allows us to exhibit
and discuss security orders).

– Other (public) L values. In [1,2], the inner product encoding was evaluated
based on a single value of the public L. However, it was recently shown
in [46] that for linear leakage functions (such as the Hamming weight leakage
function), an appropriate choice of L may improve the security order of an
implementation. In other words, it was shown that security in the bounded
moment model (as recently formalized in [7]) can be higher than the probing
security order in this case. Therefore, we evaluate the mutual information for
different L vectors for our 8-bit targets (rather than 4-bit S-boxes in [46],
which is again made possible by our exploitation of improved numerical inte-
gration techniques).

– Non-linear leakage functions. Since the previous security order amplification
is highly dependent on the fact that the leakage function is linear, we finally
complement our results by evaluating the information leakage of the inner
product encoding for non-linear leakage functions.

Building on our experimental observations, we also highlight other interesting
implementation properties of the inner product encoding (regarding the risk of

742 J. Balasch et al.

transition-based leakages [3,15]) in Sect. 6.3. And we conclude the section by dis-
cussing general (theoretical) limitations of both the security order amplification
and these implementation properties.

6.1 Linear (e.g., Hamming Weight) Leakages

We first analyze the information leakage of the inner product encoding of Algo-
rithm 2 for n = 2 shares and a Hamming weight leakage function. More precisely,
we consider a target intermediate secret variable A ∈ GF(28) that is encoded
as A = A1 + L2 · A2 such that A = [A1, A2]. The adversary is given the leak-
age (next denoted with the variable O for observation, to avoid confusion with
the L values) corresponding to these two shares. That is, O = [O1, O2] with
O1 = HW(A1) � N1, O2 = HW(A2) � N2, HW the Hamming weight function,
N1, N2 two normally distributed (independent) noise random variables and �
the addition in the reals (in contrast with the group addition +). The mutual
information between A and the observation O is expressed as:

MI(A;O) = H[A] �
∑

a∈A
Pr[a] ×

∑

a2∈A
Pr[a2] ×

∑

o∈O2

f[o|a] × log2 Pr[a|o], (1)

where f[o|a] is the conditional Probability Density Function (PDF) of the
observation o given the secret a, which is computed as a sum of normal
PDFs (denoted as N) evaluated for all the (unknown) random shares: f[o|a] =∑

a2∈A N[o|a, a2] · Pr[a2]. The conditional probability Pr[a|o] is obtained via
Bayes’ law: Pr[a|o] = f[o|a]∑

a∗∈A f[o|a∗] where the a∗ notation is used for the secret

a candidates.1

The result of our information theoretic analysis for Hamming weight leak-
ages, for vectors L2 = 17, 5, 7 and noise variances between 10−2 and 103 is given
in Fig. 3, where we additionally report the leakage of an unprotected A (i.e., for
which the adversary can observe O = HW(A) � N) and of a Boolan encoding
(which is a special case of inner product encoding such that L1 = L2 = 1)
for illustration. For low noise levels, we reach the same conclusions as previous
works [1,2]. Namely, the increased algebraic complexity of inner product mask-
ing allows significantly lower leakages than Boolean masking. Intuitively, this is
simply explained by the fact that knowing one bit of each share directly leads
to one bit of secret in Boolean masking, while it only leads to a (smaller) bias
on the secret variable distribution in inner product masking.

For large noise levels, and as expected, we now clearly observe the security
order (in the bounded moment model) of the masking schemes based on the slope
of the information theoretic curves, which moves from −1 for an unprotected
implementation to −2 for Boolean masking (the latter therefore corresponds to
a security order 1 in the bounded moment model). Interestingly, our results also
1 Note that despite our simulated leakages are coming from a continuous distribution,

we estimate the mutual information by sampling (following the open source code
of [19]), which explains why Eq. (1) uses sums rather than integrals.

Consolidating Inner Product Masking 743

−2 −1 0 1 2 3
−8

−7

−6

−5

−4

−3

−2

−1

0

1

log10(noise variance)

lo
g 10

(m
ut

ua
l i

nf
or

m
at

io
n)

Hamming weight leakage function

 unprotected
 Boolean masking
 IP masking, L2=17

 IP masking, L2=5

 IP masking, L2=7

Fig. 3. Information theoretic evaluation of an inner product encoding.

show that by tuning the public L2 value of the inner product encoding, we can
reach much better results. Namely, the slope of the information theoretic curves
can be reduced to −3 (which corresponds to a security order 2 in the bounded
moment model) and even −4 (which corresponds to a security order 3 in the
bounded moment model), despite the first-order security of this encoding in the
probing model (proved in Sect. 3.1) has not changed.

The reason for this phenomenon has been given in a recent CARDIS 2016
paper [46] and is simply summarized by observing that the multiplication in
GF(28) that is performed by the inner product encoding can be represented as
a multiplication with an 8×8 matrix in GF(2). Roughly, depending on the num-
ber of linearly independent lines in this matrix, and assuming that the leakage
function will only mix the bits of the encoding linearly (which is the case for
the Hamming weight leakage function), the multiplication will XOR more shares
together, implying a higher security order in the bounded moment model. And
this “security order amplification” is limited to a slope of −4 (which corresponds
to the attack exploiting the multiplication of the squares of all the shares).

6.2 Non-linear (e.g., Random) Leakages

In view of the previous positive observations obtained for the inner product
encoding in the context of linear (e.g., Hamming weight) leakages, a natural
next step is to investigate the consequences of a deviation from this assumption.
For this purpose, we study an alternative scenario where the Hamming weight
leakages are replaced by a random leakage function G with similar output range
{0, 1, . . . , 8}, such that the adversary now observes O1 = G(A1) � N1 and O2 =
G(A2) � N2. Note that the choice of an output range similar to the Hamming
weight function allows the two types of leakages to provide signals of similar
amplitude to the adversary (which makes them directly comparable).

744 J. Balasch et al.

The result of our information theoretic analysis for random leakages, vectors
L2 = 17, 5, 7 and noise variances between 10−2 and 103 is given in Fig. 4, where
we again report the leakage of an unprotected A and a Boolean encoding. Our
observations are twofold. First, for large noise levels the security order amplifi-
cation vanishes and all the information theoretic curves corresponding to d = 2
shares have slope −2, as predicted by the proofs in the probing model. This is
expected in view of the explanation based on the 8 × 8 matrix in GF(2) given in
the previous section and actually corresponds to conclusions made in [31] for low
entropy masking schemes. That is, because of the non-linear leakage function,
the GF(2) shares that are mixed thanks to the inner product encoding are actu-
ally recombined which reduces the security order. So as in this previous work,
the reduction of the security order actually depends on the degree of the leakage
function. But in contrast with low entropy masking schemes, the security cannot
collapse below what is guaranteed by the security order in the probing model.

−2 −1 0 1 2 3
−8

−7

−6

−5

−4

−3

−2

−1

0

1

log10(noise variance)

lo
g 10

(m
ut

ua
l i

nf
or

m
at

io
n)

random leakage function, |L|=9

 unprotected
 Boolean masking
 IP masking, L2=17

 IP masking, L2=5

 IP masking, L2=7

Fig. 4. Information theoretic evaluation of an inner product encoding.

Second and more surprisingly, we see that a non-linear leakage function also
has a negative impact for the interest of the inner product encoding in the low
noise region. This is explained by the fact that by making the leakage function
non-linear, we compensate the low algebraic complexity of the Boolean encoding
(so the distance between Boolean and inner product encodings vanishes).

From these experiments, we conclude that the security order amplification
of inner product masking is highly implementation-dependent. We will further
discuss the impact of this observation and the general limitations of the security
order amplification in Sects. 6.4 and 7, but start by exhibiting another interesting
property of the inner product encoding.

Consolidating Inner Product Masking 745

6.3 Transition-Based Leakages

In general, any masking scheme provides security guarantees under the condi-
tion that the leakages of each share are sufficiently noisy and independent. Yet,
ensuring the independence condition usually turns out to be very challenging
both in hardware and software implementations. In particular in the latter case,
so-called transition-based leakages can be devastating. For illustration, let us
consider a Boolean encoding such that A = A1 + A2. In case of transition-based
leakages, the adversary will not only receive noisy versions of A1 and A2 but
also of their distance. For example, in the quite standard case of Hamming dis-
tance leakages, the adversary will receive HW([A1] + [A2]) � N = HW(A) � N ,
which annihilates the impact of the secret sharing. Such transition-based leak-
ages frequently happen in microcontrollers when the same register is used to
consecutively store two shares of the same sensitive variable (which typically
causes a reduction of the security order by a factor 2 [3]).

Interestingly, we can easily show that inner product masking provides
improved tolerance against transition-based leakages. Taking again the exam-
ple of an encoding A = A1 + L2 · A2, the Hamming distance between the two
shares A1 and A2 (where A1 = A + L2 · A2) equals HW([A + L2 · A2] + [A2]).
Since for uniformly distributed A2 and any L2 �= 1, we have that A2 + A2 · L2 is
also uniformly distributed, this distance does not leak any information on A. Of
course, and as in the previous section, this nice property only holds for certain
combinations of shares (such as the group operation + in our example).

6.4 Limitations: A Negative Result

The previous sections showed that the inner product encodings offer interesting
features for security order amplification and security against transition-based
leakages in case the physical leakages are “kind” (e.g., linear functions, transi-
tions based on a group operation). Independent of whether this condition holds
in practice, which we discuss in the next section, one may first wonder whether
these properties are maintained beyond the inner product encoding. Unfortu-
nately, we answer to this question negatively. More precisely, we show that when-
ever non-linear operations are performed (such as multiplications), the security
order of the inner product encoding gets back to the one of Boolean masking
(and therefore is also divided by two in case transitions are observed).

Concretely, and assuming we want to multiply two shared secrets A =
A1 + L2 · A2 and B = B1 + L2 · B2, a minimum requirement is to com-
pute the cross products Ai · Bj . So for example, an adversary can observe
the pair of leakages (A1, A2 · B2) which depends on A. Defining a function
FB2(A2) = A2 · B2, and assuming a (linear) Hamming weight leakage function
HW, we see that the adversary obtains two leakage samples O1 = HW(A1) � N1

and O2 = HW(FB2(A2)) � N2. In other words, it is in fact the composition
of the functions FB2 and HW that is subject to noise, the latter being non-
linear and informative (because of the standard “zero issue” in multiplicative

746 J. Balasch et al.

masking [26]). So whenever the implementation has to perform secure multi-
plications with inner product masking, we are in fact in a situation similar to
the non-linear leakages of Sect. 6.2. A similar observation holds for the result of
Sect. 6.3 regarding transition-based leakages. Taking exactly the previous exam-
ple, observing the Hamming distance between A1 and FB2(A2) directly halves
the security order, just as for the Boolean encodings in [3].

One natural scope for further research is to look for new solutions in order
to maintain the security order guarantees even for non-linear operations (e.g.,
thanks to a different sequence of operations or additional refreshings). Never-
theless, even with the current algorithm and non perfectly linear leakages, inner
product masking should reduce the number and informativeness of the key-
dependent tuples of leakage samples in a protected implementation, which is not
captured by the notion of (probing or bounded moment) security order. So over-
all, the improved theoretical understanding allowed by our investigations calls
for a the concrete evaluation of an inner product masked AES. The next section
makes a step in this direction, and discusses how these potential advantages
translate into practice for a 32-bit ARM microcontroller.

7 Empirical Side-Channel Leakage Evaluation

In order to further complement the analysis we provide concrete results of empir-
ical side-channel leakage evaluations for both Boolean masking with two shares
and IP masking with n = 2 (L1 = 1, L2 = 7). Security proofs are valid only
for the assumed and possibly idealized (e.g. simplified) leakage model, but real
device leakage behaviour can be complex and hard to model. For instance, tran-
sition leakages are known to be difficult to deal with when moving from theory
to practice. Similarly, the information theoretic analysis based on simulations is
of course valid only for the simulated leakage behavior, and its results strongly
vary for different leakage behaviours as we have shown, and it is limited to the
encoding function.

We therefore assess and compare the leakage behavior of our implementations
in practice with real measurements of our code running on a physical platform
to round off our analysis. This evaluation allows us to reason about the leakage
under typical conditions and without making modeling assumptions. Note also
that this practical evaluation covers both the encoding as well as computation
in the masked domain.

We use generic code that follows the guidelines of the masking algorithms pro-
vided in this paper but leave freedom to the compiler to perform register/memory
allocations, optimizations, etc. The implementations are hence neither hand-
optimized for the target platform nor adapted to its specific leakage behavior.
The security of the implementations therefore depends in part on the compiler
tool-chain.

Our target platform is an STM32 Nucleo board equipped with an ARM
Cortex-M4 processor core. The processor runs at 168 MHz and features a built-
in RNG capable of generating 32-bit random numbers every 40 clock cycles. The

Consolidating Inner Product Masking 747

presence of the RNG is the main motivation for using this platform rather than
an AVR. We have ported our generic (coded in C language) protected imple-
mentations of AES-128 using the addition chain from [42] to this platform using
arm-none-eabi-gcc (v4.8.4) and verified that they run in constant time inde-
pendent of the input values. Power measurements are obtained in a contactless
fashion by placing a Langer RF-B 3-2 h-field (magnetic field) probe over a decou-
pling capacitor near the chip package, similar to [4]. The antenna output signal
is amplified with a Langer PA-303 30 dB amplifier before we sample it with a
Tektronix DPO 7254c oscilloscope and transfer it to a computer for analysis.
We use a trigger signal generated from within the Nucleo board prior to each
encryption routine to synchronize the power measurements.

Each power measurement comprises 500 000 samples that cover a time win-
dow of 4 ms. During this time the Boolean masked implementation executes
slightly more than eight rounds of AES while the IP masking protected imple-
mentation executes about 2.5 rounds of AES. The timing difference of roughly
a factor of four is in line with the data shown in Fig. 2. The time period covered
by the measurements is a tradeoff between the amount of measurement data we
need to handle on the one hand (shorter measurements give less data) and the
complexity of the executed code on the other hand (we do not want to use a too
simple toy example; two rounds of AES give full diffusion).

We use state-of-the-art leakage assessment techniques [13,27,36] to evalu-
ate the leakage behavior of our masked implementations. Note that such an
evaluation is independent of any adversarial strategy and hence it is not a secu-
rity evaluation, i.e. it is not about testing resistance to certain attacks. Leak-
age assessment is a convenient tool to assess leakage regardless whether it is
exploitable by a certain adversary.

In practice the most widely used methodology in the literature is Test Vector
Leakage Assessment, first introduced in [27], and in particular the non-specific
fixed versus random test. See for instance [43] for details. In brief, this particular
test checks if the distribution of the measured side-channel leakage depends on
the data processed by the device. If not, we can strongly ascertain that no
adversary will be able to exploit the measurements to recover secret data.

To perform the test we collect two sets of measurements. For the first set we
used a fixed input plaintext and we denote this set Sfixed. For the second set the
input plaintexts are drawn at random from uniform. We denote this set Srandom.
Note that we obtain the measurements for both sets randomly interleaved (by
flipping a coin before each measurement) to avoid time-dependent external and
internal influences on the test result. The AES encryption key is fixed for all
measurements.

We then compute Welch’s (two-tailed) t-test:

t =
μ(Sfixed) − μ(Srandom)

√
σ2(Sfixed)
#Sfixed

+ σ2(Srandom)
#Srandom

, (2)

(where μ is the sample mean, σ2 is the sample variance and # denotes the
sample size) to determine if the samples in both sets were drawn from the same

748 J. Balasch et al.

population (or from populations with the same mean). The null hypothesis is that
the samples in both sets were drawn from populations with the same mean. In
our context, this means that the masking is effective. The alternative hypothesis
is that the samples in both sets were drawn from populations with different
means. In our context, this means that the masking is not effective. A threshold
for the t-score of ±4.5 is typically applied in the literature (corresponding roughly
to a 99.999% confidence) to determine if the null hypothesis is rejected and the
implementation is considered to leak. However, our primary intention is a relative
comparison of the leakage of the different masked implementations.

7.1 RNG Deactivated

We first evaluate both implementations with the RNG deactivated (all random
numbers are zero).

Fig. 5. t-test results for Boolean masking (top) and IP masking (bottom) with RNG
deactivated; each based on 10 000 measurements. The red lines mark the ±4.5 thresh-
old. (Color figure online)

In this scenario we expect both implementations to leak and we can use it
to verify our measurement setup, analysis scripts, etc. We take 10 000 measure-
ments from each implementation. Figure 5 shows plots of the t-scores for Boolean
masking (top) and IP masking (bottom) in gray. The red lines mark the ±4.5
threshold.

As expected both implementations leak significantly. The repetitive patterns
in the plots of the t-scores allow to recognize the rounds of AES as areas with

Consolidating Inner Product Masking 749

high t-scores, interleaved by the key scheduling which does not leak in this test
because the key is fixed. However, already in this scenario with deactivated RNG
we can observe that the implementation protected with IP masking shows less
evidence of leakage (lower t-scores).

7.2 RNG Activated

Next we repeat the evaluation with activated RNG.

Fig. 6. t-test results for Boolean masking (top) and IP masking (bottom) with RNG
activated; each based on 1 million measurements. The red lines mark the ±4.5 thresh-
old. (Color figure online)

In this scenario we expect both implementations to leak less and we take
more measurements (1 million from each implementation). Figure 6 shows the
results for Boolean masking (top) and IP masking (bottom).

In this scenario we can observe a striking difference between the test results.
The implementation protected with Boolean masking leaks. The t-scores are even
higher than in the scenario with deactivated RNG, but this is due to the much
larger number of measurements, which appears as sample size in the denominator
of Eq. 2. The IP masking protected implementation on the other hand shows
significantly less evidence of leakage than the implementation protected with
Boolean masking, and is not deemed to leak for this number of measurements
(a few t-scores slightly exceed the threshold but this is expected given that we
have 500 000 t-scores and 99.999% confidence).

750 J. Balasch et al.

So based on these experiments and results, we can conclude that as expected
from our theoretical investigations, IP masking allows reducing both the number
of leaking samples in the implementation (which is assumably due to the better
resistance to transition-based leakages) and the informativeness of these leaking
samples (which is assumably due to the quite linear nature of our target leakage
function). We insist that we make no claims on the fact that our IP masking
implementation is first-order secure. We only conclude that it shows significantly
less evidence of leakage than our Boolean masking implementation. Admittedly,
first-order information could theoretically appear with larger number of measure-
ments. For example, transition-based leakages implying a non-linear operation
could lead to a flaw, which we did not observe. This could be because our specific
code does not contain such a combination, or because it will only appear with
more measurements. But our results anyway show that the more complex alge-
braic structure of the inner product encoding brings an interesting alternative
(tradeoff) to Boolean masking with slight performance overheads compensated
by less evidence of leakage in practice. We leave the careful investigation of the
concrete leakages of the IP masking with advanced statistical tools (e.g., higher-
order and multivariate attacks) as an interesting scope for further research.

8 Conclusions

Overall, the results in this paper complete the theoretical and practical under-
standing of inner product masking. First, we proposed new (simplified) mul-
tiplication algorithms that are conceptually close to the standard proposal of
Ishai et al. [32], and have good properties for composability. Second we showed
that these simplified algorithms allow better performance than reported in the
previous works on inner product masking of the AES [1,2]. Third, we extended
previous information theoretic evaluations in order to discuss the pros and cons
of inner product masking in idealized implementations, and confronted these
evaluations with first empirical experiments.

Acknowledgments. Benedikt Gierlichs is a Postdoctoral Fellow of the Fund for Sci-
entific Research - Flanders (FWO). Sebastian Faust and Clara Paglialonga are partially
funded by the Emmy Noether Program FA 1320/1-1 of the German Research Founda-
tion (DFG). Franois-Xavier Standaert is a senior research associate of the Belgian Fund
for Scientific Research (FNRS-F.R.S.). This work has been funded in parts by the Euro-
pean Commission through the CHIST-ERA project SECODE and the ERC project
724725 (acronym SWORD) and by the Research Council KU Leuven: C16/15/058 and
Cathedral ERC Advanced Grant 695305.

References

1. Balasch, J., Faust, S., Gierlichs, B.: Inner product masking revisited. In: Oswald,
E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 486–510. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 19

https://doi.org/10.1007/978-3-662-46800-5_19

Consolidating Inner Product Masking 751

2. Balasch, J., Faust, S., Gierlichs, B., Verbauwhede, I.: Theory and practice of a
leakage resilient masking scheme. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 45

3. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost
of lazy engineering for masked software implementations. In: Joye, M., Moradi, A.
(eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-16763-3 5

4. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and
masking at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS,
vol. 9293, pp. 599–619. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-48324-4 30

5. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B.: Compositional
verification of higher-order masking: application to a verifying masking compiler.
IACR Cryptology ePrint Archive, 506 (2015)

6. Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.:
Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46800-5 18

7. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub,P.-Y.:
Parallel implementations of masking schemes and the bounded moment leakage
model. Cryptology ePrint Archive, report 2016/912 (2016). http://eprint.iacr.org/
2016/912

8. Beläıd, S., Benhamouda, F., Passelègue, A., Prouff, E., Thillard, A., Vergnaud,
D.: Randomness complexity of private circuits for multiplication. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 616–648. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 22

9. Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H.: Leakage squeezing of order two.
In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 120–
139. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7 8

10. Carlet, C., Danger, J.-L., Guilley, S., Maghrebi, H.: Leakage squeezing: optimal
implementation and security evaluation. J. Math. Cryptol. 8(3), 249–295 (2014)

11. Carlet, C., Prouff, E., Rivain, M., Roche, T.: Algebraic decomposition for
probing security. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 742–763. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-47989-6 36

12. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to
counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48405-1 26

13. Cooper, J., DeMulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.:
Test vector leakage assessment (TVLA) methodology in practice. In: International
Cryptographic Module Conference (2013). http://icmc-2013.org/wp/wp-content/
uploads/2013/09/goodwillkenworthtestvector.pdf

14. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 25

15. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conver-
sion of security proofs from one leakage model to another: a new issue. In: Schindler,
W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-29912-4 6

https://doi.org/10.1007/978-3-642-34961-4_45
https://doi.org/10.1007/978-3-642-34961-4_45
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
http://eprint.iacr.org/2016/912
http://eprint.iacr.org/2016/912
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-642-34931-7_8
https://doi.org/10.1007/978-3-662-47989-6_36
https://doi.org/10.1007/978-3-662-47989-6_36
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf
https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-642-29912-4_6

752 J. Balasch et al.

16. Coron, J.-S., Greuet, A., Prouff, E., Zeitoun, R.: Faster evaluation of SBoxes via
common shares. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS,
vol. 9813, pp. 498–514. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53140-2 24

17. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

18. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing
attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 24

19. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 16

20. Dziembowski, S., Faust, S.: Leakage-resilient circuits without computational
assumptions. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 230–247.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9 13

21. Dziembowski, S., Faust, S., Skorski, M.: Noisy leakage revisited. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 159–188. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 6

22. Eisenbarth, T., Kasper, T., Moradi, A., Paar, C., Salmasizadeh, M., Shalmani,
M.T.M.: On the power of power analysis in the real world: a complete break
of the KeeLoq code hopping scheme. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 203–220. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85174-5 12

23. Fumaroli, G., Martinelli, A., Prouff, E., Rivain, M.: Affine masking against higher-
order side channel analysis. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC
2010. LNCS, vol. 6544, pp. 262–280. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19574-7 18

24. Genkin, D., Pipman, I., Tromer, E.: Get your hands off my laptop: physical side-
channel key-extraction attacks on PCs - extended version. J. Cryptograph. Eng.
5(2), 95–112 (2015)

25. Goldwasser, S., Rothblum, G.N.: How to compute in the presence of leakage. In:
FOCS 2012, pp. 31–40 (2012)

26. Golić, J.D., Tymen, C.: Multiplicative masking and power analysis of AES. In:
Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 16

27. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side
channel resistance validation. In: NIST non-invasive attack testing workshop
(2011). http://csrc.nist.gov/news events/non-invasive-attack-testing-workshop/
papers/08 Goodwill.pdf

28. Goubin,L., Martinelli, A.: Protecting AES with Shamir’s secret sharing scheme.
In: Preneel and Takagi [38], pp. 79–94 (2011)

29. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

30. Grosso, V., Prouff, E., Standaert, F.-X.: Efficient masked S-Boxes processing – a
step forward –. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014.
LNCS, vol. 8469, pp. 251–266. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-06734-6 16

https://doi.org/10.1007/978-3-662-53140-2_24
https://doi.org/10.1007/978-3-662-53140-2_24
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-642-28914-9_13
https://doi.org/10.1007/978-3-662-46803-6_6
https://doi.org/10.1007/978-3-540-85174-5_12
https://doi.org/10.1007/978-3-540-85174-5_12
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/978-3-642-19574-7_18
https://doi.org/10.1007/3-540-36400-5_16
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-319-06734-6_16
https://doi.org/10.1007/978-3-319-06734-6_16

Consolidating Inner Product Masking 753

31. Grosso, V., Standaert, F.-X., Prouff, E.: Low entropy masking schemes, revisited.
In: Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 33–43.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08302-5 3

32. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

33. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

34. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

35. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards (Advances in Information Security). Springer-Verlag, New York
Inc (2007). https://doi.org/10.1007/978-0-387-38162-6

36. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
mation? an a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 486–505. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 25

37. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

38. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23951-9

39. Prouff, E., Rivain, M.: Masking against side-channel attacks: a formal secu-
rity proof. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 142–159. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38348-9 9

40. Prouff, E., Roche, T.: Higher-order glitches free implementation of the AES using
secure multi-party computation protocols. In: Preneel and Takagi [38], pp. 63–78
(2011)

41. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-47989-6 37

42. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

43. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-48324-4 25

44. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analy-
sis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009.
LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-01001-9 26

45. Standaert, F.-X., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M.,
Kasper, M., Mangard, S.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 7

https://doi.org/10.1007/978-3-319-08302-5_3
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-3-642-42033-7_25
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-642-23951-9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-17373-8_7

754 J. Balasch et al.

46. Wang, W., Standaert, F.-X., Yu, Y., Pu, S., Liu, J., Guo, Z., Gu, D.: Inner product
masking for bitslice ciphers and security order amplification for linear leakages. In:
Lemke-Rust, K., Tunstall, M. (eds.) CARDIS 2016. LNCS, vol. 10146, pp. 174–191.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54669-8 11

https://doi.org/10.1007/978-3-319-54669-8_11

	Consolidating Inner Product Masking
	1 Introduction
	2 Notation
	3 New Algorithm
	3.1 Security Proof

	4 Application to AES Sbox
	4.1 A More Efficient Scheme

	5 Performance Evaluations
	6 Information Theoretic Evaluation
	6.1 Linear (e.g., Hamming Weight) Leakages
	6.2 Non-linear (e.g., Random) Leakages
	6.3 Transition-Based Leakages
	6.4 Limitations: A Negative Result

	7 Empirical Side-Channel Leakage Evaluation
	7.1 RNG Deactivated
	7.2 RNG Activated

	8 Conclusions
	References

