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Abstract. Reducing the Learning with Errors problem (LWE) to the
Unique-SVP problem and then applying lattice reduction is a com-
monly relied-upon strategy for estimating the cost of solving LWE-based
constructions. In the literature, two different conditions are formulated
under which this strategy is successful. One, widely used, going back
to Gama & Nguyen’s work on predicting lattice reduction (Eurocrypt
2008) and the other recently outlined by Alkim et al. (USENIX 2016).
Since these two estimates predict significantly different costs for solv-
ing LWE parameter sets from the literature, we revisit the Unique-SVP
strategy. We present empirical evidence from lattice-reduction experi-
ments exhibiting a behaviour in line with the latter estimate. However,
we also observe that in some situations lattice-reduction behaves some-
what better than expected from Alkim et al.’s work and explain this
behaviour under standard assumptions. Finally, we show that the secu-
rity estimates of some LWE-based constructions from the literature need
to be revised and give refined expected solving costs.

Keywords: Cryptanalysis · Lattice-based cryptography · Learning with
Errors · Lattice reduction

1 Introduction

The Learning with Errors problem (LWE) has attained a central role in cryp-
tography as a key hard problem for building cryptographic constructions,
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e.g. quantum-safe public-key encryption/key exchange and signatures
schemes [Reg09,LP11,ADPS16,BG14a], fully homomorphic encryption [BV11,
GSW13] and obfuscation of some families of circuits [BVWW16].

Informally, LWE asks to recover a secret vector s ∈ Z
n
q , given a matrix

A ∈ Z
m×n
q and a vector c ∈ Z

m
q such that As + e = c mod q for a short

error vector e ∈ Z
m
q sampled coordinate-wise from an error distribution χ. The

decision variant of LWE asks to distinguish between an LWE instance (A, c)
and uniformly random (A, c) ∈ Z

m×n
q × Z

m
q . To assess the security provided by

a given set of parameters n, χ, q, two strategies are typically considered: the dual
strategy finds short vectors in the lattice

qΛ∗ =
{
x ∈ Z

m
q | x · A ≡ 0 mod q

}
,

i.e. it solves the Short Integer Solutions problem (SIS). Given such a short vector
v, we can decide if an instance is LWE by computing 〈v, c〉 = 〈v, e〉 which is
short whenever v and e are sufficiently short [MR09]. This strategy was recently
revisited for small, sparse secret instances of LWE [Alb17]. The primal strat-
egy finds the closest vector to c in the integral span of columns of A mod
q [LP11], i.e. it solves the corresponding Bounded Distance Decoding problem
(BDD) directly. Writing [In|A′] for the reduced row echelon form of AT ∈ Z

n×m
q

(with high probability and after appropriate permutation of columns), this task
can be reformulated as solving the unique Shortest Vector Problem (uSVP) in
the m + 1 dimensional q-ary lattice

Λ = Z
m+1 ·

⎛

⎝
In A′ 0
0 q Im−n 0
cT t

⎞

⎠ (1)

by Kannan’s embedding [Kan87] with embedding factor t.1 Indeed, BDD and
uSVP are polynomial-time equivalent for small approximation factors up to√

n/ log n [LM09]. The lattice Λ has volume t · qm−n and contains a vector
of norm

√‖e‖2 + t2 which is unusually short, i.e. the gap between the first and
second Minkowski minimum λ2(Λ)/λ1(Λ) is large.

Alternatively, if the secret vector s is also short, there is a second established
embedding reducing LWE to uSVP (cf. Eq. (4)). When the LWE instance under
consideration is in normal form, i.e. the secret s follows the noise distribution,
the geometries of the lattices in (1) and (4) are the same, which is why without
loss of generality we only consider (1) in this work save for Sect. 5.

To find short vectors, lattice reduction [LLL82,Sch87,GN08a,HPS11,CN11,
MW16] can be applied. Thus, to establish the cost of solving an LWE instance,
we may consider the cost of lattice reduction for solving uSVP.

Two conflicting estimates for the success of lattice reduction in solving uSVP
are available in the literature. The first is going back to [GN08b] and was devel-
oped in [AFG14,APS15,Gö16,HKM17] for LWE. This estimate is commonly
1 Alternatively, we can perform lattice reduction on the q-ary lattice spanned by AT,

i.e. the lattice spanned by the first m rows of (1), followed by an enumeration to
find the closest (projected) lattice point to (the projection of) c [LP11,LN13].
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relied upon by designers in the literature, e.g. [BG14a,CHK+17,CKLS16a,
CLP17,ABB+17]. The second estimate was recently outlined in [ADPS16] and
is relied upon in [BCD+16,BDK+17]. We will use the shorthand 2008 estimate
for the former and 2016 estimate for the latter. As illustrated in Fig. 1, the pre-
dicted costs under these two estimates differ greatly. For example, considering
n = 1024, q ≈ 215 and χ a discrete Gaussian with standard deviation σ = 3.2,
the former predicts a cost of ≈2355 operations, whereas the latter predicts a cost
of ≈2287 operations in the same cost model for lattice reduction.2
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β

[AFG14]

[ADPS16]

Fig. 1. Required block size β according to the estimates given in [AFG14,ADPS16]
for modulus q = 215, standard deviation σ = 3.2 and increasing n; for [AFG14] we set
τ = 0.3 and t = 1. Lattice-reduction runs in time 2Ω(β).

Our Contribution. Relying on recent progress in publicly available lattice-
reduction libraries [FPL17,FPY17], we revisit the embedding approach for solv-
ing LWE resp. BDD under some reasonable assumptions about the LWE error
distribution. After some preliminaries in Sect. 2, we recall the two competing
estimates from the literature in Sect. 3. Then, in Sect. 4, we expand on the expo-
sition from [ADPS16] followed by presenting the results of running 23,000 core
hours worth of lattice-reduction experiments in medium to larger block sizes β.
Our results confirm that lattice-reduction largely follows the behaviour expected
from the 2016 estimate [ADPS16]. However, we also find that in our exper-
iments the attack behaves somewhat better than expected.3 In Sect. 4.3, we
then explain the observed behaviour of the BKZ algorithm under the Geometric
Series Assumption (GSA, see below) and under the assumption that the unique

2 Assuming that an SVP oracle call in dimension β costs 20.292 β+16.4 [BDGL16,
APS15], where +16.4 takes the place of o(β) from the asymptotic formula and is
based on experiments in [Laa14].

3 We note that this deviation from the expectation has a negligible impact on security
estimates for cryptographic parameters.
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shortest vector is distributed in a random direction relative to the rest of the
basis. Finally, using the 2016 estimate, we show that some proposed parame-
ters from the literature need to be updated to maintain the currently claimed
level of security in Sect. 5. In particular, we give reduced costs for solving the
LWE instances underlying TESLA [ABB+17] and the somewhat homomorphic
encryption scheme in [BCIV17]. We also show that under the revised, corrected
estimate, the primal attack performs about as well on SEAL v2.1 parameter sets
as the dual attack from [Alb17].

2 Preliminaries

We write vectors in lower-case bold, e.g. a, and matrices in upper-case bold, e.g.
A. We write 〈·, ·〉 for the inner products and · for matrix-vector products. By
abuse of notation we consider vectors to be row resp. column vectors depending
on context, such that v ·A and A ·v are meaningful. We write Im for the m×m
identity matrix over whichever base ring is implied from context. We write 0m×n

for the m × n all zero matrix. If the dimensions are clear from the context, we
may omit the subscripts.

2.1 Learning with Errors

The Learning with Errors (LWE) problem is defined as follows.

Definition 1 (LWE [Reg09]). Let n, q be positive integers, χ be a probability
distribution on Z and s be a secret vector in Z

n
q . We denote by Ls,χ the probability

distribution on Z
n
q × Zq obtained by choosing a ∈ Z

n
q uniformly at random,

choosing e ∈ Z according to χ and considering it in Zq, and returning (a, c) =
(a, 〈a, s〉 + e) ∈ Z

n
q × Zq.

Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Z
n
q × Zq are

sampled according to Ls,χ or the uniform distribution on Z
n
q × Zq.

Search-LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉 + e) ∈
Z

n
q × Zq sampled according to Ls,χ.

We may write LWE instances in matrix form (A, c), where rows correspond
to samples (ai, ci). In many instantiations, χ is a discrete Gaussian distribution
with standard deviation σ. Throughout, we denote the number of LWE samples
considered as m. Writing e for the vector of error terms, we expect ‖e‖ ≈ √

mσ.

2.2 Lattices

A lattice is a discrete subgroup of Rd. Throughout, d denotes the dimension of the
lattice under consideration and we only consider full rank lattices, i.e., lattices
Λ ⊂ R

d such that span
R
(Λ) = R

d. A lattice Λ ⊂ R
d can be represented by a basis

B = {b1, . . . ,bk}, i.e., B is linearly independent and Λ = Zb1 + · · · + Zbk. We
write bi for basis vectors and b∗

i for the corresponding Gram-Schmidt vectors.
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We write Λ(B) for the lattice generated by the rows of the matrix B, i.e. all
integer-linear combinations of the rows of B. The volume of a lattice Vol(Λ) is
the absolute value of the determinant of any basis and it holds that Vol(Λ) =∏d

i=1 ‖b∗
i ‖. We write λi(Λ) for Minkowski’s successive minima, i.e. the radius of

the smallest ball centred around zero containing i linearly independent lattice
vectors. The Gaussian Heuristic predicts

λ1(Λ) ≈
√

d

2πe
Vol(Λ)1/d

.

For a lattice basis B = {b1, . . . ,bd} and for i ∈ {1, . . . , d} let πB,i(v) denote
the orthogonal projection of v onto {b1, . . . ,bi−1}, where πB,1 is the identity.
We extend the notation to sets of vectors in the natural way. Since usually the
basis B is clear from the context, we omit it in the notation and simply write
πi instead of πB,i. Since Sect. 4.3 relies heavily on size reduction, we recall its
definition and reproduce the algorithm in Algorithm1.

Definition 2. Let B be a basis, b∗
i its Gram-Schmidt vectors and

μi,j = 〈bi,b∗
j 〉/〈b∗

j ,b
∗
j 〉,

then B basis is size reduced if |μi,j | ≤ 1/2 for 1 ≤ j ≤ i ≤ n.

Data: lattice basis B
Data: top index i
Data: start index 1 ≤ s < i

1 for j from i − 1 to s do
2 μij ← 〈bi,b

∗
j 〉/〈b∗

j ,b∗
j 〉;

3 bi ← bi − �μij�bj ;

4 end
Algorithm 1: Size reduction

2.3 Lattice Reduction

Informally, lattice reduction is the process of improving the quality of a lattice
basis. To express the output quality of a lattice reduction, we may relate the
shortest vector in the output basis to the volume of the lattice in the Hermite-
factor regime or to the shortest vector in the lattice, in the approximation-factor
regime. Note that any algorithm finding a vector with approximation-factor α
can be used to solve Unique-SVP with a gap λ2(Λ)/λ1(Λ) < α.

The best known theoretical bound for lattice reduction is attained by Slide
reduction [GN08a]. In this work, however, we consider the BKZ algorithm (more
precisely: BKZ 2.0 [Che13], cf. Sect. 4.2) which performs better in practice.
The BKZ-β algorithm repeatedly calls an SVP oracle for finding (approximate)
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shortest vectors in dimension or block size β. It has been shown that after
polynomially many calls to the SVP oracle, the basis does not change much
more [HPS11]. After BKZ-β reduction, we call the basis BKZ-β reduced and in
the Hermite-factor regime assume [Che13] that this basis contains a vector of
length ‖b1‖ = δd

0 · Vol(L)1/d where

δ0 = (((πβ)1/β
β)/(2πe))

1/(2(β−1))
.

Furthermore, we generally assume that for a BKZ-β reduced basis of Λ(B) the
Geometric Series Assumption holds.

Definition 3 (Geometric Series Assumption [Sch03]). The norms of the
Gram-Schmidt vectors after lattice reduction satisfy

‖b∗
i ‖ = αi−1 · ‖b1‖ for some 0 < α < 1.

Combining the GSA with the root-Hermite factor ‖b1‖ = δd
0 · Vol(Λ)1/d and

Vol(Λ) =
∏d

i=1 ‖b∗
i ‖, we get α = δ

−2d/(d−1)
0 ≈ δ−2

0 for the GSA.

3 Estimates

As highlighted above, two competing estimates exist in the literature for when
block-wise lattice reduction will succeed in solving uSVP instances such as (1).

3.1 2008 Estimate

A first systematic experimental investigation into the behavior of lattice reduc-
tion algorithms LLL, DEEP and BKZ was provided in [GN08b]. In particu-
lar, [GN08b] investigates the behavior of these algorithms for solving Hermite-
SVP, Approx-SVP and Unique-SVP for families of lattices used in cryptography.

For Unique-SVP, the authors performed experiments in small block sizes on
two classes of semi-orthogonal lattices and on Lagarias-Odlyzko lattices [LO83],
which permit to estimate the gap λ2(Λ)/λ1(Λ) between the first and second
minimum of the lattice. For all three families, [GN08b] observed that LLL and
BKZ seem to recover a unique shortest vector with high probability whenever
λ2(Λ)/λ1(Λ) ≥ τδd

0 , where τ < 1 is an empirically determined constant that
depends on the lattice family and algorithm used.

In [AFG14] an experimental analysis of solving LWE based on the same
estimate was carried out for lattices of the form (1). As mentioned above, this
lattice contains an unusually short vector v = (e | t) of squared norm λ1(Λ)2 =
‖v‖2 = ‖e‖2 + t2. Thus, when t = ‖e‖ resp. t = 1 this implies λ1(Λ) ≈ √

2mσ
resp. λ1(Λ) ≈ √

mσ, with σ the standard deviation of ei ←$ χ. The second
minimum λ2(Λ) is assumed to correspond to the Gaussian Heuristic for the
lattice. Experiments in [AFG14] using LLL and BKZ (with block sizes 5 and 10)
confirmed the 2008 estimate, providing constant values for τ for lattices of the
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form (1), depending on the chosen algorithm, for a 10% success rate. Overall, τ
was found to lie between 0.3 and 0.4 when using BKZ.

Still focusing on LWE, in [APS15] a closed formula for δ0 is given in func-
tion of n, σ, q, τ, which implicitly assumes t = ‖e‖. In [Gö16] a bound for δ0
in the [GN08b] model for the case of t = 1, which is always used in practice,
is given. In [HKM17], a related closed formula is given, directly expressing the
asymptotic running time for solving LWE using this approach.

3.2 2016 Estimate

In [ADPS16] an alternative estimate is outlined. The estimate predicts that e
can be found if4

√
β/d ‖(e | 1)‖ ≈

√
βσ ≤ δ2β−d

0 Vol(Λ(B))1/d
, (2)

under the assumption that the Geometric Series Assumption holds (until a pro-
jection of the unusually short vector is found). The brief justification for this
estimate given in [ADPS16] notes that this condition ensures that the projec-
tion of e orthogonally to the first d − β (Gram-Schmidt) vectors is shorter than
the expectation for b∗

d−β+1 under the GSA and thus would be found by the SVP
oracle when called on the last block of size β. Hence, for any β satisfying (2),
the actual behaviour would deviate from that predicted by the GSA. Finally,
the argument can be completed by appealing to the intuition that a deviation
from expected behaviour on random instances—such as the GSA—leads to a
revelation of the underlying structural, secret information.5

4 Solving uSVP

Given the significant differences in expected solving time under the two esti-
mates, cf. Fig. 1, and recent progress in publicly available lattice-reduction
libraries enabling experiments in larger block sizes [FPL17,FPY17], we conduct
a more detailed examination of BKZ’s behaviour on uSVP instances. For this, we
first explicate the outline from [ADPS16] to establish the expected behaviour,
which we then experimentally investigate in Sect. 4.2. Overall, our experiments
confirm the expectation. However, the algorithm behaves somewhat better than
expected, which we then explain in Sect. 4.3.

For the rest of this section, let v be a unique shortest vector in some lattice
Λ ⊂ R

d, i.e. in case of (1) we have v = (e | t) where we pick t = 1.

4.1 Prediction

Projected norm. In what follows, we assume the unique shortest vector v is
drawn from a spherical distribution or is at least “not too skewed” with respect
4 [ADPS16] has 2β − d − 1 in the exponent, which seems to be an error.
5 We note that observing such a deviation implies solving Decision-LWE.
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to the current basis. As a consequence, following [ADPS16], we assume that all
orthogonal projections of v onto a k-dimensional subspace of Rd have expected
norm (

√
k/

√
d) ‖v‖. Note that this assumption can be dropped by adapting (2)

to ‖v‖ ≤ δ2β−d
0 Vol(Λ)

1
d since ‖πd−β+1(v)‖ ≤ ‖v‖.

Finding a projection of the short vector. Assume that β is chosen mini-
mally such that (2) holds. When running BKZ the length of the Gram-Schmidt
basis vectors of the current basis converge to the lengths predicted by the GSA.
Therefore, at some point BKZ will find a basis B = {b1, . . . ,bd} of Λ for which
we can assume that the GSA holds with root Hermite factor δ0. Now, consider
the stage of BKZ where the SVP oracle is called on the last full projected block
of size β with respect to B. Note that the projection πd−β+1(v) of the shortest
vector is contained in the lattice

Λd−β+1 := Λ (πd−β+1(bd−β+1), . . . , πd−β+1(bd)),

since

πd−β+1(v) =
d∑

i=d−β+1

νiπd−β+1(bi) ∈ Λd−β+1, where νi ∈ Z with v =
d∑

i=1

νibi.

By (2), the projection πd−β+1(v) is in fact expected to be the shortest non-zero
vector in Λd−β+1, since it is shorter than the GSA’s estimate for λ1(Λd−β+1), i.e.

‖πd−β+1(v)‖ ≈
√

β√
d

‖v‖ ≤ δ
−2(d−β)+d
0 Vol(Λ)

1
d .

Hence the SVP oracle will find ±πd−β+1(v) and BKZ inserts

bnew
d−β+1 = ±

d∑

i=d−β+1

νibi

into the basis B at position d − β + 1, as already outlined in [ADPS16].
In other words, by finding ±πd−β+1(v), BKZ recovers the last β coefficients
νd−β+1, . . . , νd of v with respect to the basis B.

Finding the short vector. The above argument can be extended to an argu-
ment for the full recovery of v. Consider the case that in some tour of BKZ-β,
a projection of v was found at index d − β + 1. Then in the following tour, by
arguments analogous to the ones above, a projection of v will likely be found at
index d − 2β + 2, since now it holds that

πd−2β+2(v) ∈ Λd−2β+2 := Λ
(
πd−2β+2(bd−2β+2), . . . , πd−2β+2(bnew

d−β+1)
)
.

Repeating this argument for smaller indices shows that after a few tours v will
be recovered. Furthermore, noting that BKZ calls LLL which in turn calls size
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reduction, i.e. Babai’s nearest plane [Bab86], at some index i > 1 size reduction
will recover v from πi(v). In particular, it is well-known that size reduction
(Algorithm 1) will succeed in recovering v whenever

v ∈ bnew
d−β+1 +

{
d−β∑

i=1

ci · b∗
i : ci ∈

[
−1

2
,
1
2

]}

. (3)

4.2 Observation

The above discussion naturally suggests a strategy to verify the expected behav-
iour. We have to verify that the projected norms ‖πi(v)‖ = ‖πi(e | 1)‖ do indeed
behave as expected and that πd−β+1(v) is recovered by BKZ-β for the minimal
β ∈ N satisfying (2). Finally, we have to measure when and how v = (e | 1) is
eventually recovered.

Thus, we ran lattice-reduction on many lattices constructed from LWE
instances using Kannan’s embedding. In particular, we picked the entries of
s and A uniformly at random from Zq, the entries of e from a discrete Gaussian
distribution with standard deviation σ = 8/

√
2π, and we constructed our basis as

in (1) with embedding factor t = 1. For parameters (n, q, σ), we then estimated
the minimal pair (in lexicographical order) (β,m) to satisfy (2).

Implementation. To perform our experiments, we used SageMath 7.5.1 [S+17]
in combination with the fplll 5.1.0 [FPL17] and fpylll 0.2.4dev [FPY17]
libraries. All experiments were run on a machine with Intel(R) Xeon(R) CPU
E5-2667 v2 @ 3.30GHz cores (“strombenzin”) resp. Intel(R) Xeon(R) CPU
E5-2690 v4 @ 2.60GHz (“atomkohle”). Each instance was reduced on a single
core, with no parallelisation.

Our BKZ implementation inherits from the implementation in fplll and
fpylll of BKZ 2.0 [Che13] algorithm. As in BKZ 2.0, we restricted the enu-
meration radius to be approximately the size of the Gaussian Heuristic for
the projected sublattice, apply recursive BKZ-β′ preprocessing with a block
size β′ < β, make use of extreme pruning [GNR10] and terminate the algo-
rithm when it stops making significant progress. We give simplified pseudo-
code of our implementation in Algorithm2. We ran BKZ for at most 20 tours
using fplll’s default pruning and preprocessing strategies and, using fplll’s
default auto abort strategy, terminated the algorithm whenever the slope of the
Gram Schmidt vectors did not improve for five consecutive tours. Additionally,
we aborted if a vector of length ≈‖v‖ was found in the basis (in line 15 of
Algorithm 2).

Implementations of block-wise lattice reduction algorithms such as BKZ
make heavy use of LLL [LLL82] and size reduction. This is to remove linear
dependencies introduced during the algorithm, to avoid numerical stability issues
and to improve the performance of the algorithm by moving short vectors to the
front earlier. The main modification in our implementation is that calls to LLL
during preprocessing and postprocessing are restricted to the current block, not
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Data: LLL-reduced lattice basis B
Data: block size β, preprocessing block size β′

1 repeat // tour

2 for κ ← 1 to d do // stepκ

3 size reduction from index 1 to κ (inclusive);
4 � ← ‖b∗

κ‖;
// extreme pruning + recursive preprocessing

5 repeat until termination condition met
6 rerandomise πκ(bκ+1, . . . ,bκ+β−1);
7 LLL on πκ(bκ, . . . ,bκ+β−1);
8 BKZ-β′ on πκ(bκ, . . . ,bκ+β−1);
9 v ← SVP on πκ(bκ, . . . ,bκ+β−1);

10 if v 	= ⊥ then
11 extend B by inserting v into B at index κ + β;
12 LLL on πκ(bκ, . . . ,bκ+β) to remove linear dependencies;
13 drop row with all zero entries;

14 end

15 size reduction from index 1 to κ (inclusive);
16 if � = ‖b∗

κ‖ then
17 yield �;
18 else
19 yield ⊥;
20 end

21 end
22 if � for all κ then
23 return;
24 end

Algorithm 2: Simplified BKZ 2.0 Algorithm

touching any other vector, to aid analysis. That is, in Algorithm2, LLL is called
in lines 7 and 12 and we modified these LLL calls not to touch any row with
index smaller than κ, not even to perform size reduction.

As a consequence, we only make use of vectors with index smaller than κ in
lines 3 and 15. Following the implementations in [FPL17,FPY17], we call size
reduction from index 1 to κ before (line 3) and after (line 15) the innermost loop
with calls to the SVP oracle. These calls do not appear in the original description
of BKZ. However, since the innermost loop re-randomises the basis when using
extreme pruning, the success condition of the original BKZ algorithm needs to
be altered. That is, the algorithm cannot break the outer loop once it makes
no more changes as originally specified. Instead, the algorithm terminates if it
does not find a shorter vector at any index κ. Now, the calls to size reduction
ensure that the comparison at the beginning and end of each step κ is meaningful
even when the Gram-Schmidt vectors are only updated lazily in the underlying
implementation. That is, the call to size reduction triggers an internal update of
the underlying Gram-Schmidt vectors and are hence implementation artefacts.
The reader may think of these size reduction calls as explicating calls otherwise
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hidden behind calls to LLL and we stress that our analysis applies to BKZ as
commonly implemented, our changes merely enable us to more easily predict
and experimentally verify the behaviour.

We note that the break condition for the innermost loop at line 5 depends
on the pruning parameters chosen, which control the success probability of enu-
meration. Since it does not play a material role in our analysis, we simply state
that some condition will lead to a termination of the innermost loop.

Finally, we recorded the following information. At the end of each step κ
during lattice reduction, we recorded the minimal index i such that πi(v) is in
span(b1, . . . ,bi) and whether ±v itself is in the basis. In particular, to find the
index i in the basis B of πi(v) given v, we compute the coefficients of v in basis
B (at the current step) and pick the first index i such that all coefficients with
larger indices are zero. Then, we have πi(bi) = c · πi(v) for some c ∈ R. From
the algorithm, we expect to have found ±πi(bi) = πi(v) and call i the index of
the projection of v.

Results. In Fig. 2, we plot the average norms of πi(v) against the expecta-

tion
√

d − i + 1 σ ≈
√

d−i+1
d

√
m · σ2 + 1, indicating that

√
d − i + 1 σ is a close

approximation of the expected lengths except perhaps for the last few indices.
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Fig. 2. Expected and average observed norms ‖πi(v)‖ for 16 bases (LLL-reduced) and
vectors v of dimension d = m+1 and volume qm−n with LWE parameters n = 65, m =
182, q = 521 and standard deviation σ = 8/

√
2π.

Recall that, as illustrated in Fig. 3, we expect to find the projection πd−β+1(v)
when (β, d) satisfy (2), eventually leading to a recovery of v, say, by an extension
of the argument for the recovery of πd−β+1(v). Our experiments, summarised in
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Fig. 3. Expected and observed norms for lattices of dimension d = m + 1 = 183 and
volume qm−n after BKZ-β reduction for LWE parameters n = 65, m = 182, q = 521
and standard deviation σ = 8/

√
2π and β = 56 (minimal (β, m) such that (2) holds).

Average of Gram-Schmidt lengths is taken over 16 BKZ-β reduced bases of random
q-ary lattices, i.e. without an unusually short vector.

Table 1, show a related, albeit not identical behaviour. Defining a cut-off index
c = d − 0.9β + 1 and considering πκ(v) for κ < c, we observe that the BKZ
algorithm typically first recovers πκ(v) which is immediately followed by the
recovery of v in the same step. In more detail, in Fig. 4 we show the measured
probability distribution of the index κ such that v is recovered from πκ(v) in
the same step. Note that the mean of this distribution is smaller than d − β + 1.
We explain this bias in Sect. 4.3.

The recovery of v from πκ(v) can be effected by one of three subroutines:
either by a call to LLL, by a call to size reduction, or by a call to enumeration that
recovers v directly. Since LLL itself contains many calls to size reduction, and
enumeration being lucky is rather unlikely, size reduction is a good place to start
the investigation. Indeed, restricting the LLL calls in Algorithm 2 as outlined in
Sect. 2.3, identifies that size reduction suffices. That is, to measure the success
rate of size reduction recovering v from πκ(v), we observe size reduction acting
on πκ(v). Here, we consider size reduction to fail in recovering v if it does not
recover v given πκ(v) for κ < c with c = d − 0.9β + 1, regardless of whether v
is finally recovered at a later point either by size reduction on a new projection,
or by some other call in the algorithm such as an SVP oracle call at a smaller
index. As shown in Table 1, size reduction’s success rate is close to 1. Note that
the cut-off index c serves to limit underestimating the success rate: intuitively
we do not expect size reduction to succeed when starting from a projection with
larger index, such as πd−γ+1(v) with γ < 10. We discuss this in Sect. 4.3.
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Fig. 4. Probability mass function of the index κ from which size reduction recovers v,
calculated over 10,000 lattice instances with LWE parameters n = 65, m = 182, q = 521
and standard deviation σ = 8/

√
2π, reduced using β = 56. The mean of the distribution

is ≈124.76 while d − β + 1 = 128.

Overall, Table 1 confirms the prediction from [ADPS16]: picking β = β2016

to be the block size predicted by the 2016 estimate leads to a successful recovery
of v with high probability.

4.3 Explaining Observation

As noted above, our experiments indicate that the algorithm behaves better
than expected by (2). Firstly, the BKZ algorithm does not necessarily recover a
projection of v at index d − β + 1. Instead, the index κ at which we recover a
projection πκ(v) follows a distribution with a centre below d − β + 1, cf. Fig. 4.
Secondly, size reduction usually immediately recovers v from πκ(v). This is some-
what unexpected, since we do not have the guarantee that |ci| ≤ 1/2 as required
in the success condition of size reduction given in (3).

Finding the projection. To explain the bias towards a recovery of πκ(v)
for some κ < d − β + 1, note that if (2) holds then for the parameter sets in
our experiments the lines for ‖πi(v)‖ and ‖b∗

i ‖ intersect twice (cf. Fig. 3). Let
d − γ + 1 be the index of the second intersection. Thus, there is a good chance
that ‖πd−γ+1(v)‖ is a shortest vector in the lattice spanned by the last projected
block of some small rank γ and will be placed at index d−γ+1. As a consequence,
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Table 1. Overall success rate (“v”) and success rate of size reduction (“same
step”) for solving LWE instances characterised by n, σ, q with m samples, stan-
dard deviation σ = 8/

√
2π, minimal (β2016, m2016) such that

√
b2016 σ ≤

δ
2β2016−(m2016+1)
0 q(m2016−n)/(m2016+1) with δ0 in function of β2016. The column “β”

gives the actual block size used in experiments. The “same step” rate is calculated over
all successful instances where v is found before the cut-off point c and for the instances
where exactly πd−b+1(v) is found (if no such instance is found, we do not report a
value). In the second case, the sample size is smaller, since not all instances recover
v from exactly κ = d − β + 1. The column “time” lists average solving CPU time
for one instance, in seconds. Note that our changes to the algorithm and our exten-
sive record keeping lead to an increased running time of the BKZ algorithm compared
to [FPL17,FPY17]. Furthermore, the occasional longer running time for smaller block
sizes is explained by the absence of early termination when v is found.

n q β2016 m2016 β # v Same step Time

κ < c κ = d − β + 1

65 521 56 182 56 10000 93.3% 99.7% 99.7% 1, 131.4

51 52.8% 98.8% 97.3% 1, 359.3

46 4.8% 96.4% 85.7% 1, 541.2

80 1031 60 204 60 1000 94.2% 99.6% 100.0% 2, 929.0

55 60.6% 99.3% 96.5% 2, 458.5

50 8.9% 97.6% 100.0% 1, 955.0

45 0.2% 100.0% — 1, 568.1

100 2053 67 243 67 500 88.8% 99.8% 100.0% 28, 803.7

62 39.6% 99.5% 100.0% 19, 341.9

57 5.8% 100.0% 100.0% 7, 882.2

52 0.2% 0.0% — 3, 227.0

108 2053 77 261 77 5 100.0% 100.0% 100.0% 351, 094.2

110 2053 78 272 78 5 100.0% 100.0% 100.0% 1, 012, 634.8

all projections πi(v) with i > d − γ + 1 will be zero and πd−β−γ+1(v) will be
contained in the β-dimensional lattice

Λd−β−γ+1 := Λ (πd−β−γ+1(bd−β−γ+1), . . . , πd−β−γ+1(bd−γ+1)),

enabling it to be recovered by BKZ-β at an index d − β − γ + 1 < d − β + 1.
Thus, BKZ in our experiments behaves better than predicted by (2). We note
that another effect of this second intersection is that, for very few instances, it
directly leads to a recovery of v from πd−β−γ+1(v).

Giving a closed formula incorporating this effect akin to (2) would entail to
predict the index γ and then replace β with β+γ in (2). However, as illustrated in
Fig. 3, neither does the GSA hold for the last 50 or so indices of the basis [Che13]
nor does the prediction

√
d − i + 1 σ for ‖πd−1+1(v)‖.

We stress that while the second intersection often occurs for parameter sets
within reach of practical experiments, it does not always occur for all parameter
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sets. That is, for many large parameter sets (n, α, q), e.g. those in [ADPS16],
a choice of β satisfy (2) does not lead to a predicted second intersection at
some larger index. Thus, this effect may highlight the pitfalls of extrapolating
experimental lattice-reduction data from small instances to large instances.

Finding the short vector. In what follows, we assume that the projected
norm ‖πd−k(v)‖ is indeed equal to this expected norm (cf. Fig. 2). We further
assume that πi(v) is distributed in a random direction with respect to the rest of
the basis. This assumption holds for LWE where the vector e is sampled from a
(near) spherical distribution. We also note that we can rerandomise the basis and
thus the relative directions. Under this assumption, we show that size reduction
recovers the short vector v with high probability. More precisely, we show:

Claim 1. Let v ∈ Λ ⊂ R
d be a unique shortest vector and β ∈ N. Assume

that (2) holds, the current basis is B = {b1, . . . ,bd} such that b∗
κ = πκ(v) for

κ = d − β + 1 and

v = bk +
k−1∑

i=1

νibi

for some νi ∈ Z, and the GSA holds for B until index κ. If the size reduction step
of BKZ-β is called on bκ, it recovers v with high probability over the randomness
of the basis.

Note that if BKZ has just found a projection of v at index κ, the current
basis is as required by Claim 1. Now, let νi ∈ Z denote the coefficients of v with
respect to the basis B, i.e.

v = bd−β+1 +
d−β∑

i=1

νibi.

Let b(d−β+1)
d−β+1 = bd−β+1, where the superscript denotes a step during size reduc-

tion. For i = d − β, d − β − 1, . . . , 1 size-reduction successively finds μi ∈ Z such
that

wi = μiπi(bi) + πi(b
(i+1)
d−β+1) = μib∗

i + πi(b
(i+1)
d−β+1)

is the shortest element in the coset

Li := {μb∗
i + πi(b

(i+1)
d−β+1)|μ ∈ Z}

and sets
b(i)

d−β+1 := μibi + b(i+1)
d−β+1.

Note that if b(i+1)
d−β+1 = bd−β+1 +

∑d−β
j=i+1 νjbj , as in the first step i = d−β, then

we have that
πi(v) = νib∗

i + πi(b
(i+1)
d−β+1) ∈ Li
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is contained in Li and hence

Li = πi(v) + Zb∗
i .

If the projection πi(v) is in fact the shortest element in Li, for the newly defined
vector b(i)

d−β+1 it also holds that

b(i)
d−β+1 = νibi + b(i+1)

d−β+1 = bd−β+1 +
d−β∑

j=i

νjbj .

Hence, if πi(v) is the shortest element in Li for all i, size reduction finds the
shortest vector

v = b(1)
d−β+1

and inserts it into the basis at position d − β + 1, replacing bd−β+1.
It remains to argue that with high probability p for every i we have that

the projection πi(v) is the shortest element in Li. The success probability p is
given by

p =
d−β∏

i=1

pi,

where the probabilities pi are defined as

pi = Pr [πi(v) is the shortest element in πi(v) + Zb∗
i ].

Fig. 5. Illustration of a case such that πi(v) is the shortest element on Li.

For each i the probability pi is equal to the probability that

‖πi(v)‖ < min{‖πi(v) + b∗
i ‖ , ‖πi(v) − b∗

i ‖}
as illustrated in Fig. 5. To approximate the probabilities pi, we model them as
follows. By assumption, we have

ri := ‖πi(v)‖ = (
√

d − i + 1/
√

d) ‖v‖ and Ri := ‖b∗
i ‖ = δ

−2(i−1)+d
0 Vol(Λ)

1
d,
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Fig. 6. Illustration of the success probability pi in R
2. If w is on the thick part of the

circle, step i of size reduction is successful.

and that πi(v) is uniformly distributed with norm ri. We can therefore model
pi as described in the following and illustrated in Fig. 6.

Pick a point w with norm ri uniformly at random. Then the probability pi is
approximately the probability that w is closer to 0 than it is to b∗

i and to −b∗
i ,

i.e.
ri < min{‖w − b∗

i ‖ , ‖w + b∗
i ‖}.

Calculating this probability leads to the following approximation of pi

pi ≈
{

1 − 2Ad−i+1(ri,hi)
Ad−i+1(ri)

if Ri < 2ri

1 if Ri ≥ 2ri

,

where Ad−i+1(ri) is the surface area of the sphere in R
d−i+1 with radius ri

and Ad−i+1(ri, hi) is the surface area of the hyperspherical cap of the sphere
in R

d−i+1 with radius ri of height hi with hi = ri − Ri/2. Using the formulas
provided in [Li11], an easy calculation leads to

pi ≈

⎧
⎪⎨

⎪⎩
1 −

∫ 2
hi
ri

−(hi
ri

)2
0 t((d−i)/2)−1(1−t)−1/2dt

B( d−i
2 , 12 )

if Ri < 2ri

1 if Ri ≥ 2ri

,

where B(·, ·) denotes the Euler beta function. Note that Ri ≥ 2ri corresponds
to (3).

Estimated success probabilities p for different block sizes β are plotted in
Fig. 7. Note that if we assume equality holds in (2), the success probability p only
depends on the block size β and not on the specific lattice dimension, volume of
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the lattice, or the length of the unique short vector, since then the ratios between
the predicted norms ‖πd−β+1−k(v)‖ and

∥
∥
∥b∗

d−β+1−k

∥
∥
∥ only depend on β for all

k = 1, 2, . . ., since

‖πd−β+1−k(v)‖∥
∥
∥b∗

d−β+1−k

∥
∥
∥

=

√
β

√
β+k√

β
√

d
‖v‖

δ
2(β+k)−d
0 Vol(Λ)

1
d

=

√
β+k√

β
δ2β−d
0 Vol(Λ)

1
d

δ
2(β+k)−d
0 Vol(Λ)

1
d

=
√

β + k√
β

δ−2k
0

and the estimated success probability only depends on these ratios.
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Fig. 7. Estimated success probability p for varying block sizes β, assuming β is chosen
minimal such that (2) holds.

The prediction given in Fig. 7 is in line with the measured probability of
finding v in the same step when its projection πd−β+1(v) is found as reported in
Table 1 for β = β2016 and m = m2016. Finally, note that by the above analysis
we do not expect to recover v from a projection πd−γ+1(v) for some small γ  β
except with small probability.

5 Applications

Section 4 indicates that (2) is a reliable indicator for when lattice-reduction will
succeed in recovering an unusually short vector. Furthermore, as illustrated in
Fig. 1, applying (2) lowers the required block sizes compared to the 2008 model
which is heavily relied upon in the literature. Thus, in this section we evaluate
the impact of applying the revised estimates to various parameter sets from the
literature. Indeed, for many schemes we find that their parameters need to be
adapted to maintain the currently claimed level of security.

Many of the schemes considered below feature an unusually short secret s
where si ←$ {−B, . . . , B} for some small B ∈ Zq. Furthermore, some schemes
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pick the secret to also be sparse such that most components of s are zero.
Thus, before we apply the revised 2016 estimate, we briefly recall the alter-
native embedding due to Bai and Galbraith [BG14b] which takes these small
(and sparse) secrets into account.

5.1 Bai and Galbraith’s Embedding

Consider an LWE instance in matrix form (A, c) ≡ (A,A · s+ e) ∈ Z
m×n
q ×Z

m
q .

By inspection, it can be seen that the vector (ν s | e | 1), for some ν �= 0, is
contained in the lattice Λ

Λ =

{

x ∈ (νZ)n × Z
m+1 | x ·

(
1
ν
A | Im | −c

)�
≡ 0 mod q

}

, (4)

where ν allows to balance the size of the secret and the noise. An (n + m + 1) ×
(n + m + 1) basis M for Λ can be constructed as

M =

⎛

⎝
νIn −A� 0
0 qIm 0
0 c 1

⎞

⎠.

Indeed, M is full rank, det(M) = Vol(Λ), and the integer span of M ⊆ Λ, as we
can see by noting that

⎛

⎝
νIn −A� 0
0 qIm 0
0 c 1

⎞

⎠
(

1
ν
A | Im | −c

)�
= (A − A | qIm | c − c)� ≡ 0 mod q.

Finally, note that (s | ∗ | 1) ·M = (ν s | e | 1) for suitable values of ∗. If s is small
and/or sparse, choosing ν = 1, the vector (s | e | 1) is unbalanced, i.e. ‖s‖√

n


‖e‖√
m

≈ σ, where σ is the standard deviation of the LWE error distribution. We
may then want to rebalance it by choosing an appropriate value of ν such that
‖(ν s | e | 1)‖ ≈ σ

√
n + m. Rebalancing preserves (ν s | e | 1) as the unique

shortest vector in the lattice, while at the same time increasing the volume of
the lattice being reduced, reducing the block size required by (2).

If s $←− {−1, 0, 1}n we expect ‖ν s‖2 ≈ 2
3ν2n. Therefore, we can chose ν =√

3
2σ to obtain ‖ν s‖ ≈ σ

√
n, so that ‖(s | e | 1)‖ ≈ σ

√
n + m. Similarly, if

w < n entries of s are non-zero from {−1, 1}, we have ‖ν s‖2 = w ν2. Choosing
ν =

√
n
wσ, we obtain a vector ν s of length σ

√
n.

In the case of sparse secrets, combinatorial techniques can also be
applied [HG07,BGPW16,Alb17]. Given a secret s with at most w < n non-zero
entries, we guess k entries of s to be 0, therefore decreasing the dimension of the
lattice to consider. For each guess, we then apply lattice reduction to recover
the remaining components of the vector (s | e | 1). Therefore, when estimating
the overall complexity for solving such instances, we find min

k
{1/pk · C(n − k)}

where C(n) is the cost of running BKZ on a lattice of dimension n and pk is the
probability of guessing correctly.
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5.2 Estimates

In what follows, we assume that the geometry of (4) is sufficiently close to that
of (1) so that we transfer the analysis as is. Furthermore, we will denote apply-
ing (2) from [ADPS16] for Kannan’s embedding as “Kannan” and applying (2)
for Bai and Galbraith’s embedding [BG14b] as “Bai-Gal”. Unless stated other-
wise, we will assume that calling BKZ with block size β in dimension d costs
8 d 20.292 β+16.4 operations [BDGL16,Alb17].

Lizard [CKLS16b,CKLS16a] is a PKE scheme based on the Learning With
Rounding problem, using a small, sparse secret. The authors provide a reduc-
tion to LWE, and security parameters against classic and quantum adversaries,
following their analysis. In particular, they cost BKZ by a single call to siev-
ing on a block of size β. They estimate this call to cost β 2c β operations where
c = 0.292 for classical adversaries, c = 0.265 for quantum ones and c = 0.2075 as
a lower bound for sieving (“paranoid”). Applying the revised 2016 cost estimate
for the primal attack to the parameters suggested in [CKLS16b] (using their
sieving cost model as described above) reduces the expected costs, as shown in
Table 2. We note that in the meantime the authors of Lizard have updated their
parameters in [CKLS16a].

Table 2. Bit complexity estimates λ for solving Lizard PKE [CKLS16b] as given
in [CKLS16b] and using Kannan’s resp. Bai and Galbraith’s embedding under the
2016 estimate. The dimension of the LWE secret is n. In all cases, BKZ-β is estimated
to cost β 2c β operations.

Classical Quantum Paranoid

n, log2 q, σ 386, 11, 2.04 414, 11, 2.09 504, 12, 4.20

Cost β d λ β d λ β d λ

[CKLS16b] 418 — 130.8 456 — 129.7 590 — 131.6

Kannan 372 805 117.2 400 873 114.6 567 1120 126.8

Bai-Gal 270 646 88.5 297 692 86.9 372 833 85.9

HElib [GHS12a,GHS12b] is an FHE library implementing the BGV
scheme [BGH13]. A recent work [Alb17] provides revised security estimates
for HELib by employing a dual attack exploiting the small and sparse secret,
using the same cost estimate for BKZ as given at the beginning of this section.
In Table 3 we provide costs for a primal attack using Kannan’s and Bai and
Galbraith’s embeddings. Primal attacks perform worse than the algorithm
described [Alb17], but, as expected, under the 2016 estimate the gap narrows.
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Table 3. Solving costs for LWE instances underlying HELib as given in [Alb17] and
using Kannan’s resp. Bai and Galbraith’s embedding under the 2016 estimate. The
dimension of the LWE secret is n. In all cases, BKZ-β is estimated to cost 8d 20.292 β+16.4

operations.

80 bit security

n 1024 2048 4096 8192 16384

log2 q, σ 47, 3.2 87, 3.2 167, 3.2 326, 3.2 638, 3.2

Cost β d λ β d λ β d λ β d λ β d λ

[Alb17]
Silkesparse

105 — 61.3 111 — 65.0 112 — 67.0 123 — 70.2 134 — 73.1

Kannan 156 2096 76.0 166 4003 79.8 171 7960 82.3 176 15606 84.7 180 31847 86.9

Bai-Gal 137 1944 70.3 152 3906 75.9 163 7753 79.9 169 16053 82.9 173 32003 85.9

128 bit security

n 1024 2048 4096 8192 16384

log2 q, σ 38, 3.2 70, 3.2 134, 3.2 261, 3.2 511, 3.2

Cost β d λ β d λ β d λ β d λ β d λ

[Alb17]
Silkesparse

138 — 73.2 145 — 77.4 151 — 81.2 163 — 84.0 149 — 86.4

Kannan 225 2076 96.1 238 4050 100.9 245 8011 103.9 250 16017 106.4 257 31635 109.4

Bai-Gal 189 1901 86.6 211 3830 94.4 204 7348 99.3 185 13543 102.8 204 28236 105.9

SEAL [CLP17] is an FHE library by Microsoft, based on the FV scheme [FV12].
Up to date parameters are given in [CLP17], using the same cost model for BKZ
as mentioned at the beginning of this section. In Table 4, we provide complexity
estimates for Kannan’s and Bai and Galbraith’s embeddings under the 2016
estimate. Note that the gap in solving time between the dual and primal attack
reported in [Alb17] is closed for SEAL v2.1 parameters.

Table 4. Solving costs for parameter choices in SEAL v2.1 as given in [CLP17],
using [Alb17] as implemented in the current [APS15] estimator commit 84014b6

(“[Alb17]+”), and using Kannan’s resp. Bai and Galbraith’s embedding under the
2016 estimate. In all cases, BKZ-β is estimated to cost 8d 20.292 β+16.4 operations.

n, log2 q, σ 1024, 35, 3.19 2048, 60, 3.19 4096, 116, 3.19 8192, 226, 3.19 16384, 435, 3.19

Cost β d λ β d λ β d λ β d λ β d λ

[CLP17] 230 — 97.6 282 — 115.1 297 — 119.1 307 — 123.1 329 — 130.5

[Alb17]+ 255 — 104.9 298 — 118.4 304 — 121.2 310 — 124.0 328 — 130.2

Kannan 257 2085 105.5 304 4041 120.2 307 8047 122.0 312 15876 124.5 328 31599 130.1

Bai-Gal 237 1984 99.6 288 4011 115.5 299 8048 119.7 309 15729 123.6 326 31322 129.5

TESLA [BG14a,ABBD15] is a signature scheme based on LWE. Post-quantum
secure parameters in the quantum random oracle model were recently proposed
in [ABB+17]. In Table 5, we show that these parameters need to be increased to
maintain the currently claimed level of security under the 2016 estimate. Note
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that [ABB+17] maintains a gap of ≈ log2 n bits of security between the best
known attack on LWE and claimed security to account for a loss of security in
the reduction.

Table 5. Bit complexity estimates for solving TESLA parameter sets [ABB+17]. The
entry “[ABB+17]+” refers to reproducing the estimates from [ABB+17] using a cur-
rent copy of the estimator from [APS15] which uses t = 1 instead of t = ‖e‖, as a
consequence the values in the respective rows are slightly lower than in [ABB+17].
We compare with Kannan’s embedding under the 2016 estimate. Classically, BKZ-β
is estimated to cost 8d 20.292 β+16.4 operations; quantumly BKZ-β is estimated to cost
8d
√

β0.0225 β · 20.4574 β/2β/4 operations in [ABB+17].

TESLA-0 TESLA-1 TESLA-2

n, log2 q, σ 644, 31, 55 804, 31, 57 1300, 35, 73

Cost β d λ β d λ β d λ

Classical

[ABB+17] — — 110.0 — — 142.0 — — 204.0

[ABB+17]+ 255 — 110.0 358 — 140.4 563 — 200.9

Kannan 248 1514 102.4 339 1954 129.3 525 3014 184.3

Post-Quantum

[ABB+17] — — 71.0 — — 94.0 — — 142.0

[ABB+17]+ 255 — 68.5 358 — 90.7 563 — 136.4

Kannan 248 1415 61.5 339 1954 81.1 525 3014 122.4

BCIV17 [BCIV17] is a somewhat homomorphic encryption scheme obtained
as a simplification of the FV scheme [FV12] and proposed as a candidate for
enabling privacy friendly energy consumption forecast computation in smart
grid settings. The authors propose parameters for obtaining 80 bits of security,
derived using the estimator from [APS15] available at the time of publication.
As a consequence of applying (2), we observe a moderate loss of security, as
reported in Table 6.

Table 6. Solving costs for proposed Ring-LWE parameters in [BCIV17] using Kannan’s
resp. Bai and Galbraith’s embedding under the 2016 estimate. In both cases, BKZ-β
is estimated to cost 8d 20.292 β+16.4 operations.

80 bit security

n = 4096, log2 q = 186, σ = 102

Embedding β d λ Embedding β d λ

Kannan 156 8105 77.9 Bai-Gal 147 7818 75.3
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efficient signatures from standard lattices. Cryptology ePrint Archive,
Report 2015/755 (2015). http://eprint.iacr.org/2015/755
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complètement homomorphe. Ph.D. thesis, Paris 7 (2013)

[CHK+17] Cheon, J.H., Han, K., Kim, J., Lee, C., Son, Y.: A practical post-quantum
public-key cryptosystem based on spLWE. In: Hong, S., Park, J.H. (eds.)
ICISC 2016. LNCS, vol. 10157, pp. 51–74. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-53177-9 3

[CKLS16a] Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: cut off the tail! Prac-
tical post-quantum public-key encryption from LWE and LWR. Cryp-
tology ePrint Archive, Report 2016/1126 (2016). http://eprint.iacr.org/
2016/1126

[CKLS16b] Cheon, J.H., Kim, D., Lee, J., Song, Y.: Lizard: cut off the tail! Practi-
cal post-quantum public-key encryption from LWE and LWR. Cryptol-
ogy ePrint Archive, Report 2016/1126 (20161222:071525) (2016). http://
eprint.iacr.org/2016/1126/20161222:071525

[CLP17] Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library -
SEAL v2.1. Cryptology ePrint Archive, Report 2017/224 (2017). http://
eprint.iacr.org/2017/224

[CN11] Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates.
In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 1–20. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25385-0 1

[FPL17] The FPLLL development team: FPLLL, a lattice reduction library (2017).
https://github.com/fplll/fplll

[FPY17] The FPYLLL development team: FPYLLL, a Python (2 and 3) wrapper
for FPLLL (2017). https://github.com/fplll/fpylll

[FV12] Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryp-
tion. Cryptology ePrint Archive, Report 2012/144 (2012). http://eprint.
iacr.org/2012/144

[GHS12a] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the
AES circuit. Cryptology ePrint Archive, Report 2012/099 (2012). http://
eprint.iacr.org/2012/099

[GHS12b] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES
circuit. In: Safavi-Naini and Canetti [SNC12], pp. 850–867

https://doi.org/10.1007/978-3-319-08344-5_21
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-642-36362-7_1
https://doi.org/10.1007/978-3-319-31517-1_2
https://doi.org/10.1007/978-3-319-53177-9_3
https://doi.org/10.1007/978-3-319-53177-9_3
http://eprint.iacr.org/2016/1126
http://eprint.iacr.org/2016/1126
http://eprint.iacr.org/2016/1126/20161222:071525
http://eprint.iacr.org/2016/1126/20161222:071525
http://eprint.iacr.org/2017/224
http://eprint.iacr.org/2017/224
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-25385-0_1
https://github.com/fplll/fplll
https://github.com/fplll/fpylll
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/144
http://eprint.iacr.org/2012/099
http://eprint.iacr.org/2012/099


Revisiting the Expected Cost of Solving uSVP and Applications to LWE 321

[GN08a] Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s
inequality. In: Ladner, R.E., Dwork, C. (ed.) 40th ACM STOC, pp. 207–
216. ACM Press, May 2008

[GN08b] Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.)
EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78967-3 3

[GNR10] Gama, N., Nguyen, P.Q., Regev, O.: Lattice enumeration using extreme
pruning. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110,
pp. 257–278. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13190-5 13

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learn-
ing with errors: conceptually-simpler, asymptotically-faster, attribute-
based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-40041-4 5
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