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Abstract. Oblivious Parallel RAM (OPRAM), first proposed by Boyle,
Chung, and Pass, is the natural parallel extension of Oblivious RAM
(ORAM). OPRAM provides a powerful cryptographic building block for
hiding the access patterns of programs to sensitive data, while preserv-
ing the paralellism inherent in the original program. All prior OPRAM
schemes adopt a single metric of “simulation overhead” that character-
izes the blowup in parallel runtime, assuming that oblivious simulation
is constrained to using the same number of CPUs as the original PRAM.

In this paper, we ask whether oblivious simulation of PRAM pro-
grams can be further sped up if the OPRAM is allowed to have more
CPUs than the original PRAM. We thus initiate a study to understand
the true depth of OPRAM schemes (i.e., when the OPRAM may have
access to unbounded number of CPUs). On the upper bound front, we
construct a new OPRAM scheme that gains a logarithmic factor in depth
and without incurring extra blowup in total work in comparison with the
state-of-the-art OPRAM scheme. On the lower bound side, we demon-
strate fundamental limits on the depth any OPRAM scheme—even when
the OPRAM is allowed to have an unbounded number of CPUs and blow
up total work arbitrarily. We further show that our upper bound result
is optimal in depth for a reasonably large parameter regime that is of
particular interest in practice.
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1 Introduction

Oblivious RAM (ORAM), originally proposed in the seminal works of Goldreich
and Ostrovsky [8,9], is a powerful cryptographic building block that allows a pro-
gram to hide access patterns to sensitive data. Since Goldreich and Ostrovsky’s
ground-breaking results, numerous subsequent works showed improved ORAM
constructions [10,13,18,20,21] with better asymptotics and/or practical perfor-
mance. ORAM has also been used in various practical and theoretical applica-
tions such as multi-party computation [11,22], secure processor design [14,17],
and secure storage outsourcing [19,23].

The full version of this paper is available online [3].
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Since most modern computing architectures inherently support parallelism
(e.g., cloud compute clusters and modern CPU designs), a natural problem is
how to hide sensitive access patterns in such a parallel computing environment.
In a recent seminal work, Boyle et al. [1] first propose the notion of Oblivious
Parallel RAM (OPRAM), which is a natural extension of ORAM to the parallel
setting. Since then, several subsequent works have constructed efficient OPRAM
schemes [5,6,15]. One central question in this line of research is whether there is
an OPRAM scheme whose simulation overhead matches that of the best known
ORAM scheme. Specifically, an OPRAM scheme with simulation overhead X
means that if the original PRAM consumes m CPUs and runs in parallel time
T , then we can obliviously simulate this PRAM also with m CPUs, and in par-
allel runtime X · T . In a recent companion paper called Circuit OPRAM [5],
we answered this question in the affirmative. In particular, if N is the num-
ber of distinct blocks that the CPUs can request, then Circuit OPRAM pro-
posed a unifying framework where we can obtain statistically secure OPRAMs
with O(log2 N) simulation overhead, and computationally secure OPRAMs with
(log2 N/ log log N) simulation overhead—thus matching the best known ORAM
schemes in both settings [13,21].

All previous OPRAM schemes consider a single performance metric referred
to as simulation overhead as mentioned above. It is immediate that an OPRAM
scheme with X simulation overhead also immediately implies an ORAM con-
struction with X simulation overhead. Thus, the recent Circuit OPRAM [5]
also suggests that we have hit some road-block for constructing more efficient
OPRAM schemes—unless we knew how to asymptotically improve the efficiency
of sequential ORAM. Note also that in the regime of sufficiently large block sizes,
Circuit OPRAM achieves O(α log N) simulation overhead for any super-constant
function α, and this is (almost) tight in light of Goldreich and Ostrovsky’s log-
arithmic ORAM lower bound [8,9].

1.1 Our Results and Contributions

In this paper, we rethink the performance metrics for an OPRAM scheme. We
argue that while adopting a single simulation overhead metric is intuitive, this
single metric fails to capture the true “work-depth” of the oblivious simulation.
In particular, we ask the questions:

1. If the OPRAM is allowed to access more CPUs than the original PRAM,
can we have oblivious simulations with smaller parallel runtime blowup than
existing OPRAM schemes?

2. Are there any fundamental limits to an OPRAM’s work-depth, assuming that
the OPRAM can have access to an unbounded number of CPUs?

To answer the above questions, we turn to the parallel algorithms literature,
and adopt two classical metrics, that is, total work and parallel runtime in the
study of OPRAMs. Like the parallel algorithms literature, we also refer to a(n)
PRAM/OPRAM’s parallel runtime as its work-depth (or depth). The depth met-
ric represents the runtime of a PRAM when given ample CPUs—thus the depth
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is the inherently sequential part of a PRAM that cannot be further parallelized
even with an arbitrarily large number of CPUs. The depth metric is commonly
used in conjunction with total work—since we would like to design low-depth
parallel algorithms that do not blow up total work by too much in comparison
with the sequential setting (e.g., by repeating computations too many times).
Using these classical metrics from the parallel algorithms literature, we can re-
interpret the single “simulation overhead” metric adopted by previous OPRAM
works as follows: an OPRAM with simulation overhead X has both total work
blowup and parallel runtime blowup X in comparison with the original PRAM.

Note that when the OPRAM is constrained to using the same number of
CPUs as the original PRAM, its parallel runtime blowup must be at least as large
as the total work blowup. In this paper, however, we show that this need not
be the case when the OPRAM can access more CPUs than the original PRAM.
We design a new OPRAM scheme that gains a logarithmic factor in speed (i.e.,
depth) in comparison with the state-of-the-art [5] when given logarithmically
many more CPUs than the original PRAM. In some sense, our new OPRAM
scheme shows that the blowup in total work incurred due to obliviousness can
be parallelized further (albeit through non-trivial techniques). Additionally, we
prove new lower bounds that shed light on the inherent limits on any OPRAM
scheme’s depth. In light of our lower bounds, our new OPRAM scheme is optimal
in depth for a wide range of parameters. We now present an informal overview
of our results and contributions.

Upper Bounds. First, we show that for any PRAM running in time T and
consuming W amount of total work, there exists a statistically secure oblivi-
ous simulation that consumes logarithmically many more CPUs than the orig-
inal PRAM, and runs in parallel runtime O(T log N log log N) and total work
O(W log2 N).

In comparison, the best known (statistically secure) OPRAM scheme incurs
both O(log2 N) blowup in both total work and parallel runtime (i.e., O(log2 N)
simulation overhead). In this sense, while preserving the total work blowup, we
improve existing OPRAMs’ depth by a logarithmic factor.

We then extend our construction to the computationally secure setting by
adapting an elegant trick originally proposed by Fletcher et al. [7], and show
how to shave another log log N factor off both the total work and parallel run-
time, assuming that one-way functions exist. Our results are summarized in the
following informal theorem.

Theorem 1 (Small-depth OPRAMs: Informal). The following results are
possible for small-depth OPRAMs where N denotes the original PRAM’s total
memory size, m denotes the original PRAM’s number of CPUs, and the security
failure must be negligible in N .

– Statistically secure, general block size. There exists a statistically secure
OPRAM that achieves O(log2 N) blowup in total work and O(log N log log N)
blowup in parallel runtime for general block sizes of Ω(log N) bits.
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– Computationally secure, general block size. Assume the existence of
one-way functions, then there exists a computationally secure OPRAM that
achieves O( log2 N

log log N ) total work blowup and O(log N) parallel runtime blowup
for general block sizes of Ω(log N) bits.

– Statistically secure, large block size. For any super-constant func-
tion α(N) = ω(1), for any constant ε > 0, there exists a statistically
secure OPRAM that achieves O(α log N log log N) total work blowup and
O(log m + log log N) parallel runtime blowup for blocks of N ε bits or larger.

Lower Bounds. Next, we consider if there are any fundamental limits to an
OPRAM scheme’s work-depth. We prove a non-trivial lower bound showing that
any online OPRAM scheme (i.e., with no a-priori knowledge of future requests)
that does not perform encoding of data blocks and does not duplicate data blocks
too extensively must suffer from at least Ω(log m) depth blowup where m is the
number of CPUs—and this lower bound holds even when the OPRAM scheme
may access arbitrarily many CPUs and have arbitrarily large total work blowup.
We stress that our lower bound employs techniques that are different in nature
from those of Goldreich and Ostrovsky’s classical ORAM lower bound [8,9]—in
particular, theirs bounds total work rather than depth. Furthermore, our lower
bound holds even for computational security.

Theorem 2 (Lower bound for an OPRAM’s depth). Any computation-
ally or statistically secure online OPRAM scheme must incur at least Ω(log m)
blowup in parallel runtime, as long as the OPRAM (1) does not perform encod-
ing of data blocks (i.e., in the “balls-and-bins” model); and (2) does not make
more than m0.1 copies of each data block.

We note that the conditions our lower bound assumes (online, balls-and-bins,
and bounded duplication) hold for all ORAM and OPRAM constructions.

On the Tightness of Our Upper and Lower Bounds. In light of our lower
bound, our OPRAM constructions are optimal in depth in a reasonably large
parameter regime. Specifically, our (computationally secure) OPRAM scheme
is depth-optimal when m = N ε for any constant ε > 0 for general block sizes.
For larger block sizes, our OPRAM scheme is depth-optimal for a larger range
of m—in particular, when the block size is sufficiently large, our (statistically
secure) OPRAM scheme is tight for m as small as m = poly log N .

Technical Highlights. Both our lower bounds and upper bounds introduce
non-trivial new techniques. Since our lower bound studies the depth of paral-
lel algorithms, it is of a very different nature than Goldreich and Ostrovsky’s
ORAM lower bounds for total work [8,9]. To prove the depth lower bound, we
also depart significantly in technique from Goldreich and Ostrovsky [8,9]. In par-
ticular, our lower bound is of an online nature and considers the possible batches
of requests that a low-depth access pattern can support in a single PRAM step;
whereas in comparison, Goldreich and Ostrovksy’s lower bound applies even to
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offline ORAM/OPRAM algorithms, and they perform a counting argument over
many steps of the ORAM/OPRAM. The most difficult challenge in proving our
lower bound is how to offset the large number of possibilities introduced by
“preprocessing”, i.e., the number of possible memory configurations before the
PRAM step of concern starts. To deal with this challenge, our core idea is to
devise a new method of counting that is agnostic to preprocessing.

For our new small-depth OPRAM, the main challenge we cope with is of
a very different nature from known ORAM and OPRAM works. In particular,
all previous ORAMs and OPRAMs that follow the tree-based paradigm [18]
adopt a standard recursion technique such that the CPU need not store a large
amount of metadata (referred to as the position map). Known schemes treat this
recursion as a blackbox technique. Unfortunately, in our work, it turns out that
this recursion becomes the main limiting factor to an OPRAM’s depth. Thus,
we open up the recursion, and our core technique for achieving small-depth
OPRAM is to devise a novel offline/online paradigm, such that the online phase
that is inherently sequential across recursion levels has small (i.e., O(log log N))
depth per recursion level; whereas all work that incurs logarithmic depth is
performed in an offline phase in parallel across all recursion levels. Designing
such an offline/online algorithm incurs several challenges which we explain in
Sect. 5.2. We hope that these new techniques can also lend to the design of
oblivious parallel algorithms in general.

Another way to view our small-depth OPRAM’s contributions is the fol-
lowing. In our setting, we must address two challenges: (1) concurrency, i.e.,
how to coordinate a batch of m requests such that they can be served simulta-
neously without causing write conflicts; and (2) parallelism, i.e., how to make
each request parallel by using more CPUs. Note that the concurrency aspect is
applicable only to OPRAMs where multiple concurrent requests are involved,
whereas the parallelism aspect is applicable even for parallelizing the operations
of a sequential ORAM. Previous OPRAM constructions [1,6] are concerned only
about the former concurrency aspect, but we need to take both into account—
in this sense, we are in fact the first to investigate the “parallelism” aspect of
ORAMs/OPRAMs.1 In particular, in our fetch phase algorithm, the two aspects
are intertwined for the case of general m, in the sense that we cannot separate
our techniques into two phases involving one “concurrent compilation” and one
“parallel compilation”—such intertwining allows us to construct more efficient
algorithms. In the maintain phase, our divide-and-conquer strategy for eviction
indeed can be used to parallelize a sequential ORAM.

Related work. Boyle, Chung, and Pass recently initiated the study of Oblivi-
ous Parallel RAM (OPRAM) [1]. They were also the first to phrase the sim-
ulation overhead metric for OPRAMs, i.e., the parallel runtime blowup of the
OPRAM in comparison with the original PRAM, assuming that the OPRAM
consumes the same number of CPUs as the original PRAM. Several subsequent

1 We gratefully acknowledge the Asiacrypt reviewers for pointing out this aspect of
our contribution.
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works [1,5,6,15] have improved Boyle et al. [1]’s OPRAM construction. Most
recently, Chan and Shi [5] show that we can construct statistically secure and
computationally secure OPRAMs whose asymptotical performance match the
best known sequential ORAM; and their approach is based on the tree-based
paradigm [18]. A similar asymptotical result (but for the computationally secure
setting only) was also shown by Chan et al. [4] using the hierarchical frame-
work originally proposed by Goldreich and Ostrovsky [8,9]. In the OPRAM
context, Goldreich and Ostrovsky’s logarithmic lower bound [8,9] immediately
implies that any OPRAM with constant blocks of CPU cache must suffer from at
least logarithmic total work blowup. Thus far there is no other known OPRAM
lower bound (and our depth lower bound departs significantly in techniques from
Goldreich and Ostrovksy’s lower bound).

In the interest of space, we refer the reader to our online full version [3] for
additional discussions about the related work.

2 Definitions

2.1 Parallel Random-Access Machines

A parallel random-access machine (PRAM) consists of a set of CPUs and a
shared memory denoted mem indexed by the address space [N ] := {1, 2, . . . , N}.
In this paper, we refer to each memory word also as a block, and we use B to
denote the bit-length of each block.

We use m to denote the number of CPUs. In each step t, each CPU executes
a next instruction circuit denoted Π, updates its CPU state; and further, CPUs
interact with memory through request instructions I (t) := (I(t)i : i ∈ [m]). Specif-
ically, at time step t, CPU i’s instruction is of the form I

(t)
i := (op, addr, data),

where the operation is op ∈ {read, write} performed on the virtual memory
block with address addr and block value data ∈ {0, 1}B ∪ {⊥}. If op = read,
then we have data = ⊥ and the CPU issuing the instruction should receive the
content of block mem[addr] at the initial state of step t. If op = write, then we
have data �= ⊥; in this case, the CPU still receives the initial state of mem[addr]
in this step, and at the end of step t, the content of virtual memory mem[addr]
should be updated to data.

Write conflict resolution. By definition, multiple read operations can be exe-
cuted concurrently with other operations even if they visit the same address.
However, if multiple concurrent write operations visit the same address, a con-
flict resolution rule will be necessary for our PRAM be well-defined. In this
paper, we assume the following:

– The original PRAM supports concurrent reads and concurrent writes
(CRCW) with an arbitary, parametrizable rule for write conflict resolution.
In other words, there exists some priority rule to determine which write
operation takes effect if there are multiple concurrent writes in some time
step t.
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– The compiled, oblivious PRAM (defined below) is a “concurrent read, exclu-
sive write” PRAM (CREW). In other words, the design of our OPRAM con-
struction must ensure that there are no concurrent writes at any time.

We note that a CRCW-PRAM with a parametrizable conflict resolution rule
is among the most powerful CRCW-PRAM model, whereas CREW is a much
weaker model. Our results are stronger if we allow the underlying PRAM to be
more powerful but the compiled OPRAM uses a weaker PRAM model. For a
detailed explanation on how stronger PRAM models can emulate weaker ones,
we refer the reader to the work by Hagerup [12].

CPU-to-CPU communication. In the remainder of the paper, we sometimes
describe our algorithms using CPU-to-CPU communication. For our OPRAM
algorithm to be oblivious, the inter-CPU communication pattern must be obliv-
ious too. We stress that such inter-CPU communication can be emulated using
shared memory reads and writes. Therefore, when we express our performance
metrics, we assume that all inter-CPU communication is implemented with
shared memory reads and writes. In this sense, our performance metrics already
account for any inter-CPU communication, and there is no need to have separate
metrics that characterize inter-CPU communication. In contrast, Chen et al. [6]
defines separate metrics for inter-CPU communication.

Additional assumptions and notations. Henceforth, we assume that each CPU
can only store O(1) memory blocks. Further, we assume for simplicity that the
runtime of the PRAM is fixed a priori and publicly known. Therefore, we can
consider a PRAM to be a tuple

PRAM := (Π,N,m, T ),

where Π denotes the next instruction circuit, N denotes the total memory size
(in terms of number of blocks), m denotes the number of CPUs, and T denotes
the PRAM’s parallel time steps. Without loss of generality, we assume that
N ≥ m. We stress that henceforth in the paper, the notations N and m denote
the number of memory blocks and the number of CPUs for the original PRAM—
our OPRAM construction will consume O(1) factor more memory and possibly
more than m CPUs.

2.2 Oblivious Parallel Random-Access Machines

Randomized PRAM. A randomized PRAM is a special PRAM where the CPUs
are allowed to generate private, random numbers. For simplicity, we assume that
a randomized PRAM has a priori known, deterministic runtime.

Oblivious PRAM (OPRAM). A randomized PRAM parametrized with total
memory size N is said to be statistically oblivious, iff there exists a negligible
function ε(·) such that for any inputs x0, x1 ∈ {0, 1}∗,

Addresses(PRAM, x0)
ε(N)≡ Addresses(PRAM, x1),
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where Addresses(PRAM, x) denotes the joint distribution of memory accesses

made by PRAM upon input x and the notation
ε(N)≡ means the statistical dis-

tance is bounded by ε(N). More specifically, for each time step t ∈ [T ],
Addresses(PRAM, x) includes the memory addresses requested by the CPUs in
time step t, as well as whether each memory request is a read or write operation.
Henceforth we often use the notation OPRAM to denote a PRAM that satisfies
statistical obliviousness.

Similarly, a randomized PRAM parametrized with total memory size N is
said to be computationally oblivious, iff there exists a negligible function ε(·)
such that for any inputs x0, x1 ∈ {0, 1}∗,

Addresses(PRAM, x0)
ε(N)≡c Addresses(PRAM, x1)

Note the only difference from statistical security is that here the access pat-
terns only need to be indistinguishable to computationally bounded adversaries,

denoted by the notaiton
ε(N)≡c .

Following the convention of most existing ORAM and OPRAM works [8,9,
13,20,21], we will require that the security failure probability to be negligible in
the N , i.e., the PRAM’s total memory size.

Oblivious simulation. We say that a given OPRAM simulates a PRAM if for
every input x ∈ {0, 1}∗, Pr[OPRAM(x) = PRAM(x)] = 1 − μ(N) where the
completeness error μ is a negligible function and the probability is taken over
the randomness consumed by the OPRAM—in other words, we require that the
OPRAM and PRAM output the same outcome on any input x.

Online OPRAM. In this paper we focus on online OPRAM that simulates a
PRAM by processing memory request of each PRAM step in an online fashion.
Namely, each PRAM memory request is processed by the OPRAM without know-
ing the future requests. Note that all known ORAM and OPRAM constructions
satisfy the online property.

Performance measures. For an online OPRAM simulates a certain PRAM, we
measure its performance by its work-depth and total work overhead. The work-
depth overhead is defined to be the number of time steps d for OPRAM to
simulate each PRAM step. Let W denote the total number of blocks accessed
by OPRAM to simulate a PRAM step. The total work overhead is defined to be
W/m, which captures the overhead to simulate a batch of memory request in a
PRAM step. Note that both d and W are random variables.

3 Lower Bound on Work-Depth

We show a lower bound on the work-depth in terms of the number m of CPUs. We
establish a Ω(log m) depth lower bound for OPRAMs satisfying the following
properties. We remark that our construction in Sect. 5 as well as all existing
ORAM and OPRAM constructions satisfy these properties.
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1. Balls-and-bins storage. As coined in the ORAM lower bound of Goldreich
and Ostrovsky [2], data blocks are modeled as “balls,” while shared memory
locations and CPU registers are modeled as “bins”. In particular, this means
that every memory location stores at most one data block and the content
of the data block can be retrieved from that location independent of other
storage.

2. Online OPRAM. As defined in Sect. 2.2, we consider online OPRAM that
only learns the logic memory request at the beginning of a PRAM step.

3. s-bounded duplication. We also need a technical condition on the bound
of data duplication. Namely, there is a bound s such that every data block
has at most s copies stored on the memory. All known ORAM and OPRAM
constructions do not store duplications on the memory2, i.e., s = 1.

It is worth comparing our depth lower bound for OPRAM with the ORAM
lower bound of [2]. Both lower bounds assume the balls-and-bins model, but
establish lower bound for different metrics and rely on very different arguments
(in particular, as we discussed below, counting arguments do not work in our
setting). We additionally require online and bounded duplication properties,
which are not needed in [2]. On the other hand, our lower bound holds even for
OPRAM with computational security. In contrast, the lower bound of [2] only
holds for statistical security.

The setting for the lower bound. For simplicity, we consider the following setting
for establishing the lower bound. First, we consider OPRAM with initialization,
where n logical data blocks of the original PRAM are initialized with certain
distinct content. This is not essential as we can view the initialization as the
first n steps of the PRAM program. We also assume that the logical data size
n is sufficiently larger than the total CPUs register size. Specifically, let α be
a constant in (0, 1/3) and r be the register size of a CPU. We assume n ≥
Ω(r ·m1+(α/4)). For any OPRAM satisfying the above three properties with s ≤
m(1/3)−α, we show that the work-depth is at least (α/3) · log m with probability
at least 1−m−α/4 for every PRAM step. In particular, the expected work-depth
per step is at least Ω(log m) as long as s ≤ m1/3−Ω(1).

Theorem 3 (Lower Bound on Work-Depth). Let Π be a computationally-
secure online OPRAM that satisfies the balls-and-bins model with s-bounded
duplication for s < m(1/3)−α for constant α ∈ (0, 1/3), where the number N
of blocks is at least m. Let r be the register size of each CPU. Assume that
n ≥ 4r · m1+(α/4) and Π has correctness error μ ≤ m−α/4/4. Then for each
PRAM step t, let depth(Π, t) denote the work-depth of Π for PRAM step t,

Pr[depth(Π, t) ≤ (α/3) · log m] ≤ m−α/4,

where the probability is over the randomness of the OPRAM compiler Π.
2 In some hierarchical ORAMs [10,13], there might be several copies of the same block

on the server, but only one copy is regarded as fresh, while other copies are stale
and may contain old contents.



576 T.-H.H. Chan et al.

Before proving Theorem 3, we first discuss the intuition behind the lower
bound proof in Sect. 3.1, where under simplifying assumptions, we reduce the
OPRAM lower bound to solving a “user-movie problem” that captures the main
argument of our lower bound proof. We discuss how to remove the simplifying
assumptions in the end of the section. We then present the formal proof of
Theorem 3 in Sect. 3.2

3.1 Intuition: A User-Movie Problem

As a warmup, we first present an intuitive proof making a few simplifying
assumptions: (1) the OPRAM compiler must be perfectly correct and perfectly
secure; and (2) there is no data block duplication in memory. Later in our formal
proofs in Sect. 3.2, these assumptions will be relaxed.

Let us consider how to prove the depth lower bound for a PRAM step t
for an OPRAM. Recall that we consider online OPRAM that learn the logical
memory requests at the beginning of the step. We can view what happened
before the step t as a preprocessing phase that stores the logical memory blocks
in different memory locations, and the step t corresponds to an online phase
where the CPUs fetch the requested memory blocks with certain observed access
pattern. Since the access pattern should hide the logical memory request, any
fixed access pattern should allow the CPUs to complete any possible batch of
m requests (assuming perfect correctness and perfect security). We say that an
access pattern can support a batch of m requests, if there exists a pre-processing
(i.e., packing of data blocks into memory), such that each CPU can “reach” its
desired data block through this access pattern. Our goal is to show that if the
access pattern is low depth, then it is impossible to satisfy every batch of m
requests—even when one is allowed to enumerate all possible pre-processings to
identify one that best matches the requests (given the fixed access pattern). To
show this, our argument involves two main steps.

1. First, we show that for any access pattern of low depth, say, d, each CPU can
reach at most 2d memory locations.

2. Second, we show that if an access pattern can satisfy all possible batches of m
requests (with possibly different pre-processing), then it must be that some
CPU can reach many physical locations in memory.

The former is relatively easy to show. Informally speaking, consider the balls-
and-bins model as mentioned earlier: in every PRAM step, each CPU can only
access a single memory location (although each memory location can be accessed
by many CPUs). This means that at the end of the PRAM step, the block held
by each CPU can only be one of two choices: (1) the block previously held by
the CPU; or (2) the block in the memory location the CPU just accessed. This
means that the access pattern graph must have a small fan-in of 2 (although
the fan-out may be unbounded). It is not difficult to formalize this intuition,
and show that given any depth-d access pattern, only 2d memory locations can
“flow into” any given CPU. Henceforth, we focus on arguing why the latter is
also true—and this requires a much more involved argument.
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For ease of understanding, henceforth we shall refer to CPUs as users, and
refer to data blocks in physical memory as movies. There are n distinct movies
stored in a database of size N (without duplications) and m users. Each user
wants to watch a movie and can access to certain 2d locations in the database,
but the locations the users access to cannot depend on the movies they want to
watch. On the other hand, we can decide which location to store each movie to
help the users to fetch their movies from the locations they access to. In other
words, we first decide which 2d locations each user access to, then learn which
movie each user wants to watch. Then we decide the location to store each movie
to help the users to fetch their movies. Is it possible to find a strategy to satisfy
all possible movie requests?

We now discuss how to prove the impossibility for the user-movie problem.
We first note that a simple counting argument does not work, since there are nm

possible movie requests but roughly Nn 	 nm possible ways to store the movies
in physical memory. To prove the impossibility, we first observe that since we
do not allow duplications, when two users request the same movie, they must
have access to the same location that stores the movie. Thus, any pair of users
must be able to reach a common movie location—henceforth we say that the two
users “share” a movie location. This observation alone is not enough, since the
users may all share some (dummy) location. If, however, two sets of users request
two different movies, then not only must each set share a movie location, the
two sets must share two distinct locations. More generally, the m users’ movie
requests induce a partition among users where all users requesting the same
movie are in the same part (i.e., equivalence class), and users in two different
parts request different movies. This observation together with carefully chosen
partitions allow us to show the existence of a user that needs to access to a large
number of locations, which implies an impossibility for the user-movie problem
for sufficiently small depth d. We stress that this idea of “partitioning” captures
the essence of what pre-processing cannot help with, and this explains why our
proof works even when there are a large number of possible pre-processings.

Specifically, let k = m/2 and label the m users with the set M := [2] × [k].
We consider the following k partitions that partition the users into k pairs. For
each i ∈ [k], we define partition Pi = {{(1, a), (2, a + i)} : a ∈ [k]}, where the
addition is performed modulo k. Note that all k2 pairs in the k partitions are
distinct. By the above observation, for each partition Pi, there are k distinct
locations �i,1, . . . , �i,k ∈ [N ] such that for each pair {(1, a), (2, a + i)} for a ∈ [k],
both users (1, a), (2, a + i) access to the location �i,a. Now, for each location
� ∈ [N ], let w� denote the number of �i,a = � and d� denote the number of users
access to the location �. Note that w� ≤ k since user pairs in a partition access
to distinct locations (i.e., �i,a �= �i,a′ for every i ∈ [k] and a �= a′ ∈ [k]). Also
note that d� ≥ √

2w� since there are only
(
d�

2

)
distinct pairs of users access to

the location �.
To summarize, we have (i)

∑
� w� = k2, (ii) w� ≤ k for all � ∈ [N ], and (iii)

d� ≥ √
2w� for all � ∈ [N ], which implies

∑
� d� ≥ k ·√2k =

√
k/2·m. Recall that

d� denote the number of users access to the location � and there are m users.
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By averaging, there must exist a user who needs to access to at least
√

k/2
locations. Therefore, the user-movie problem is impossible for d ≤ 0.5 · log m−2.
Note that the distinctness of the �i,a’s induced by the partitions plays a crucial
role to drive a non-trivial lower bound on the summation

∑
� d�.

Removing the simplifying assumptions. In above intuitive proof we make several
simplyfing assumptions such as perfect security and perfect correctness. We now
briefly discuss how to remove these assumptions. The main non-trivial step is to
handle computational security, which requires two additional observations. Fol-
lowing the above argument, let us say that an access pattern is compatible with a
CPU/user partition if it can support a logic memory request with corresponding
induces CPU/user partition.

– First, the above impossibility argument for the user-movie problem can be
refined to show that if an access pattern has depth d, then it can be compatible
with at most 22(d+1) partitions in P1, . . . , Pk defined above.

– Second, whether an access pattern is compatible with a partition can be
verified in polynomial time.

Based on these two observations, we show that if d ≤ 0.5 · log m−4 (with notice-
able probability), then we can identify two efficiently distinguishable CPU par-
titions, which implies a depth lower bound for computationally-secure OPRAM.
First, we consider the access pattern of partition P1. Since d ≤ 0.5 · log m − 4,
it can only be compatible with at most k/2 partitions. By an averaging argu-
ment, there exists some partition Pi such that Pi is not compatible with the
access pattern of P1 with probability at least 1/2. On the other hand, by perfect
correctness, the access pattern of Pi is always compatible with Pi. Therefore,
the access patterns of P1 and Pi are efficiently distinguishable by an efficient
distinguisher D that simply verifies if the access pattern is compatible with Pi.

We now briefly discuss how to remove the remaining assumptions. First, it is
not hard to see that the above argument does not require perfect correctness and
can tolerate a small correctness error. Second, we make an implicit assumption
that the requested data blocks are not stored in the CPU registers so that the
CPUs must fetch the requested data blocks from physical locations on the server.
This can be handled by considering logic access requests with random logical
address and assuming that the logic memory size n is sufficiently larger than the
total CPU register size (as in the theorem statement).

We also implicitly assume that we can observe the beginning and end of the
access pattern of a PRAM step t. For this, we note that by the online property,
we can without loss of generality consider t as the last step so that we know the
end of the access pattern for free. Furthermore, we observe that we do not need
to know the beginning of the access pattern since the compatibility property is
monotone in the following sense. If a partition Pi is compatible with the access
pattern of the last d accesses, it is also compatible with the access pattern of
the last d + 1 accesses. Thus, we can consider the access pattern of the last d
accesses for certain appropriately chosen d.
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Finally, to handle s-bounded duplication with s > 1, we consider CPU par-
titions where each part is a set of size s+1, instead of a pair. By the pigeonhole
principle, each part can still certify a pair of CPUs with a shared memory loca-
tion. However, some extra care is needed for defining the partitions to make sure
that different partitions do not certify the same pair of CPUs, and the depth
lower bound degrades when s increases. Nevertheless, the lower bound remains
Ω(log m) for s ≤ m1/3−Ω(1).

3.2 Proof of Theorem 3

We now proceed with a formal proof. We first note that for proving lower bound
of the PRAM step t, we can consider PRAM programs where t is the last step,
since the behavior of an online OPRAM does not depend on the future PRAM
steps. Thus, we can focus on proving lower bound of the last PRAM step. We
prove the theorem by contradiction. Suppose that

Pr[depth(Π, t) ≤ (α/3) · log m] > m−α/4, (1)

we show two PRAM programs P1,P2 with identical first t−1 steps and different
logic access request at step t such that the access pattern of Π(P1) and Π(P2),
which denote the OPRAM simulation of P1,P2 respectively, are efficiently dis-
tinguishable. Towards this, we define the CPU partition of a memory request.

Definition 1 (CPU Partition). Let addr = (addr1, . . . , addrm) ∈ [n]m be a
memory request. addr induces a partition P on the CPUs, where two CPUs
c1, c2 are in the same part iff they request for the same logical address addrc1 =
addrc2 . In other words, P partitions the CPUs according to the requested logical
addresses.

Recall that s is the bound on the number of duplication. We assume m =
(s+1) ·k for some prime k. This is without loss of generality, because any integer
has a prime number that is within a multiplicative factor of 2. We label the m
CPUs with the set M := [s + 1] × [k]. We consider the following set of partitions
P1, . . . , Pk: For i ∈ [k], the partition Pi := {Si(a) : a ∈ [k]} is defined such that
each part has the form Si(a) := {(b, a + bi) : b ∈ [s + 1]}, where addition is
performed modulo k. In other words, the parts in the partitions can be viewed
as all possible distinct line segments in the Z

2
k plane.

We will show two programs where their last memory requests have induced
partitions P1 and Pi for some i ∈ [k] such that their compiled access patterns
are efficiently distinguishable. To show this, we model the view of the adversary
with an access pattern graph and consider a compatiability property between an
access pattern graph and a CPU partition, defined as follows.

Access pattern graphs and compatibility. Given the access pattern of Π(P) for
a PRAM program P and a depth parameter d ∈ N, we define an access pattern
graph G as follows.
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(a) Nodes. The nodes are partitioned into d + 1 layers. In layer 0, each node
represents a physical location in the memory at the beginning of the last
d-th time step of Π(P).
For 1 ≤ i ≤ d, each node in layer i represents a physical location in the
memory or a CPU at the end of the last (d − i + 1)-st time step.
Hence, we represent each node with (i, u), where i is the layer number and
u is either a CPU or a memory location.

(b) Edges. Each edge is directed and points from a node in layer i − 1 to one
in layer i for some i ≥ 1. For each CPU or a memory location, there is a
directed edge from its copy in layer i − 1 to one in layer i.
If a CPU c reads from some physical location � in the last (d−i)-th time step,
then there is a directed edge from (i−1, �) to (i, c). Since we allow concurrent
read, the out-degree of a node corresponding to a physical location can be
unbounded.
If a CPU c writes to some physical location � in the last (d− i)-th time step,
then there is a directed edge from (i − 1, c) to (i, �).
Observe that since we consider OPRAM with exclusive write, the in-degree
of a node (either corresponding to a CPU or a memory location) is at most
2. In fact, the degree 2 bound holds even with concurrent write models as
long as the write conflict resolution can be determined only by the access
pattern.

The access pattern graph G captures the potential data flow of the last d
time steps of the data access. Specifically, a path from (0, �) to (d, c) means
CPU c may learn the content of the memory location � at the last d time step.
If there is no such path, then CPU c cannot learn the content. This motivates
the definition of compatible partitions.

Definition 2 (Compatible Partition). Let G be an access pattern graph and
P1, . . . , Pk be the partitions defined above. We say Pi = {Si(a) : a ∈ [k]} is
compatible with G if there exist k distinct physical locations �i,1, . . . , �i,k on the
server such that for each a ∈ [k], there are at least two CPUs c1 and c2 in Si(a)
such that both nodes (d, c1) and (d, c2) are reachable from (0, �i,a) in G.

Intuitively, compatibility is a necessary condition for the last d time steps of
data access to “serve” an access request with induced partition Pi, assuming the
requested data blocks are not stored in the CPU registers at the last d-th time
step. Recall that each data block has at most s copies in the server, and each
part Si(a) has size s + 1. By the Pigeonhole principle, for each part Si(a) in the
induced partition, there must be at least two CPUs c1, c2 ∈ Si(a) obtaining the
logical block from the same physical location �a on the server, which means the
nodes (d, c1) and (d, c2) are reachable from (0, �a) in G. We note that verifying
compatibility can be done in polynomial time.

Lemma 1 (Verifying Compatibility Takes Polynomial Time). Given a
CPU partition P and an access pattern graph G, it takes polynomial time to
verity whether P is compatible with G.
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Proof. Given P and G as in the hypothesis of the lemma, we construct a bipartite
graph H as follows. Each vertex in L is labeled with a memory location �, and
each vertex in R is labeled with a part S in P . There is an edge connecting a
vertex � in L to a vertex S in R iff there are at least two CPUs c1 and c2 in S
such that both (d, c1) and (d, c2) are reachable from (0, �) in G. This bipartite
graph can be constructed in polynomial time.

Observe that P is compatible with G iff there is a matching in H such that
all vertices’s in R are matched. Hence, a maximum matching algorithm can be
applied to H to decide if P is compatible with G.

Now, the following key lemma states that an access pattern graph G with
small depth d cannot be compatible with too many partitions. We will use the
lemma to show two programs with efficiently distinguishable access patterns.

Lemma 2. Let G be an access pattern graph with the depth parameter d, and
P1, . . . , Pk be the partitions defined above. Among P1, . . . , Pk, there are at most
((s + 1) · 2d)2 partitions that are compatible with G.

Proof. Recall that the in-degree of each node is at most 2. Thus, for each node
(d, c) in layer d, there are at most 2d nodes (0, �) in layer 0 that can reach the
node (d, c). For the sake of contradiction, we show that if G is compatible with
u > ((s + 1) · 2d)2 partitions, then there exists a node (d, c) that is reachable by
more that 2d nodes in layer 0.

For convenience, we define a bipartite graph H = (L,R,E) from G as follows.
Each vertex in L is labeled with a CPU c, and each vertex in R is labeled with
a physical location � of the memory. There is an edge (c, �) in H iff (0, �) reaches
(d, c) in G. Our goal can be restated as showing that if G is compatible with
u > ((s + 1) · 2d)2 partitions, then there exists c ∈ L with degree deg(c) > 2d.
We do so by lower bounding the number of edges |E| > m · 2d.

By definition, if Pi is compatible with G, then there exist k distinct physical
locations �i,1, . . . , �i,k on the server such that for each a ∈ [k], there are at least
two CPUs ci,a, c′

i,a ∈ Si(a) such that (d, ci,a) and (d, c′
i,a) are reachable from

(0, �i,a) in G, which means there are edges (ci,a, �i,a) and (c′
i,a, �i,a) in H. Thus,

a compatible partition certifies 2k edges in H, although two different partitions
may certify the same edges.

Let Pi1 , . . . , Piu
be the set of compatible partitions. While they may certify

the same edges, the set of CPU pairs {(cij ,a, c′
ij ,a) : j ∈ [u], a ∈ [k]} are distinct

for the following reason: Recall that the parts in partitions correspond to differ-
ent line segments in Z

2
k. Since two points define a line, the fact that the parts

correspond to different lines implies that all CPU pairs are distinct.
For each memory location �, let w� denote the number of �ij ,a = �. It means

that � is connected to w� distinct pairs of CPUs in H, which implies that deg(�) ≥√
2w� since there must be at least

√
2w� distinct CPUs. Also, note that

∑
� w� =

u · k and w� ≤ u for every � since � can appear in each partition at most
once. It is not hard to see that the above conditions imply a lower bound on
|E| =

∑
� deg(�) ≥ k · √

2u > m · 2d. This in turn implies the existence of c ∈ L
with degree deg(c) > 2d, a contradiction.
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Let us now consider a PRAM program P1 that performs dummy access in
the first t − 1 steps and a random access request at the t step with induced
partition P1. Specifically, in the first t − 1 steps, all CPUs read the first logic
data block. For the t-th step, let (b1, . . . , bk) be uniformly random k distinct
logic data blocks. For a ∈ [k], the CPUs in part S1(a) of P1 read the block ba at
the t-th step. Let d = (α/3) · log m and G(Π(P1), d) denote the access pattern
graph of Π(P1) with depth parameter d. The following lemma follows directly
by Lemma 2 and an averaging argument.

Lemma 3. There exists i∗ ∈ [k] such that

Pr[Pi∗ is compatible with G(Π(P1), d)] ≤ ((s + 1) · 2d)2/k ≤ m−α/3,

where the randomness is over Π and P1.

Now, consider a PRAM program P2 that is identical to P1, except that the
access request at the t-th step has induced partition Pi∗ instead of P1. Namely,
for a ∈ [k], the CPUs in part Si∗(a) of Pi∗ read the block ba at the t-th step,
where (b1, . . . , bk) are uniformly random k distinct logic data blocks.

Lemma 4. Suppose that Π satisfies Eq. (1), then

Pr[Pi∗ is compatible with G(Π(P2), d)] > m−α/4/4,

where the randomness is over Π and P2.

Proof. First note that since each CPU request a random data block at the t-th
PRAM step, the probability that the requested data block is stored in the CPU
register is at most r/n. By a union bound, with probability at least 1−m·(r/m) ≥
1 − m−α/4/4, all data blocks requested at the t-th PRAM step are not in the
corresponding CPU registers. In this case, the CPUs need to obtain the data
blocks from the server. Furthermore, if the work-depth of the t-th PRAM step
is ≤d, then the CPUs need to obtain the data blocks in the last d time steps of
data access, which as argued above, implies compatibility. Therefore,

Pr[Pi∗ is compatible with G(Π(P2), d)] > m−α/4 − m−α/4/4 − εc > m−α/4/4.

Recall by Lemma 1 that compatibility can be checked in polynomial time. The
above two lemmas imply that assuming Eq. (1), Π(P1) and Π(P2) are efficiently
distinguishable by a distinguisher D who checks the compatibility of Pi∗ and
the access pattern graph with depth parameter d = (α/3) · log m. This is a
contradiction and completes the proof of Theorem3.

4 Background on Circuit OPRAM and Building Blocks

4.1 Preliminaries: Circuit OPRAM

As a warmup, we first briefly review the recent Circuit OPRAM algorithm [5]
that we build on top of. For clarity, we make a few simplifying assumptions in
this overview:
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– We explain the non-recursive version of the algorithm where we assume that
the CPU can store a position map for free that tracks the rough physical
location of every block: this CPU-side position map is later removed using a
standard recursion technique in Circuit OPRAM [5]—however, as we point
out later, to obtain a small depth OPRAM in our paper, we must implement
the recursion differently and thus in our paper we can no longer treat the
recursion as blackbox technique.

– We assume that m is not too small and is at least polylogarithmic in N ; and
– A standard conflict resolution procedure proposed by Boyle et al. [1] has

been executed such that the incoming batch of m requests are for distinct
real blocks (or dummy requests).

Core data structure: a pool and 2m subtrees. Circuit ORAM partitions the
ORAM data structure in memory into 2m disjoint subtrees. Given a batch of
m memory requests (from m CPUs), each request will be served from a ran-
dom subtree. On average, each subtree must serve O(1) requests in a batch;
and due to a simple balls and bins argument, except with negligible probability,
even the worst-case subtree serves only O(α log N) incoming requests for any
super-constant function α.

In addition to the 2m subtree, Circuit OPRAM also maintains an overflow
pool that stores overflowing data blocks that fail to be evicted back into the 2m
subtrees at the end of each batch of m requests.

It will help the reader to equivalently think of the 2m subtrees and the pool in
the following manner: First, think of a single big Circuit ORAM [21] tree (similar
to other tree-based ORAMs [18]). Next, identify a height with 2m buckets, which
naturally gives us 2m disjoint subtrees. All buckets from smaller heights as well
as the Circuit ORAM’s stash form the pool. As proven in the earlier work [5], at
any time, the pool contains at most O(m + α log N) blocks.

Fetch. Given a batch of m memory requests, henceforth without loss of general-
ity, we assume that the m requests are for distinct addresses. This is because we
can adopt the conflict resolution algorithm by Boyle et al. [1] to suppress dupli-
cates, and after data has been fetched, rely on oblivious routing to send fetched
data to all request CPUs. Now, look up the requested blocks in two places, both
the pool and the subtrees:

– Subtree lookup: For a batch of m requests, each request comes with a position
label—and all m position labels define m random paths in the 2m subtrees.
We can now fetch from the m path in parallel. Since each path is O(log N)
in length, each fetch can be completed in O(log log N) parallel steps with the
help of log N CPUs.
All fetched blocks are merged into the pool. Notice that at this moment, the
pool size has grown by a constant factor, but later in a cleanup step, we will
compress the pool back to its original size. Also, at this moment, we have
not removed the requested blocks from the subtrees yet, and we will remove
them later in the maintain phase.



584 T.-H.H. Chan et al.

– Pool lookup: At this moment, all requested blocks must be in the pool. Assum-
ing that m is not too small, we can now rely on oblivious routing to route
blocks back to each requesting CPU—and this can be completed in O(log m)
parallel steps with m CPUs.

Maintain. In the maintain phase, perform the following: (1) remove all blocks
fetched from the paths read; and (2) perform eviction on each subtree.

– Efficient simultaneous removals. After reading each subtree, we need to
remove up to μ := O(α log N) blocks that are fetched. Such removal opera-
tions can lead to write contention when done in parallel: since the paths read
by different CPUs overlap, up to μ := O(α log N) CPUs may try to write to
the same location in the subtree. Circuit OPRAM employs a novel simultane-
ous removal algorithm to perform such removal in O(log N) parallel time with
m CPUs. We refer the reader to the Circuit OPRAM paper for an exposi-
tion of the simultaneous removal algorithm. As noted in the Circuit OPRAM
paper [5], simulatenous removal from m fetch paths can be accomplished in
O(log m + log log N) parallel steps with O(m · log N) total work.

– Selection of eviction candidates and pool-to-subtree routing. At this moment,
we will select exactly one eviction candidate from the pool for each subtree.
If there exists one or more blocks in the pool to be evicted to a certain sub-
tree, then the deepest block (where deepest is precisely defined in Circuit
ORAM [21]) with respect to the current eviction path will be chosen. Other-
wise, a dummy block will be chosen for this subtree. Roughly speaking, using
the above criterion as a preference rule, we can rely on oblivious routing to
route the selected eviction candidate from the pool to each subtree. This can
be accomplished in O(log m) parallel steps with m CPUs assuming that m is
not too small.

– Eviction. Now, each subtree performs exactly 1 eviction. This can be accom-
plished in O(log N) runtime using the sequential procedure described in the
original Circuit ORAM paper [21]. At the end of this step, each subtree will
output an eviction leftover block: the leftover block is dummy if the chosen
eviction candidate was successfully evicted into the subtree (or if the evic-
tion candidate was dummy to start with); otherwise the leftover block is the
orginal eviction candidate. All these eviction leftovers will be merged back
into the central pool.

– Pool cleanup. Notice that in the process of serving a batch of requests, the
pool size has grown—however, blocks that have entered the pool may be
dummy. In particular, we shall prove that the pool’s occupancy will never
exceed c · m + α log N for an appropriate constant c except with negl(N)
probability. Therefore, at the end of the maintain phase, we must compress
the pool back to c · m + α log N . Such compression can easily be achieved
through oblivious sorting in O(log m) parallel steps with m CPUs, assuming
that m is not too small.

Recursion. Thus far, we have assumed that the position map is stored on the
CPU-side, such that the CPU knows where every block is in physical memory.
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To get rid of the position map, Circuit OPRAM employs a standard recursion
technique that comes with the tree-based ORAM/OPRAM framework [18]. At a
high level, the idea of the recursion framework is very simple: instead of storing
the position map on the CPU side, we recurse and store the position map in
a smaller OPRAM in physical memory; and then we recurse again and store
the position map of this smaller OPRAM in a yet smaller OPRAM in physical
memory, and so on. If each block can store γ > 1 number of position labels, then
every time we recurse, the OPRAM’s size reduces by a factor of γ. Thus in at
most log N recursion levels, the metadata size becomes at most O(1) blocks—and
at this moment, the CPU can store all the metadata locally in cache.

Although most prior tree-based ORAM/OPRAM papers typically treat this
recursion as a standard, blackbox technique, in this paper we cannot—on the
contrary, it turns out that the recursion becomes the most non-trivial part of our
low-depth OPRAM algorithm. Thus, henceforth the reader will need to think
of the recursion in an expanded form—we now explain what exactly happens in
the recursion in an expanded form. Imagine that one of the memory requests
among the batch of m requests asks for the logical address (0101100)2 in binary
format, and suppose that each block can store 2 position labels. Henceforth we
focus on what happens for fetching this logical address (0101100)2—but please
keep in mind that there are m such addresses and thus the following process is
repeated m times in parallel.

– First, the 0th recursion level (of constant size) will tell the 1st recursion level
the position label for the address (0∗)2.

– Next, the 1st recursion level fetch the metadata block at level-1 address (0∗)2
and this fetched block contains the position labels for (00∗)2 and (01∗)2.

– Now, level-1 informs level-2 of the position label for (01∗)2; at this moment,
level-2 fetches the metadata block for the level-2 address (01∗)2 and this
fetched block contains the position labels for the addresses (010∗)2 and
(011∗)2; and so on.

– This continues until the D-th recursion level (i.e., the final recursion level)—
this final recursion level stores actual data blocks rather than metadata, and
thus the desired data block will be fetched at the end.

As mentioned, the above steps are in fact replicated m times in parallel since
there are m requests in a batch. This introduces a couple additional subtleties:

– First, notice that for obliviousness, conflict resolution must be performed
upfront for each recursion level before the above procedure starts—this step
can be parallelized across all recursion levels.

– Second, how do the m fetch CPUs at one recursion level obliviously route the
fetched position labels to the m fetch CPUs waiting in the next recursion
level? Circuit OPRAM relies on a standard oblivious routing procedure (ini-
tially described by Boyle et al. [1]) for this purpose, thus completely hiding
which CPUs route to which.
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Important observation. At this moment, we make an important observation.
In the Circuit OPRAM algorithm, the fetch phase operations are inherently
sequential across all recursion levels, and the maintain phase operations can
be parallelized across all recursion levels. In particular, during the fetch phase,
the m fetch CPUs at recursion level d must block waiting for recursion level
d − 1 to pass down the fetched position labels before its own operations can
begin. Due to the sequential nature of the fetch phase, Circuit OPRAM incurs
at least (log m + log log N) log N depth, where the log m stems from level-to-
level oblivious routing, log log N stems the depth needed to parallel-fetch from
a path of length log N (and other operations), and the log N factor is due to the
number of recursion levels. In comparison, the depth of the maintain phase is
not the limiting factor due to the ability to perform the operations in parallel
across recursion levels.

4.2 Other Important Building Blocks

Permutation-related building blocks. We will rely on the following building blocks
related to generating and applying permutations. In the interest of this space, we
describe the abstractions of the building blocks but defer their full specification
to our online full version [3].

1. Apply a pre-determined permutation to an array. It is not difficult to
see that we can in parallel apply a pre-determined permutation to an array in
a single parallel step (see our online full version [3] for the detailed algorithm).

2. Permute an array by a secret random permutation. One can generate
a secret random permutation and apply it to an array obliviously, without
revealing any information about the permutation—and this can be accom-
plished in O(log n) depth and O(n log n) work for an array of size n. The
formal specification and proofs are deferred to the online full version [3].

3. Obliviously construct a routing permutation that permutes a source
to a destination array. In our online full version [3] we show how to accom-
plish the following task: given a source array snd of length k containing dis-
tinct real elements and dummies (where each dummy element contains unique
identifying information as well), and a destination array rcv also of length k
containing distinct real elements and dummies, with the guarantee that the
set of real elements in snd are the same as the set of real elements in rcv. Now,
construct a routing permutation π : [k] → [k] (in an oblivious manner) such
that for all i ∈ [k], if snd[i] contains a real element, then rcv[π[i]] = snd[i].
This can be accomplished in O(n log n) work and O(log n) depth by calling
oblivious sort O(1) number of times.

Oblivious bin-packing. Oblivious bin-packing is the following primitive.

– Inputs: Let B denote the number of bins, and let Z denote the target bin
capacity. We are given an input array denoted In, where each element is either
a dummy denoted ⊥ or a real element that is tagged with a bin number
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g ∈ [B]. It is guaranteed that there are at most Z elements destined for
each bin.

– Outputs: An array Out[1 : BZ] of length B · Z containing real and dummy
elements, such that Out[(g − 1)B + 1 : gB] denotes contents of the g-th bin
for g ∈ [B]. The output array Out must guarantee that the g-th bin contains
all elements in the input array In tagged with the bin number g; and that
all real elements in bin g must appear in the input array In and are tagged
with g.

There is an oblivious parallel algorithm that accomplishes oblivious bin
packing in total work O(ñ log ñ) and parallel runtime O(log ñ) where ñ =
max(|In|, B · Z). The algorithm works as follows:

1. For each group g ∈ [B], append Z filler elements of the form (filler, g) to
the resulting array—these filler elements ensure that every group will receive
at least Z elements after the next step.

2. Obliviously sort the resulting array by the group number, placing all dummies
at the end. When elements have the same group number, place filler elements
after real elements.

3. By invoking an instance of the oblivious aggregation algorithm [1,16] (see
full version [3] for the definition of oblivious aggretation), each element in
the array finds the leftmost element in its own group. Now for each element
in the array, if its offset within its own group is greater than Z, replace the
element with a dummy ⊥.

4. Oblivious sort the resulting array placing all dummies at the end. Truncate
the resulting array and preserve only first B · Z blocks.

5. For every filler element in the resulting array, replace it with a dummy.

5 A Small-Depth OPRAM: Level-to-Level Routing
Algorithm

5.1 Overview of Our OPRAM

We now show how we can improve the depth of OPRAM schemes [1] by a
logarithmic factor, through employing the help of more CPUs; and importantly,
we achieve this without incurring extra total work in comparison with the best
known OPRAM scheme [5].

Challenges. As argued earlier in Sect. 4.1, for the case of general block sizes, the
most sequential part of the Circuit OPRAM algorithm stems from the (up to)
log N recursion levels. More specifically, (apart from the final data level), each
recursion level’s job is to fetch the metadata (referred to as position labels)
necessary, and route this information to the next recursion level. In this way,
the next recursion level will know where in physical memory to look for the
metadata needed by its next recursion level, and so on (we refer the reader to
Sect. 4.1 for a more detailed exposition of the recursion).
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Thus, the fetch phase operations of Circuit OPRAM are inherently sequen-
tial among the D recursion levels, incurring (D(log m + log log N)) in depth,
where the log m term stems from the level-to-level oblivious routing of fetched
metadata, and the log log N term stems from fetching metadata blocks from a
path of length log N . Igoring the log log N term, our goal therefore is to get rid
of the log m depth that stems from level-to-level oblivious routing.

Our result. Our main contribution is to devise a low-depth algorithm to perform
level-to-level routing of metadata. At first sight, this task seems unlikely to be
successful—since each recursion level must obliviously route its metadata to the
next level, it would seem like we are inherently subject to the depth necessary
for an oblivious routing algorithm [1]. Since oblivious routing in some sense
implies oblivious sorting, it would seem like we have to devise an oblivious sorting
algorithm of less than logarthmic depth to succeed in our goal.

Perhaps somewhat surprisingly, we show that this need not be the case. In
particular, we show that by (1) allowing a negligible statistical failure probability;
(2) exploiting special structures of our routing problem; and (3) introducing an
offline/online paradigm for designing parallel oblivious algorithms, we can devise
a special-purpose level-to-level oblivious routing algorithm such that

1. all work that is inherently log m in depth is pushed to an offline phase that
can be parallelized across all recursion levels; and

2. during the online phase that is inherently sequential among all log N recursion
levels, we can limit the work-depth of each recursion level to only log log N
rather than log m—note that for most interesting parameter regimes that we
care about, log m 	 log log N .

We defer the detailed introduction of this algorithm and its proofs to Sect. 5.2.
As a result, we obtain a new, statistically secure OPRAM algorithm (for general
block sizes) that achieves O(log N log log N) depth blowup and O(log2 N) total
work blowup. In comparison, under our new performance metrics, the best known
OPRAM algorithm [5] achieves O(log2 N) total work blowup and O(log2 N)
depth blowup. Thus we achieve a logarithmic factor improvement in terms of
depth.

Extensions. We consider several extensions. First, using a standard technique
described by Fletcher et al. [7] and extended to the OPRAM setting by Chan and
Shi [5], we show how to obtain a computationally secure OPRAM scheme with
O(log2 N/ log log N) total work blowup and O(log N) depth blowup, and sup-
porting general block sizes. In light of our aforementioned OPRAM depth lower
bound (which also applies to computationally secure OPRAMs), our OPRAM
scheme is optimal for m = N ε where ε > 0 is an arbitrarily small constant.

Finally, we consider a setting with sufficiently large blocks, say, the block size
is N ε for any constant ε > 0—in this case, the recursion depth becomes O(1).
In this case, the limiting factor to an OPRAM’s work depth now is the evic-
tion algorithm (rather than the level-to-level routing). We show how to leverage
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a non-trivial devise and conquer technique to devise a new, small-depth evic-
tion algorithm, allowing us to perform eviction along a path of length log N in
log log N depth rather than log N—however, this is achieved at the cost of a small
log log N blowup in total work. As a result, we show that for sufficiently large
blocks, there is an OPRAM scheme with depth as small as O(log log N + log m)
where the log log N part arises from our low-depth eviction algorithm (and other
operations), and the log m part arises from the conflict resolution and oblivious
routing of fetched data back to requesting CPUs—thus tightly matching our
depth lower bound as long as m is at least logarithmic in N .

5.2 Small-Depth Routing of Position Identifiers: Intuition

Problem statement. As we explained earlier, in each recursion level, m fetch
CPUs fetch the metadata (i.e., position labels) required for the next recursion
level. The next recursion level contains m fetch CPUs waiting to receive these
position labels, before its own operations can begin. Circuit OPRAM performs
such level-to-level routing using a standard oblivious routing building block, thus
incurring at least D log m depth where D is the number of recursion levels which
can be as large as log N , and log m is the depth of standard oblivious routing.
How can we reduce the depth necessary for level-to-level routing?

We will first clarify some details of the problem setup. Recall that in each
PRAM step, we receive a batch of m memory requests, i.e., m logical addresses.
Given these m logical addresses, we immediately know which level-d addresses to
fetch for each recursion level d (see Sect. 4.1 for details). We assume that conflict
resolution has been performed for each recursion level d on all of the m level-
d addresses, and thus, every real (i.e., non-dummy) level-d address is distinct.
Now, note that from all these level-d addresses (and even without fetching the
actual metadata in each recursion level), we can already determine the routing
topology from level to level: as an example, a level-2 CPU that needs to fetch
the level-2 address (010∗) would like to receive position labels from the level-1
fetch CPU with the address (01∗).

Our goal here is to improve the OPRAM’s depth to O(log N log log N) for
general (worst-case) block sizes. We use the parameter Γ to denote the number
of position labels that a block can store; we let γ := min{Γ,m} be an upper
bound on the number of position labels in a block that is “useful” for the next
recursion level. To achieve this, in the part of the algorithm that is sequential
among all recursion levels (henceforth also referred to as the online part), we
can only afford O(log log N) depth rather than the log m necessary for oblivious
routing. Indeed, for a general oblivious routing problem consisting of m senders
and m receivers, it appears the best one can do is to rely on an oblivious routing
network [1,6] that has log m depth—so how can we do better here? We rely on
two crucial insights:

1. First, we observe that our routing problem has small fan-in and fan-out: each
sender has at most γ recipients; and each recipient wants to receive from at
most 1 sender. This is because that each fetched metadata block contains at
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most γ position labels, and obviously each fetch CPU in the next level only
needs one position label to proceed.

2. Second, we will rely on an offline-online paradigm—in the offline phase, we are
allowed to perform preparation work that indeed costs log m depth; however,
in the online phase, the depth is kept to be small. Later when we employ this
offline/online oblivious routing building block in our full OPRAM algorithm,
we will show that the offline phase does not depend on any fetched data, and
thus can be paralellized across all recursion levels, whereas the online phase
must still be sequential—but recall that the online phase has much smaller
depth.

First insight: localized routing. Our first idea is to rely on this observation to
restrict oblivious routing to happen only within small groups—as we shall explain
later, for this idea to work, it is essential that our routing problem has small
fan-in and fan-out. More specifically, we would like that each small group of
senders talk to a corresponding small group of receivers, say, sender group Si

talks only to receiver group Ri, where both Si and Ri are μ := αγ2 log N in size,
where the choice of μ is due to Lemma 5. If we do this, then oblivious routing
within each small group costs only log μ depth.

How can we arrange senders and receivers into such small groups? For cor-
rectness we must guarantee that for every i, each receiver in Ri will be able to
obtain its desired item from some sender in Si.

To achieve this, we rely on a randomized load balancing approach. The idea
is very simple. First, we pad the sender array with dummy senders to a size of
2m—recall that there are at most m real senders. Similarly, we pad the receiver
array to a size of 2m as well. Henceforth if a receiver wants an item from a
sender, we say that the sender and receiver are connected. Every dummy sender
is obviously connected to 0 receivers.

Now, if we pick a random sender from the sender array, in expectation this
sender will be connected to 0.5 receivers. Thus a random subset of μ senders
will in expectation is connected to 0.5µ receivers—using measure concentration
techniques, it is not difficult to show that a random subset of μ senders is con-
nected to μ receivers except with negligible probability—note that this measure
concentration result holds only when our routing problem has small fan-in and
fan-out (see Lemma 5 for details).

Our idea is to randomly permute the source array, and have the first μ sender
be group 1, the second μ senders be group 2, and so on. By relying on O(1)
number of oblivious sorts, we can now arrange the receiver array to be “loosely
aligned” with the sender array, i.e., all receivers connected to sender group 1 are
in the first size-μ bucket of the receiver array, all receivers connected to sender
group 2 are in the second size-μ bucket of the receiver array, and so on.

Using the above idea, the good news is that oblivious routing is now con-
strained to μ-sized groups (each containing γ addresses), thus costing only log μ
depth. However, our above algorithm still involves randomly permuting the
sender array and oblivious routing to loosely align the receiver array with the
sender array—these steps cost log m depth. Thus our idea is to perform these
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steps in an offline phase that can be parallelized across all recursion levels, and
thus the depth does not blow up by the number of recursion levels. Nonetheless
how to instantiate this offline/online idea is non-trivial as we explain below.

Second insight: online/offline paradigm. One challenge that arises is how to coor-
dinate among all recursion levels. To help the reader understand the problem,
let us first describe what would have happened if everything were performed
online, sequentially level by level:

Imagine that each recursion has 2m fetch CPUs (among which at most m
are real) first acting as receivers. Once these receivers have received the position
labels, they will fetch data from the OPRAM’s tree data structure. At this point,
they hold the position labels desired by the next recursion level, and thus the
receivers now switch roles and become senders with resepct to the next recursion
level. Before the receivers become senders, it is important that they be randomly
permuted for our earlier load balancing technique to work. Now, we can go ahead
and prepare the next recursion level’s receivers to be loosely aligned with the
permuted senders, and proceed with the localized oblivious routing.

Now let us consider how to divide this algorithm into a parallel offline phase
and a subsequent low-depth online phase. Clearly, the oblivious routing necessary
for loosely aligning each recursion level’s receivers with the last level’s senders
must be performed in the offline phase—and we must paralellize this step among
all recursion levels. Thus, our idea is the following:

– First, for each recursion level d in parallel, we randomly permutate level d’s
fetch CPUs in an oblivious fashion (using a building block called oblivious
random permutation), at the end of which we have specified the configuration
of level d’s sender array (that is, after level d’s fetch CPUs switch roles and
become senders).

– At this point, each recursion level d can prepare its receiver array based on
the configuration of level (d − 1)’s sender array. This can be done in parallel
too.

– During the online phase, after fetching metadata from the OPRAM tree, the
receivers must permute themselves to switch role to senders—since the offline
stage has already dictated the sender array’s configuration, this permutation
step must respect the offline stage’s decision.
To achieve this in small online depth, our idea is that during the offline phase,
each recursion level relies on an instance of oblivious routing to figure out
exactly what permutation to apply (henceforth called the “routing permuta-
tion”) to switch the receiver array to the sender array’s configuration—and
this can be done in parallel among all recursion levels once a level’s receiver
and sender arrays have both been determined. Once the offline stage has
written down this routing permutation, in the online stage, the receivers can
simply apply the permutation, i.e., each receiver writes itself to some array
location as specified by the permutation that offline stage has written down.
Applying the permutation online takes a single parallel step.
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One observation is that during the online stage, the routing permutation is
revealed in the clear. To see why this does not leak information, it suffices to see
that the result of this routing permutation, i.e., the sender array, was obliviously
randomly permuted to start with (using a building block called oblivious random
permutation). Thus, even conditioned on having observed the oblivious random
permutation’s access patterns, each permutation is still equally likely—and thus
the routing permutation that is revealed is indistinguishable from a random
permutation (even when conditioned on having observed the oblivious random
permutation’s access patterns).

5.3 Core Subroutine: Localized Routing

Notations and informal explanation. In the OPRAM’s execution, the instruc-
tions waiting to receive position labels at a recursion level d is denoted Instr〈d〉.
Instr〈d〉 has been obliviously and randomly permuted in the offline phase. When
these incomplete instructions have received position labels, they become com-
plete and are now called CInstr〈d〉 where CInstr〈d〉 and Instr〈d〉 are arranged in the
same order. When data blocks are fetched in recursion level d, they are called
Fetched〈d〉, and Fetched〈d〉 has the same order as CInstr〈d〉. In the offline phase,
Instr〈d〉 is obliviously sorted to be loosely aligned with Fetched〈d−1〉 resulting in
Instr

〈d〉
, such that Instr

〈d〉
can receive position labels from Fetched〈d−1〉 through

localized oblivious routing. The offline phase also prepares a routing permutation
πd→d+1, that will permute Instr

〈d〉
(after having received position labels) back

to CInstr〈d〉—and the online phase will apply this routing permutation πd→d+1

in a single parallel step. We now describe our algorithms more formally.
We consider the following problem where there is a source array and a desti-

nation array, and the destination array wants to receive position identifiers from
the source. Specifically, the source array is a set of fetched blocks in randomly
permuted order, where each block may contain up to γ position labels corre-
sponding to γ addresses in the next recursion level. The destination array is
an incomplete instruction array where each element contains the address of the
block to be read at the next recursion level—and each address must receive its
corresponding position label before the fetch operations at the next recursion
level can be invoked.

– Inputs: The inputs contain a randomly permuted source array Fetched〈d〉 that
represent the fetched position identifier blocks at recursion level d, and a ran-
domly permuted destination array Instr〈d+1〉 which represents the incomplete
instruction array at recursion level d + 1.

• The source array Fetched〈d〉 contains 2m blocks, each of which contains
up to γ (logical) pairs of the form (addr, pos) that are needed in the
next recursion level. All the γ addresses in the same block comes from Γ
contiguous addresses, and thus in reality the address storage is actually
compressed—however, we think of each block in Fetched〈d〉 as logically
containing pairs of the form (addr, pos).
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• The destination array Instr〈d+1〉 contains m elements each of which is
of the form (addr, ), where “ ” denotes a placeholder for receiving the
position identifier for addr later. This array Instr〈d+1〉 is also referred to
as the incomplete instruction array.

• We assume that
(1) all addresses in the destination array must occur in the source array;
(2) the γ addresses contained in the same block come from Γ contiguous

addresses; and
(3) both the source array Fetched〈d〉 and the destination array Instr〈d+1〉

have been randomly permuted.
– Outputs: A complete instruction array denoted CInstr of length 2m where
CInstr〈d+1〉[i] is of the form (addri, posi) such that

• Instr〈d+1〉[i] = (addri, ), i.e., the sequence of addresses contained in the
output CInstr〈d+1〉 agree with those contained in the input Instr〈d+1〉; and

• The tuple (addri, posi) exists in some block in Fetched〈d〉, i.e., the position
identifier addri receives is correct (as defined by Fetched〈d〉).

Offline phase. The inputs are the same as the above. In the offline phase, we
aim to output the following arrays:

(a) A permuted destination array Instr
〈d+1〉

that is a permutation of Instr〈d+1〉

such that it is somewhat aligned with the source Fetched〈d〉, where somewhat
aligned means the following:
[Somewhat aligned:] Fix α := ω(1) to be any super-constant function.

For each consecutive μ := αγ2 log N contiguous source blocks denoted
Fetched〈d〉[kμ + 1 : (k + 1)μ], there is a segment of μ contiguous destina-
tion blocks Instr

〈d+1〉
[kμ+1 : (k+1)μ] such that all addresses in Instr〈d+1〉

that are contained in Fetched〈d〉[kμ + 1 : (k + 1)μ] appear in the range
Instr

〈d+1〉
[kμ + 1 : (k + 1)μ].

(b) A routing permutation πd→d+1 : [2m] → [2m].

In other words, the goal of the offline phase is to prepare the source and
the destination arrays such that in the online phase, we only perform oblivious
routing from every μ := αγ2 log N blocks (each containing at most γ labels) in
the source to every μ tuples in the destination where α = ω(1) is any super-
constant function. This way, the online phase has O(log μ) parallel runtime.

Before explaining how to accomplish the above, we first prove that if the
source array, i.e., Fetched〈d〉 has been randomly permuted, then every μ contigu-
ous blocks contain at most μ position identifiers needed by the destination.

Lemma 5. Let arr denote an array of 2m randomly permuted blocks, each of
which contains γ items such that out of the 2m ·γ items, at most m are real and
the rest are dummy.

Then, for any consecutive n blocks in arr, with probability at least 1 −
exp(− n

2γ2 ), the number of real items contained in them is at most n.
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The proof of Lemma 5 follows by a standard concentration argument and is
to the online full version [3].

We now explain the offline algorithm, i.e., permute the destination array to
be somewhat aligned with the source array such that localized oblivious routing
will be sufficient. We describe a parallel oblivious algorithm that completes in
O(m log m) total work and O(log m) parallel runtime.

1. For each block in Fetched〈d〉, write down a tuple (minaddr,maxaddr, i) where
minaddr is the minimum address contained in the block, maxaddr is the max-
imum address contained in the block, and i is the offset of the block within
the Fetched〈d〉 array.
Henceforth we refer to the resulting array as SrcMeta.

2. Imagine that the resulting array SrcMeta and the destination array Instr〈d+1〉

are concatenated. Now, oblivious sort this concatenated array such that each
metadata tuple (minaddr,maxaddr, i) ∈ SrcMeta is immediately followed by
all tuples from Instr〈d+1〉 whose addresses are contained within the range
[minaddr,maxaddr].

3. Relying on a parallel oblivious aggregate operation [1,16] (see full version [3]
for the definition), each element in the array (resulting from the above step)
learns the first metadata tuple (minaddr,maxaddr, i) to its left. In this way,
each address will learn which block (i.e., i) within Fetched〈d〉 it will receive
its position identifier from.
The result of this step is an array such that each metadata tuple of the
(minaddr,maxaddr, i) is replaced with a dummy entry ⊥, and each address
addr is replaced with (addr, i), denoting that the address addr will receive its
position identifier from the i-th block of Fetched〈d〉.

4. For each non-dummy entry in the above array, tag the entry with a group
number  i

μ�. For each dummy entry, tag it with ⊥.
5. Invoke an instance of the oblivious bin packing algorithm and pack the result-

ing array into � 2m
μ � bins of capacity μ each. We refer to the resulting array

as Instr
〈d+1〉

.
6. Obliviously compute the routing permutation πd→d+1 that maps Instr

〈d+1〉

to Instr〈d+1〉.
7. Output Instr

〈d+1〉
and πd→d+1.

Online phase. The online phase consists of the following steps:

1. For every k, fork an instance of the oblivious routing algorithm such
that Instr

〈d+1〉
[kμ + 1 : (k + 1)μ] will receive its position identifiers from

Fetched〈d〉[kμ + 1 : (k + 1)μ].
This completes in O(m log μ) total work and O(log μ) parallel runtime.

2. Apply the routing permutation πd→d+1 to Instr
〈d+1〉

, and output the result
as CInstr〈d+1〉.
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5.4 Level-to-Level Routing

Given our core localized routing building block, the full level-to-level position
identifier routing algorithm is straightforward to state.

Offline phase. Upon receiving a batch of m memory requests, for each recursion
level d in parallel:

– Truncate the addresses to the first d bits and perform conflict resolution. The
result is an array of length m containing distinct addresses and dummies to
read from recursion level d.

– Randomly permute the resulting array, and obtain an incomplete instruction
array Instr〈d〉. It is important for security that the random permutation is
performed obliviously such that no information is leaked to the adversary
about the permutation.
For d = 0, additionally fill in the position map identifiers and complete the
instruction array to obtain CInstr〈0〉.

– From the Instr〈d〉 array, construct a corresponding incomplete Fetched〈d〉

array where all position identifier fields are left blank as “ ”. The blocks
in Fetched〈d〉 are ordered in the same way as Instr〈d〉.

– If d is not the data level, fork an instance of the localized routing algorithm
with input arrays Fetched〈d〉 and Instr〈d+1〉, and output a permuted version
of Instr〈d+1〉 denoted Instr

〈d+1〉
a routing permutation πd→d+1.

Online phase. From each recursion level d = 0, 1, . . . D sequentially where D =
O( log N

log Γ ) is the total number of recursion levels:

– Based on the completed instruction CInstr〈d〉, allocate an appropriate number
of processors for each completed instruction and perform the fetch phase of
the OPRAM algorithm. The result is a fetched array Fetched〈d〉.

– Execute the online phase of the localized routing algorithm for recursion level
d with the inputs Fetched〈d〉, Instr

〈d+1〉
, and πd→d+1. The result is a completed

instruction array CInstr〈d+1〉 for the next recursion level.

5.5 Main Upper Bound Theorems

In the interest of space, we defer the full details of our OPRAM construction
and proofs to the online full version [3]. Our main theorem is the following:

Theorem 4 (Statistically secure, small-depth OPRAM). There exists a
statistically secure OPRAM scheme (for general block sizes) with O(log2 N) total
work blowup, and O(log N log log N) parallel runtime blowup, where the OPRAM
consumes only O(1) blocks of CPU private cache.

Using a standard PRF-and-counter compression trick first proposed by
Fletcher et al. [7] and later improved and extended to the parallel setting by
Chan and Shi [5], we obtain the following computationally secure variant.
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Corollary 1 (Computationally secure, small-depth OPRAM). Assume
that one-way functions exist. Then, there exists a computationally secure
OPRAM scheme (for general block sizes) with O(log2 N/ log log N) total work
blowup and O(log N) parallel runtime blowup, where the OPRAM consumes only
O(1) blocks of CPU private cache.

Finally, in our online full version [3], we include additional algorithmic results
that specifically optimize our OPRAM’s depth for sufficiently large block sizes.
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