Circuit OPRAM: Unifying Statistically and
Computationally Secure ORAMs and OPRAMs

T.-H. Hubert Chan'®) and Elaine Shi2

! The University of Hong Kong, Pokfulam, Hong Kong
hubert@cs.hku.hk
2 Cornell University, Ithaca, USA

Abstract. An Oblivious Parallel RAM (OPRAM) provides a general
method to simulate any Parallel RAM (PRAM) program, such that
the resulting memory access patterns leak nothing about secret inputs.
OPRAM was originally proposed by Boyle et al. as the natural paral-
lel counterpart of Oblivious RAM (ORAM), which was shown to have
broad applications, e.g., in cloud outsourcing, secure processor design,
and secure multi-party computation. Since parallelism is common in
modern computing architectures such as multi-core processors or cluster
computing, OPRAM is naturally a powerful and desirable building block
as much as its sequential counterpart ORAM is.

Although earlier works have shown how to construct OPRAM schemes
with polylogarithmic simulation overhead, in comparison with best
known sequential ORAM constructions, all existing OPRAM schemes
are (poly-)logarithmic factors more expensive. In this paper, we present
a new framework in which we construct both statistically secure and
computationally secure OPRAM schemes whose asymptotical perfor-
mance matches the best known ORAM schemes in each setting. Since an
OPRAM scheme with simulation overhead x directly implies an ORAM
scheme with simulation overhead x, our result can be regarded as pro-
viding a unifying framework in which we can subsume all known results
on statistically and computationally secure ORAMs and OPRAM:s alike.
Particularly for the case of OPRAMS, we also improve the state-of-the-
art scheme by superlogarithmic factors.

To achieve the aforementioned results requires us to combine a variety
of techniques involving (1) efficient parallel oblivious algorithm design;
and (2) designing tight randomized algorithms and proving measure con-
centration bounds about the rather involved stochastic process induced
by the OPRAM algorithm.

Keywords: Oblivious parallel RAM - Oblivious RAM - Statistical and
computational security

1 Introduction

Oblivious RAM (ORAM), initially proposed by Goldreich and Ostrovsky [17,18],
is a powerful primitive that allows oblivious accesses to sensitive data, such that

Online eprint version [6] of this paper: https://eprint.iacr.org/2016,/1084.

© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 72-107, 2017.
https://doi.org/10.1007/978-3-319-70503-3_3

https://eprint.iacr.org/2016/1084

Circuit OPRAM 73

access patterns during the computation reveal no secret information. Since its
original proposal [18], ORAM has been shown to be promising in various appli-
cation settings including secure processors [11,13,14,25,30], cloud outsourced
storage [19,32,33,40] and secure multi-party computation [15,16,20,22,24,37].
Although ORAM is broadly useful, it is inherently sequential and does not
support parallelism. On the other hand, parallelism is universal in modern archi-
tectures such as cloud platforms and multi-core processors. Motivated by this
apparent discrepancy, in a recent seminal work [3], Boyle et al. extended the
ORAM notion to the parallel setting. Specifically, they defined Oblivious Parallel
RAM (OPRAM), and demonstrated that any PRAM program can be simulated
obliviously while incurring roughly O(log4 N) blowup in running time when con-
suming the same number of CPUs as the PRAM where N is the total memory
size. The result by Boyle et al. [3] was later improved by Chen et al. [7], who
showed a logarithmic factor improvement, attaining O(log3 N) overhead.
However, we still know of no OPRAM algorithm whose performance can
“match” the state-of-the-art sequential counterparts [23,35,36]. In particular, in
the sequential setting, it is known that computationally secure ORAMs can be

constructed with O(lgzﬁngN) simulation overhead [23], and statistically secure
ORAMs can be achieved with O(log? N) simulation overhead [36] — these results
apply when assuming O(1) blocks of CPU private cache, and they hold for
general block sizes, as long as the block is large enough to store its own address.
Thus in comparison, state-of-the-art OPRAM schemes are at least a logarithmic

factor slower. We thus ask the question:

Can we construct an OPRAM scheme whose asymptotical performance
matches the best known sequential counterpart?

Our paper answers this question in the affirmative. To this end, we construct
the Circuit OPRAM framework — under this framework we demonstrate both
statistically and computationally secure ORAMs whose performance matches
the best known ORAM schemes in these respective settings. Our main results
are summarized in the following informal theorems.

Theorem 1 (Informal: statistically secure OPRAM). There exists a sta-
tistically secure OPRAM scheme that achieves O(log2 N) simulation overhead
for general block sizes and O(1) blocks of CPU cache.

Theorem 2 (Informal: computationally secure OPRAM). There exists

2
a computationally secure OPRAM scheme that achieves O(lé(;glo gfv ¥

overhead for general block sizes and O(1) blocks of CPU cache.

In both the above theorems, an OPRAM simulation overhead of x means the
following: suppose that the original PRAM consumes m CPUs and computes
a program in T time; then we can compile the PRAM into an OPRAM also
consuming m CPUs, but completes in y -7 time!. Since an OPRAM scheme with

) simulation

! Thus, by classical metrics of the parallel algorithms literature, an OPRAM scheme
with x stmulation overhead incurs a total work blowup and a parallel runtime blowup
of both x in comparison with the original PRAM.

74 T.-H. Hubert Chan and E. Shi

x simulation overhead immediately implies an ORAM scheme with y simulation
overhead? to — in some sense, our work provides a unifying framework under
which we subsume all known results for statistically secure and computationally
secure ORAMs and OPRAMs — and specifically for the case of OPRAM, we
improve best known results by at least a logarithmic factor.

For generality, we describe our construction in a way that supports the case of
varying number of CPUs, i.e., when the underlying PRAM consumes a different
number of CPUs in different PRAM steps — this is a desirable property phrased
in the original OPRAM work by Boyle et al. [3], although the subsequent work
by Chen et al. [7] fails to achieve it.

Last but not the least, we show that when the block size is sufficiently large,
our framework implies an OPRAM scheme with O(log N) simulation overhead
(when m is not too small) — also matching the best-known sequential ORAM
result for large block sizes [36].

1.1 Technical Highlights

Obtaining an OPRAM as tight as its sequential counterpart turns out to be
rather non-trivial. Part of the technical sophistication stems from the fact that
we did not find any generic method that can blackbox-compile an efficient ORAM
to an OPRAM scheme with matching overhead. As a result, our construction
requires opening up and building atop the Circuit ORAM scheme [36] (which is
a state-of-the-art ORAM scheme among others) in a non-blackbox manner®.
We follow the paradigm for constructing OPRAM schemes proposed by
Boyle et al. [3] and Chen et al. [7]. On a high level, we leverage a tree-based
ORAM scheme [31,36] but truncate the tree at a level with m nodes, thus
creating m disjoint subtrees. At this point, a simple approach that is taken
by earlier works [7] is to have a single CPU in charge of each subtree. When
a batch of m memory requests come in, each request will want to fetch data
from a random subtree. By a simple balls-and-bins argument, while each sub-
tree receives only O(1) requests in expectation, the most unlucky sub-tree will
need to serve super-logarithmically many requests (to obtain a negligible failure
probability). Thus the naive approach is to have each subtree’s CPU serve these
super-logarithmically many requests sequentially. After fetching the m blocks,
the OPRAM data structure must be maintained by remapping every fetched
block to a random new subtree. Again, although each subtree gets assigned O(1)
remapped blocks in expectation during this maintain stage, the most unlucky
subtree can obtain super-logarithmically many blocks. For obliviousness, it is
important that we hide from the adversary to which subtree each block gets
remapped. Unfortunately this also means that we cannot disclose how many
remapped blocks are received by each subtree — and thus previous works [7]

2 In other words, when m = 1 our scheme essentially is the same as Circuit ORAM.
Thus our work can also be viewed as a strict generalization of Circuit ORAM.

3 We did not build atop the Path ORAM [35] scheme since Path ORAM achieves the
same simulation overhead as Circuit ORAM [36] but consuming super-logarithmic
CPU cache rather than O(1).

Circuit OPRAM 75

adopt the simple approach of padding: even when a subtree may receive only
1 remapped block, it still must perform dummy operations to pretend that it
receives superlogarithmically many blocks.

Thus, a primary reason that causes existing constructions [3,7] to be ineffi-
cient is the discrepancy between the average-case contention and the worst-case
contention associated with a subtree. In the above description, this discrepancy
reflects in both the request phase and the maintain phase. In both phases, each
subtree receives O(1) requests or blocks in expectation, but the worst-case can
be superlogarithmic (assuming negligible failure probability).

Thus the core of the question is how to avoid the blowup resulting from
the aforementioned average-case and worst-case discrepancy. We would like our
scheme to incur a cost that reflects the average-case contention, not the worst-
case. To achieve this, we need different techniques for the online request and
offline maintain phases respectively:

— For the request phase, it does not violate obliviousness to disclose how many
requests are received by each subtree, and thus the nature of the problem is
how to design an efficient parallel oblivious algorithm to serve all m requests in
parallel with m CPUs, and avoid any subtree’s CPU having to process super-
logarithmically many requests sequentially. As we will show in later sections,
the core of the problem is how to design an efficient and oblivious parallel
removal algorithm (referred to “simultaneous removal” in later sections) that
removes fetched blocks from the tree-paths — this is challenging since several
CPUs may read paths that overlap with one another, leading to possible write
contention.

— In the maintain phase, on the contrary, it would violate obliviousness to dis-
close how many remapped blocks are received by each subtree. Earlier schemes
achieve this by pretending to reroute superlogarithmically many blocks to
every subtree, thus always incurring the worst-case cost. Our idea is to
redesign the underlying stochastic process to avoid this padding-related loss.
To this end, we introduce a new technique called “lazy eviction”?, where we
do not route remapped blocks to their new subtrees immediately — instead,
with every operation, each subtree has a budget for receiving only a constant
number of remapped blocks; and the overflowing blocks that do not have a
chance to be rerouted to their assigned subtrees will remain in a “pool” data
structure whose size we shall bound with measure concentration techniques.

When we put these techniques together, we obtain on OPRAM scheme that
induces a stochastic process that is somewhat involved to reason about. Analyz-
ing this OPRAM-induced stochastic process and proving measure concentration
results (e.g., bounds on pool and stash sizes) are non-trivial challenges that we
have to overcome in this paper. Although we build on top of the Circuit ORAM
scheme in a non-blackbox manner, we wish to maximally reuse the (somewhat
involved) measure concentration results proven in the Circuit ORAM work [36]

* Techniques similar in spirit has appeared in earlier ORAM [34] and OPRAM
works [7].

76 T.-H. Hubert Chan and E. Shi

(albeit in a non-blackbox manner). Thus, when we design our Circuit OPRAM
algorithm, we take care to ensure that the resulting randomized process is sto-
chastically dominated by that of the underlying Circuit ORAM algorithm (in
terms of overflows) — to this end, our algorithm tries to “imitate” the stochas-
tic behavior of Circuit ORAM in several places, e.g., in selecting which remapped
block gets priority to be rerouted back to its subtree. A rather technical part of
our proof is to show that the resulting OPRAM scheme is indeed stochastically
dominated by Circuit ORAM in terms of overflows.

1.2 Related Work

Closely related and independent works. Subsequent to our online technical report,
Nayak and Katz [26] also released a technical report that claimed seemingly sim-
ilar results. We stress that our construction is a log N -polyloglog N factor more
efficient than the work by Nayak and Katz — despite their paper’s title claiming
to achieve O(log® N) overhead, their O(log”> N) overhead did not account for
the inter-CPU communication which is O(log3 Npolyloglog N) in their scheme
assuming O(1) CPU cache — more specifically, Nayak and Katz’s scheme does
not improve the inter-CPU communication in comparison with Chen et al. [7]
(whereas we improve by a super-logarithmic factor); but they adopt a variant of
our simultaneous removal algorithm to improve the CPU-memory communica-
tion of Chen et al. [7].

In our paper, we adopt a more general and cleaner model than earlier and
concurrent OPRAM works [3,7,26], in that we assume that all inter-CPU com-
munication is routed through memory too. In this way, we use a single metric
called simulation overhead to characterize both CPU-memory cost and inter-
CPU communication. Using our metric, an OPRAM scheme with simulation
overhead x means that both the CPU-memory cost and the inter-CPU commu-
nication have at most y blowup in comparison with the original PRAM.

Below we review the line of works on constructing ORAMs and OPRAMs.

Oblivious RAM (ORAM). Oblivious RAM (ORAM) was initially proposed by
Goldreich and Ostrovsky [17,18] who showed that any RAM program can be
simulated obliviously incurring only O(« log® N) runtime blowup, while achiev-
ing a security failure probability that is negligible in N. Numerous subse-
quent works [10,19,23,28,29,31,35,36,36-40] improved Goldreich and Ostro-
vsky’s seminal result in different application settings including cloud outsourcing,
secure processor, and secure multi-party computation.

Most of these schemes follow one of two frameworks: the hierarchical frame-
work, originally proposed by Goldreich and Ostrovsky [17,18], or the tree-based
framework proposed by Shi et al. [31]. To date, some of the (asymptotically)
best schemes include the following: (1) Kushilevitz et al. [23] showed a compu-
tationally secure ORAM scheme with O(log? N/loglog N) runtime blowup for
general block sizes; and (2) Wang et al. construct Circuit ORAM [36], a statisti-
cally secure ORAM that achieves O(« log® N) runtime blowup for general block

Circuit OPRAM 7

sizes® and O(alog N) runtime blowup for large enough blocks. At the time of
the writing, we are not aware of any approach that transforms a state-of-the-art
hierarchical ORAM such as Kushilevitz et al. [23] into an OPRAM scheme with
matching simulation overhead — even if this could be done, it still would not
be clear how to match the best known ORAM results for the statistical security
setting. Our work henceforth builds on top of the tree-based ORAM framework,
and specifically, Circuit ORAM [36].

On the lower bound side, Goldreich and Ostrovsky [17,18] demonstrated that
any ORAM scheme (with constant CPU cache) must incur at least {2(log N)
runtime blowup. This well-known lower bound was recently shown to be tight
(under certain parameter ranges) by the authors of Circuit ORAM [36], who
showed a matching upper bound for sufficiently large block sizes. Goldreich and
Ostrovsky’s lower bound applies to OPRAM too since by our definition of sim-
ulation overhead, an OPRAM scheme with x simulation overhead implies an
ORAM scheme with x simulation overhead. We note that while the Goldreich
and Ostrovsky lower bound is quite general, it models each block as being opaque
— recently, an elegant result by Boyle and Naor [4] discussed the possibility of
proving a lower bound without this restriction. Specifically, they showed that
proving a lower bound without the block opaqueness restriction is as hard as
showing a superlinear lower bound on the sizes of certain sorting circuits. Fur-
ther, the Goldreich-Ostrovsky lower bound is also known not to hold when the
memory (i.e., ORAM server) is capable of performing computation [2,10] — in
this paper, we focus on the classical ORAM/OPRAM setting where the mem-
ory does not perform any computation besides storing and fetching data at the
request of the CPU.

Oblivious Parallel RAM (OPRAM). Given that many modern computing archi-
tectures support parallelism, it is natural to extend ORAM to the parallel set-
ting. As mentioned earlier, Boyle et al. [3] were the first to formulate the OPRAM
problem, and they constructed an elegant scheme that achieves O(« log* N)
blowup both in terms of total work and parallel runtime. Their result was later
improved by Chen et al. [7] who were able to achieve O(alog® N)) blowup both in
terms of total work and parallel runtime under O(log? N) blocks of CPU cache.
These results can easily be recast to the O(1) CPU cache setting by applying a
standard trick that leverages oblivious sorting to perform eviction [36,37]. We
note that Chen et al. [7] actually considered CPU-memory communication and
inter-CPU communication as two separate metrics, and their scheme achieves
O« log2 Nloglog N) CPU-memory communication blowup, but O(« 10g3 N)
inter-CPU communication blowup. In this paper, we consider the more general

5 The term « is related to the ORAM’s failure probability. For the failure probability to
be negligible we can set a to be any super-constant function. Note that in this paper,
the new OPRAM techniques we introduce allow us to remove the super-constant
factor a and thus we achieve O(log® N) overhead for general block sizes. Therefore,
strictly speaking, we improve the best-known results for statistical security [36] by
a super-constant factor. For sufficiently large block sizes, we achieve O(alog N)
simulation overhead, matching the sequential counterpart Circuit ORAM.

78 T.-H. Hubert Chan and E. Shi

PRAM model where all inter-CPU communication is implemented through CPU-
memory communication. In this case, the two metrics coalesce into one (i.e., the
maximum of the two).

Besides OPRAM schemes in the standard setting, Dachman-Soled et al. [9]
considered a variation of the problem (which they refer to as “Oblivious Network
RAM?”) where each memory bank is assumed to be oblivious within itself, and the
adversary can only observe which bank a request goes to. Additionally, Nayak
et al. [27] show that for parallel computing models that are more restrictive
than the generic PRAM (e.g., the popular GraphLab and MapReduce models),
there exist efficient parallel oblivious algorithms that asymptotically outperform
known generic OPRAM. Some of the algorithmic techniques employed by Nayak
et al. [27] are similar in nature to those of Boyle et al. [3].

Subsequent work. In subsequent work, Chan et al. [5] consider a new model for
OPRAM, where the OPRAM has access to more CPUs than the original PRAM.
In that model, they characterize an OPRAM’s overhead using two metrics, total
work blowup and parallel runtime blowup (the latter metric also referred to as
depth blowup). Chan et al. show that any OPRAM scheme that treats block
contents as opaque must incur at least 2(logm) depth blowup where m is the
number of CPUs of the original PRAM. Further, they devise non-trivial algo-
rithmic techniques that improves the depth of Circuit OPRAM (while preserving
total work) by recruiting the help of logarithmically many more CPUs. Further,
Chan et al. [5] show that their algorithm’s depth is tight in the parameter m
when the block size is sufficiently large.

2 Informal Overview of Our Results

In this section, we take several intermediate steps to design a basic Circuit
OPRAM construction. Specifically, we start out by reviewing the high-level idea
introduced earlier by Chen et al. [7]. Then, we point out why their scheme suffers
from an extra logarithmic blowup in performance in comparison with the best
known sequential algorithm. Having made these observations, we describe our
new techniques to avoid this blowup. For simplicity, in this section, we focus
on describing the basic, statistically secure Circuit OPRAM algorithm with a
fixed number of CPUs denoted m. In later formal sections, we will describe the
full scheme supporting the case of varying m, and additional techniques that
allow us to shave another loglog N factor by leveraging a PRF to compress
the storage of the random position maps. Like in earlier ORAM/OPRAM works
[17-19,31,35,36], we will assume that the number of blocks N is also the security
parameter.

2.1 Background: Circuit ORAM

We review tree-based ORAMs [8,31,35,36] originally proposed by Shi et al. [31].
We specifically focus on describing the Circuit ORAM algorithm [36] which we
build upon.

Circuit OPRAM 79

We assume that memory is divided into atomic units called blocks. We first
focus on describing the non-recursive version, in which the CPU stores in its local
cache a position map henceforth denoted as posmap that stores the position for
every block.

Data structures. The memory is organized in the form of a binary tree, where
every tree node is a bucket with a capacity of O(1) blocks. Buckets hold blocks,
where each block is either dummy or real. Throughout the paper, we use the
notation N to denote the total number of blocks. Without loss of generality,
we assume that N = 2% is a power of two. The ORAM binary tree thus has
height L.

Besides the buckets, there is also a stash in memory that holds overflowing
blocks. The stash is of size O(alog N), where o« = w(1) is a parameter related
to the failure probability. Just like buckets, the stash may contain both real and
dummy blocks. Henceforth, for convenience, we will often treat the stash as part
of the root bucket.

Main path invariant. The main invariant of tree-based ORAMs is that every
block is assigned to the path from the root to a randomly chosen leaf node.
Hence, the path for each block is indicated by the leaf identifier or the position
identifier, which is stored in the aforementioned position map posmap. A block
with virtual address ¢ must reside on the path indicated by posmapli].

Operations. We describe the procedures for reading or writing a block at virtual
address 1.

— Read and remove. To read a block at virtual address i, the CPU looks up
its assigned path indicated by posmap[i], and reads this entire path. If the
requested block is found at some location on the path, the CPU writes a
dummy block back into the location. Otherwise, the CPU simply writes the
original block back. In both cases, the block written back is re-encrypted such
that the adversary cannot observe which block is removed.

— Remap. Once a block at virtual address 7 is fetched, it is immediately assigned
to a new path. To do this, a fresh random path identifier is chosen and
posmapli] is modified accordingly. The block fetched is then written to the last
location in the stash (the last location is guaranteed to be empty except with
negligible probability at the end of each access). If this is a write operation,
the block’s contents may be updated prior to writing it back to the stash.

— FEvict. Two paths (particularly, one to the left of the root and one to the right
of the root) are chosen for eviction according to an appropriate data inde-
pendent criterion. Specifically, for the remainder of the paper, we will assume
that the paths are chosen based on the deterministic reverse lexicographical
order algorithm adopted in earlier works [15,36], the choice of eviction path
is non-essential to the understanding of the algorithm (but matters to the
stochastic analysis).

For each path chosen (that includes the stash), the CPU performs an eviction
procedure along this path. On a high level, eviction is a maintenance oper-
ation that aims to move blocks along tree paths towards the leaves — and

80 T.-H. Hubert Chan and E. Shi

importantly, in a way that respects the aforementioned path invariant. The
purpose of eviction is to avoid overflow at any bucket.

Specifically in Circuit ORAM, this eviction operation involves making two
metadata scans of the eviction path followed by a single data block scan [36].

A useful property of Circuit ORAM’s eviction algorithm. For the majority of this
paper, the reader need not know the details of the eviction algorithm. However,
we point out a useful observation regarding Circuit ORAM’s eviction algorithm.

Fact 1 (Circuit ORAM eviction). Suppose Circuit ORAM’s eviction algo-
rithm is run once on some path denoted path[0..L], where by convention we use
path[0] to denote the root (together with the stash) and path[L] is the leaf in the
path. Then, for every heighti € {1,..., L}, it holds that at most one block moves
from path[0..¢ — 1] to path[i..L]. Further, if a block did move from path[0..i — 1]
to path[i..L], then it must be the block that can be evicted the deepest along the
eviction path (and if more than one such block exists, an arbitrary choice could
be made).

Jumping ahead, we stress that Fact 1 is why later we can evict exactly 1 block
to each subtree — in comparison, had we built on top of Path ORAM, we would
not be able to achieve the same.

Recursion. So far, we have assumed that the CPU can store the entire position
map posmap in its local cache. This assumption can be removed using a standard
recursion technique [31]. Specifically, instead of storing the position map in the
CPU’s cache, we store it in a smaller ORAM in memory — and we repeat this
process until the position map is of constant size.

As long as each block can store at least two position identifiers, each level of
the recursion will reduce the size of the ORAM by a constant factor. Therefore,
there are at most O(log V) levels of recursion. Several tree-based ORAM schemes
also describe additional tricks in parametrizing the recursion for larger block
sizes [35,36]. We will not describe these tricks in detail here, but later in the
full version [6] we will recast these tricks in our OPRAM context and describe
further optimizations for large block sizes.

Circuit ORAM performance. For general block sizes, Circuit ORAM achieves
O(alog N) blowup (in terms of bandwidth and the number of accesses) in the
non-recursive version, and O(alog? N) blowup across all levels of recursion. The
CPU needs to hold only O(1) blocks at any point in time.

2.2 Warmup: The CLT OPRAM Scheme

We outline the elegant approach by Chen et al. [7] which achieves O(log® N)
simulation overhead. Although Chen et al. [7]’s construction builds on top of
Path ORAM [35], we describe a (slightly improved) variant of their scheme [7]
that builds atop Circuit ORAM instead, but in a way that captures the core
ideas of Chen et al. [7].

Circuit OPRAM 81

Suppose we start with Circuit ORAM [36], a state-of-the-art tree-based
ORAM. Circuit ORAM is sequential, i.e., supports only one access at a time
— but we now would like to support m simultaneous accesses. Without loss
of generality, we assume that m < N throughout the paper. In our informal
overview, we often assume that m is not too small for convenience (more pre-
cisely we assume that m > w(loglog N) for our informal description), and we
deal with the case of small m in later technical sections.

Challenge for parallel accesses: write conflicts. A strawman idea for constructing
OPRAM is to have m CPUs perform m ORAM access operations simultaneously.
Reads are easy to handle, since the m CPUs can read m paths simultaneously.
The difficulty is due to write conflicts, which arise from the need for m CPUs
to (1) each remove a block from its bucket if it is the requested one; and (2) to
perform eviction after the reads. In particular, observe that the paths accessed
by the m CPUs overlap, and therefore it may be possible that two or more CPUs
will be writing the same location at the same time. It is obvious that if such write
conflicts are resolved arbitrarily where an arbitrary CPU wins, we will not be
able to maintain even correctness.

Subtree partitioning to reduce write contention. Chen et al.’s core idea is to
remove buckets from smaller heights of the Circuit ORAM tree, and start at a
height with m buckets. In this way, we can view the Circuit ORAM tree as m
disjoint subtrees — write contentions can only occur inside each subtree but not
across different subtrees.

Now since there are m CPUs in the original PRAM, each batch contains m
memory access requests — without loss of generality, we will assume that all of
these m requests are distinct — had it not been the case, it is easy to apply the
conflict resolution algorithm of Boyle et al. [3] to suppress duplicates, and then
rely on oblivious routing to route fetched results back to all m requesting CPUs.

Each of these m requests will look for its block in a random subtree indepen-
dently. By the Chernoff bound, each subtree receives O(«log N) requests with all
but negl(N) probability where o = w(1) is any super-constant function. Chen
et al.’s algorithm proceeds as follows, where performance metrics are without
TeCUTSLON.

1. Fetch. A designated CPU per subtree performs the read phase of these
O(alog N) requests sequentially, which involves reading up to O(alog N)
paths in the tree. Since each path is O(log N) in length, this incurs
O(alog® N) parallel steps.

2. Route. Obliviously route the fetch results to the requesting CPUs. This incurs
O(logm) parallel steps with m CPUs.

3. Remap. Assign each fetched block to a random new subtree and a random leaf
within that subtree. Similarly, each subtree receives p = O(alog N) blocks
with all but negl(/V) probability. Now, adopt an oblivious routing procedure
to route exactly p blocks back to each subtree, such that each tree receives
blocks destined for itself together with padded dummy blocks. This incurs
O(alogmlog N) parallel steps with m CPUs.

82 T.-H. Hubert Chan and E. Shi

4. Evict. Each subtree CPU sequentially performs p = O(alog N) evictions for
its own subtree. This incurs O(alog? N) parallel steps with m CPUs.

Note that to make the above scheme work, Chen et al. [7] must assume that
each subtree CPU additionally stores an O(alog N)-sized stash that holds all
overflowing blocks that are destined for the particular subtree — we will get
rid of this CPU cache, such that each CPU only needs O(1) blocks of transient
storage and does not need any permanent storage.

Recursive version. The above performance metrics assumed that all CPUs get to
store, read, and update a shared position map for free. To remove this assump-
tion, we can employ the standard recursion technique of the tree-based ORAM
framework [31] to store this position map. We stress that when applying recur-
sion, we must perform conflict resolution at each recursion level to ensure that
all non-dummy requests have distinct addresses at each recursion level. The posi-
tion identifiers fetched at a position map level will be obliviously routed to the
fetch CPUs at the next recursion level.

Assuming that each block has size at least 2(log N) bits, there can be
up to log N levels of recursion. Therefore, Chen et al.’s OPRAM scheme incurs
O(alog® N) simulation overhead using the same number of CPUs as the original
PRAM.

2.3 Our Construction: Intuition

Why the CLT OPRAM is inefficient. First, we need to observe why the CLT
OPRAM [7] is inefficient. There are two fundamental reasons why the CLT
OPRAM scheme suffers from an extra log IV factor in overhead.

1. During the fetch phase, a single CPU per subtree acts sequentially to fetch
all requests that belong to the subtree. Although on average, each subtree
receives O(1) requests, in the worst case a subtree may receive up to alog N
requests (to obtain negl(N) security failure). Since serving each request
involves reading a tree path of log N in length and then removing the block
fetched from the path, serving all alog N requests sequentially with a sin-
gle CPU would then require O(alog? N) time — over all O(log N) recursion
levels, the blowup would then be O(alog® N).

2. Similarly, during the eviction phase, a single CPU is in charge of performing
all evictions a subtree receives. Although on average, each subtree receives
O(1) evictions, in the worst case a subtree may receive up to alog N evictions
(to obtain negl(N) security failure). Similarly, to serve all alog N evictions
with a single CPU would require O(« log® N) time — and after recursion, the
blowup would be O(alog® N).

Therefore, the crux is how to improve the efficiency of the above two steps.
To this end, we need to introduce a few new ideas described below.

Simultaneous removal. Reading data from the m subtrees can be split into two
steps: (1) reading m paths to search for the m blocks requested; and (2) removing

Circuit OPRAM 83

the m fetched blocks. Reading m paths can be parallelized trivially by having
m CPUs each read a path — note that it is safe to reveal how many requests go
to each subtree. Therefore, the crux is how to in parallel remove the m fetched
blocks from the respective tree paths. The challenge here is that the tree paths
may intersect — recall that each subtree may receive up to alog N requests in
the worst-case, and therefore the simultaneous removal algorithm must handle
potential write conflicts.
We detail our new simultaneous removal algorithm in Sect. 7.1.

Lazy eviction. The eviction stage is more tricky. Unlike the fetch phase where it
is safe to reveal which requests go to which subtrees, here it must be kept secret
from the adversary how many evictions each subtree receives. At first sight, it
would seem like it is necessary to pad the number of evictions per subtree to
alog N to hide the actual number of evictions each subtree receives.

Our idea is to perform eviction lazily. We perform only a single (possibly
dummy) eviction per subtree for each batch of m requests — for technical reasons
we will have 2m subtrees in total instead of m subtrees, since this makes evictions
on average faster than the rate of access. In particular, if there exists one or more
blocks wanting to be evicted to a subtree, a real eviction takes place; otherwise,
a dummy eviction takes place for the corresponding subtree.

Obviously, such lazy eviction would mean that some elements will be left over
and cannot be evicted back into the subtrees. Therefore, we introduce a new data
structure called a pool to store the leftover blocks that fail to be evicted. Later,
we will prove that the pool size is upper bounded by O(m+ alog N) except with
negl(N') probability.

Due to the introduction of the pool, when a batch of requests come, we will
need to serve these requests not only from the subtrees, but also from the pool as
well — serving requests from the pool can be done in parallel through a standard
building block called oblivious routing [3].

Selection of eviction candidates and pool occupancy. Recall that during the evic-
tion stage, we would like to perform a single eviction per subtree. This would
require an oblivious algorithm to select eviction candidates from the pool and
route these candidates to the respective subtrees. Intuitively, if multiple blocks
in the pool are destined for a given subtree, we should select one that has a max-
imum chance of being evicted, since this can hopefully give us a tight bound on
the leftover blocks in the pool. As a result, suppose that a certain path denoted
path is being evicted for a certain subtree, we will select a block in the pool
that is deepest with respect to path for this subtree — as defined in the Cir-
cuit ORAM [36] work, this means that this block can legally reside in a deepest
height (i.e., closest to the leaf) in path.

It turns out that using this eviction candidate selection strategy, we can view
the union of the subtrees and the pool logically as a big Circuit ORAM tree —
where the subtrees represent heights log,(2m) or higher; and the pool repre-
sents smaller heights below log,(2m) as well as the stash of Circuit ORAM.
At this moment, it would seem like bounding on the pool occupancy would
directly translate to bounding blocks remaining in the smaller heights of Circuit

84 T.-H. Hubert Chan and E. Shi

ORAM — although there is one additional subtlety: in Circuit ORAM, we per-
form one access followed by one eviction, whereas here we perform a batch of m
accesses followed by a batch of m evictions. To handle this difference, we prove a
stochastic domination result, showing that such batched eviction can only reduce
the number of blocks in height log,(2m) or smaller than non-batched — in this
way, we can reuse Circuit ORAM’s stochastic analysis for bounding the pool
size.

2.4 Putting it Altogether

Putting the above ideas together would expose a few more subtleties. We give a
high-level overview of our basic construction below.

A pool and 2m subtrees: reduce write contention by partitioning. Following the
approach of Chen et al. [7], we reduce write contention by partitioning the Circuit
ORAM into 2m subtreesS. However, on top of Chen et al. [7], we additionally
introduce the notion of a pool, a data structure that we will utilize to amortize
evictions across time.

We restructure a standard Circuit ORAM tree in the following manner. First,
we consider a height with 2m buckets, which gives us 2m disjoint subtrees. All
buckets from smaller heights, including the Circuit ORAM’s stash, contain at
most O(m + alog N) blocks — we will simply store these O(m+ alog N) blocks
in an unstructured fashion in memory, henceforth referred to as a pool.

Fetch. Given a batch of m memory requests, henceforth without loss of generality,
we assume that the m requests are for distinct addresses. This is because we can
adopt the conflict resolution algorithm by Boyle et al. [3] to suppress duplicates,
and after data has been fetched, rely on oblivious routing to send fetched data
to all request CPUs.

Now, we look up the requested blocks in two places, both the pool and the
subtrees:

— Subtree lookup: Suppose that the position labels of the m requests have been
retrieved (we will later show how to achieve this through a standard recursion
technique) — this defines m random paths in the 2m subtrees. We can now
have m fetch CPUs each read a path to look for a desired block. All fetched
blocks are merged into the central pool. Notice that at this moment, the
pool size has grown by a constant factor, but later in a cleanup step, we will
compress the pool back to its original size. Also, at this moment, we have
not removed the requested blocks from the subtrees yet, and we will remove
them later in the maintain phase.

— Pool lookup: At this moment, all requested blocks must be in the pool. Assum-
ing that m is not too small, we can now rely on oblivious routing to route
blocks back to each requesting CPU — and this can be completed in O(log N)
parallel steps with m CPUs. We will treat the case of small m separately later
in the paper.

5 Although we choose 2m for concreteness, any c-m for a constant ¢ > 1 would work.

Circuit OPRAM 85

Maintain. In the maintain phase, we must (1) remove all blocks fetched from
the paths read; and (2) perform eviction on each subtree.

— Efficient simultaneous removals. After reading each subtree, we need to

remove up to p := O(alog N) blocks that are fetched. Such removal opera-
tions can lead to write contention when done in parallel: since the paths read
by different CPUs overlap, up to p := O(alog N) CPUs may try to write to
the same location in the subtree.
Therefore, we propose a new oblivious parallel algorithm for efficient simulta-
neous removal. Our algorithm allows removal of the m fetched blocks across
all trees in O(log N) time using m CPUs. We defer the detailed description
of this simultaneous removal algorithm to Sect. 7.

— Selection of eviction candidates and pool-to-subtree routing. At this moment,
we will select exactly one eviction candidate from the pool for each subtree. If
there exists one or more blocks in the pool to be evicted to a certain subtree,
then the deepest block with respect to the current eviction path will be chosen
(as mentioned later, eviction paths are chosen using a standard deterministic
order lexicographical ordering mechanism [15,36]). Otherwise, a dummy block
will be chosen for this subtree. Roughly speaking, using the above criterion
as a preference rule, we can rely on oblivious routing to route the selected
eviction candidate from the pool to each subtree. This can be accomplished
in O(log N) parallel steps with m CPUs assuming that m is not too small —
we defer the treatment of small m to later parts of the paper. The details of
this algorithm will be spelled out in the full version [6].

— Fviction. We then perform eviction over one tree path for every subtree where
the eviction path is selected using the standard deterministic lexicographically
order algorithm — since the details of eviction path selection are non-essential
to the understanding of our Circuit OPRAM, we refer the reader to earlier
works for a detailed exposition [15,36]. At the end of this step, each subtree
will output an eviction leftover block: the leftover block is dummy if the
chosen eviction candidate was successfully evicted into the subtree (or if the
eviction candidate was dummy to start with); otherwise the leftover block
is the original eviction candidate. All these eviction leftovers will be merged
back into the central pool.

— Pool cleanup. Notice that in the process of serving a batch of requests, the
pool size has grown — however, blocks that have entered the pool may be
dummy. In particular, we shall prove that the pool’s occupancy will never
exceed ¢ - m + alog N for an appropriate constant ¢ except with negl(V)
probability. Therefore, at the end of the maintain phase, we must compress
the pool back to ¢-m + alog N. Such compression can easily be achieved
through oblivious sorting in O(log N) parallel steps with m CPUs, assuming
that m is not too small. We defer the special treatment of small m to later
parts of the paper.

Recursion and performance. So far, we have assumed that a position map can
be stored and accessed by the CPUs for free. We can remove this assumption

86 T.-H. Hubert Chan and E. Shi

through a standard recursion technique [3,31]. Note that we need to perform
conflict resolution at all levels of recursion, and perform oblivious routing to
route the fetched position identifiers to the fetch CPUs at the next recursion
level. When we count all O(log N) recursion levels, the above basic construction
achieves O(log? N') blowup when m is not too small — we defer the special-case
treatment of small m to later parts of the paper.

2.5 Extensions

Improve performance asymptotically with PRFs. In the full version [6], we will
describe additional techniques that allow us to improve the OPRAM’s blowup to

(1;?{) éVN) assuming the usage of a pseudo-random function (PRF) — of course,
the resulting scheme would then only have computational security rather than
statistical security. To this end, we rely on an elegant technique first proposed
by Fletcher et al. [12] that effectively “compresses” position labels by relying
on a PRF to compute the blocks’ leaf identifiers from “compressed counters”.
Fletcher et al.’s technique was designed for tree-based ORAMs — as we show
later in the paper, we need to make some adaptations to their algorithm to make
it work with OPRAMs.

Varying number of CPUs. Our overview earlier assumes that the original PRAM
always has the same number of CPUs in every time step, i.e., all batches of
memory requests have the same size. We can further extend our scheme for the
case when the number of PRAM CPUs varies over time. Below we briefly describe
the idea while leaving details to Sect. 7. Without loss of generality, henceforth we
assume that in every time step, the number of requests in a batch m is always a
power of 2 — if not, we can simply round it to the nearest power of 2 incurring
only O(1) penalty in performance.

Suppose that the OPRAM scheme currently maintains 2/m subtrees, but the
incoming batch has m > m number of requests. In this case, we will immediately
adjust the number of subtrees to 2m. This can be done simply by merging more
heights of the tree into the pool.

The more difficult case is when the incoming batch contains less than m < m
requests. In this case, we need to decrease the number of subtrees. In the extreme
case when m drops from v/N to 1, it will be too expensive to reconstruct up to
O(log N) heights of the ORAM tree.

Instead, we argue in Sect. 3.2 that without loss of generality, we may assume
that if m decreases, it may only decrease by a factor of 2. Hence, every time we
just need to halve the number of subtrees — and to achieve this we only need
to reconstruct one extra height of the big ORAM tree, which can be achieved
through oblivious sorting in O(logm) parallel steps with O(m) CPUs.

Results for large block sizes. Finally, we note that when the block size is N€ for
any constant 0 < € < 1, Circuit OPRAM achieves O(log N) simulation overhead
when m > aloglog N. In light of Goldreich and Ostrovsky’s {2(log N) lower
bound [17,18], Circuit OPRAM is therefore asymptotically optimal under large
block sizes.

Circuit OPRAM 87

2.6 Paper Organization

The remainder of the paper will formally present the ideas described in this
section and describe additional results including

1. How to support the case when the number of CPUs varies over time (Sects. 5,
6, 7, and details in [6]);

2. Algorithmic details for the case of small m (Sects. 5, 6, 7, and details in [6]);

3. Additional techniques to improve the overhead of the scheme by a loglog N
factor assuming the existence of PRFs and achieving computational (rather
than statistical) security in full version [6];

4. Detailed proofs (in full version [6]) where the security proof is somewhat
straightforward but the most technically involved part is to prove that Circuit
OPRAM’s stochastic process is dominated by that of Circuit ORAM such
that we can leverage Circuit ORAM’s stochastic analysis [36] for bounding
the pool and stash sizes of Circuit OPRAM; and

5. Interpretations of our results under larger block sizes and other relevant met-
rics in full version [6].

3 Preliminaries

3.1 Parallel Random-Access Machines

A parallel random-access machine (PRAM) consists of a set of CPUs and a
shared memory denoted mem indexed by the address space [N] := {1,2,...,N}.
In this paper, we refer to each memory word also as a block, and we use B to
denote the bit-length of each block.

We support a more general PRAM model where the number of CPUs in each
time step may vary. Specifically, in each step ¢ € [T], we use m; to denote the
number of CPUs. In each step, each CPU executes a next instruction circuit
denoted II, updates its CPU state; and further, CPUs interact with memory
through request instructions I ;= (Ii(t) : i € [my]). Specifically, at time step ¢,
CPU i’s instruction is of the form Ii(t) := (op, addr, data), where the operation
is op € {read,write} performed on the virtual memory block with address addr
and block value data € {0,1}% U {L}. If op = read, then we have data = 1 and
the CPU issuing the instruction should receive the content of block mem[addr]
at the initial state of step t. If op = write, then we have data # L; in this case,
the CPU still receives the initial state of mem[addr] in this step, and at the end
of step ¢, the content of virtual memory mem/addr] should be updated to data.

Write conflict resolution. By definition, multiple read operations can be executed
concurrently with other operations even if they visit the same address. However,
if multiple concurrent write operations visit the same address, a conflict reso-
lution rule will be necessary for our PRAM be well-defined. In this paper, we
assume the following just like earlier OPRAM works [3,7]:

88 T.-H. Hubert Chan and E. Shi

— The original PRAM supports concurrent reads and concurrent writes
(CRCW) with an arbitrary, parametrizable rule for write conflict resolution.
In other words, there exists some priority rule to determine which write oper-
ation takes effect if there are multiple concurrent writes in some time step t.

— The compiled, oblivious PRAM (defined below) is a “concurrent read, exclu-
sive write” PRAM (CREW). In other words, the design of our OPRAM con-
struction must ensure that there are no concurrent writes at any time.

We note that a CRCW-PRAM with a parametrizable conflict resolution rule
is among the most powerful CRCW-PRAM model, whereas CREW is a much
weaker model. Our results are stronger if we allow the underlying PRAM to be
more powerful but the our compiled OPRAM uses a weaker PRAM model. For
a detailed explanation on how stronger PRAM models can emulate weaker ones,
we refer the reader to the work by Hagerup [21].

CPU-to-CPU communication. In the remainder of the paper, we sometimes
describe our algorithms using CPU-to-CPU communication. For our OPRAM
algorithm to be oblivious, the inter-CPU communication pattern must be obliv-
ious too. We stress that such inter-CPU communication can be emulated using
shared memory reads and writes. Therefore, when we express our performance
metrics, we assume that all inter-CPU communication is implemented with
shared memory reads and writes. In this sense, our performance metrics already
account for any inter-CPU communication, and there is no need to have separate
metrics that characterize inter-CPU communication. In contrast, Chen et al. [7]
defines separate metrics for inter-CPU communication.

Additional assumptions and notations. Henceforth, we assume that each CPU
can only store O(1) memory blocks. Further, we assume for simplicity that the
runtime of the PRAM, and the number of CPUs activated in each time step
are fized a priori and publicly known parameters. Therefore, we can consider a
PRAM to be a tuple

PRAM := (IT, N, T, (m; :t € [T])),

where IT denotes the next instruction circuit, N denotes the total memory size (in
terms of number of blocks), T' denotes the PRAM’s total runtime, and m; denotes
the number of CPUs to be activated in each time step t € [T]. Henceforth, we
refer to the vector (mq,...,mr) as the PRAM’s activation schedule as defined
by Boyle et al. [3].

Without loss of generality, we assume that N > m, for all . Otherwise, if
some m; > N, we can adopt a trivial parallel oblivious algorithm (through a
combination of conflict resolution and oblivious multicast) to serve the batch of
m; requests in O(log m;) parallel time with m; CPUs.

3.2 Oblivious Parallel Random-Access Machines

Randomized PRAM. A randomized PRAM is a special PRAM where the CPUs
are allowed to generate private, random numbers. For simplicity, we assume that

Circuit OPRAM 89

a randomized PRAM has a priori known, deterministic runtime, and that the
CPU activation pattern in each time step is also fixed a priori and publicly
known.

Statistical and computational indistinguishability. Given two ensembles of distri-
N
butions { Xy} and {Yn} (parameterized with V), we use the notation { Xy} @)

{Yn} to mean that for any (possibly computationally unbounded) adversary A,

[PriA@) = 1o Xx] = PrlA(y) = 1]y Vi) < (V).

e(N
We use the notation { Xy} (EC) {Yn} to mean that for any non-uniform p.p.t.
adversary A,

PriA(Y, 2) = 1|28 Xn] = PrlA1Y,y) = 1 |y£yN]‘ < €¢(N).

Oblivious PRAM (OPRAM). A randomized PRAM parametrized with total
memory size N is said to be statistically oblivious, iff there exists a negligible
function €(-) such that for any inputs zg,z; € {0,1}*,

e(N
Addresses(PRAM,) @) Addresses(PRAM, 1),

where Addresses(PRAM, z) denotes the joint distribution of memory accesses
made by PRAM upon input . More specifically, for each time step t € [T,
Addresses(PRAM, z) includes the memory addresses requested by the set of active
CPUs S; in time step ¢ along with their CPU identifiers, as well as whether each
memory request is a read or write operation.

Similarly, a randomized PRAM parametrized with total memory size N is
said to be computationally oblivious, iff there exists a negligible function e(-)
such that for any inputs zg,2; € {0,1}*,

e(N
Addresses(PRAM,) (Ec) Addresses(PRAM, 1)

Note the only difference from statistical security is that here the access pat-
terns only need to be indistinguishable to computationally bounded adversaries.
Henceforth we often use the notation OPRAM to denote a PRAM that satisfies
obliviousness.

In this paper, following the convention of most existing ORAM and OPRAM
works [17,18,23,35,36], we will require that the security failure probability be
negligible in the N, i.e., the PRAM’s total memory size.

Oblivious simulation and performance measures. We say that a given OPRAM
simulates a PRAM if for every input € {0,1}*, PrfOPRAM(z) = PRAM(z)] =
1 where the probability is taken over the randomness consumed by the
OPRAM — in other words, we require that the OPRAM and PRAM output
the same outcome on any input z.

90 T.-H. Hubert Chan and E. Shi

Like in prior works on OPRAM [3,7], in this paper, we consider activation-
preserving oblivious simulation of PRAM. Specifically, let (mq,...,mp) be
the original PRAM’s activation schedule, we require that the corresponding
OPRAM’s activation schedule to be

(ml)gczlv (m2)2<:17 cees (mTﬁ:p

where x is said to be the OPRAM’s simulation overhead (also referred to as
blowup). In other words, henceforth in the paper, we will simulate the i-th step of
the PRAM using m; CPUs — the same number as the original PRAM. Without
loss of generality, we will often assume O(m;) CPUs are available, since we can
always use one CPU to simulate O(1) CPUs with only constant blowup. As a
special case, when the number of CPUs is fixed for the PRAM, i.e., m; = m
for any ¢ € [T], an oblivious simulation overhead of x means that the OPRAM
needs to run in x - T steps consuming m CPUs (same as the original PRAM)
where T is the runtime of the original PRAM.

An oblivious simulation overhead of x also implies the OPRAM’s CPU-to-
memory bandwidth overhead is a factor of x more than the original PRAM.
Since our model simulates all inter-CPU communication with memory-to-CPU
communication, an OPRAM with simulation overhead x under our model imme-
diately implies that the inter-CPU communication is bounded by x too. In this
sense, our metrics are stronger than those adopted in earlier work [7] which
treated CPU-to-memory communication and inter-CPU communication sepa-
rately — this makes our upper bound results more general.

Assumption on varying number of CPUs. Without loss of generality, henceforth
in the paper we may assume that in the original PRAM, the number of CPUs in
adjacent steps can increase arbitrarily, but may only decrease by a factor of 2. In
other words, we may assume that for any i € [T — 1], m;;1 > %*. This assump-
tion is without loss of generality, since it is not hard to see that any PRAM where
the number of CPUs can vary arbitrarily can be simulated by a PRAM where the
number of CPUs can decrease by at most % in adjacent steps — and such simula-
tion preserves the PRAM’s total work and parallel runtime asymptotically. Such
a simulation is straightforward: if the original PRAM consumes more CPUs than
the simulated PRAM in the next step, then the simulated PRAM immediately
increases the number of CPUs to a matching number. If the original PRAM’s
consumes fewer CPUs than the simulated PRAM in the next step, the simulated
PRAM decreases its CPUs by at most a factor of 2 each time (and if there are
more CPUs in the simulation than needed by the PRAM, the additional CPUs

simply idle and perform dummy work).

4 Building Blocks

We now describe some standard or new building blocks that we use.

Oblivious sort. Parallel oblivious sort solves the following problem. The input is
an array denoted arr containing n elements and a total ordering over all elements.

Circuit OPRAM 91

The output is a sorted array arr’ that is constructed obliviously. Parallel oblivious
sorting can be achieved in a straightforward way through sorting networks [1],
by using O(n) CPUs and consuming O(nlogn) total work and O(logn) parallel
steps.

Oblivious conflict resolution. Oblivious conflict resolution solves the fol-
lowing problem: given a list of memory requests of the form In :=
{(op;,addr;, data;) };c[m], output a new list of requests denoted Out also of length
m, such that the following holds:

— Every non-dummy entry in Out appears in In;

— Every address addr that appears in In appears exactly once in Out. Further,
if multiple entries in In have the address addr, the following priority rule is
applied to select an entry: (1) writes are preferred over reads; and (2) if there
are multiple writes, a parametrizable function priority is used to select an
entry.

We will use the standard parallel oblivious conflict resolution algorithm
described by Boyle et al. [3], which can accomplish the above in O(mlogm)
total work and O(logm) parallel steps. More specifically, Boyle et al.’s conflict
resolution algorithm relies on a constant number of oblivious sorts and oblivious
aggregation.

Oblivious aggregation for a sorted array. Given an array Inp := {(ki, vs)}icm
of (key, value) pairs sorted in increasing order of the keys, we call all elements
with the same key a group. We say that index ¢ € [n] is a representative of
its group if it is the leftmost element of its group. Let Aggr be a commutative
and associative aggregation function and we assume that its output range can
be described by O(1) number of blocks. The goal of oblivious aggregation is to
output the following array:

Outo. - Aggr ({v : (k,v) € Inp and k = k;}), ifiis a representative;

HtP: = 1, 0.W.

Boyle et al. [3] and Nayak et al. [27] show that oblivious aggregation for a
sorted array of length n can be accomplished in O(logn) parallel time consuming
n CPUs.

When the input array has a maximum group size of k, we show that oblivious
aggregation can be accomplished in O(log k) parallel steps consuming O(2+)

log k
CPUs. We defer the detailed description of the algorithm to the full version [6].

Oblivious routing. Oblivious routing solves the following problem. Suppose n
source CPUs each holds a data block with a distinct key (or a dummy block).
Further, n destination CPUs each holds a key and requests a data block identified
by its key. An oblivious routing algorithm routes the requested data block to the
destination CPU in an oblivious manner. Boyle et al. [3] showed that through a
combination of oblivious sorts and oblivious aggregation, oblivious routing can
be achieved in O(nlogn) total work and O(logn) parallel runtime.

92 T.-H. Hubert Chan and E. Shi

In this paper, we sometimes also need a variant of the oblivious routing
algorithm, a source CPU gets informed in the end whether its block is successfully
routed to one or more destination CPUs. We elaborate how to modify Boyle
et al. [3]’s oblivious routing building block to accomplish this.

Oblivious bin packing. Oblivious bin packing is the following primitive. We are
given B bins each of capacity Z, and an input array of possibly dummy elements
where each real element is tagged with a destined bin number and priority value.
We wish to maximally pack each bin with elements destined for the bin — if
there are more than Z elements destined for a bin, the Z elements with the
highest priority should be chosen. Let n be the size of the input array, In the
end, the algorithm outputs an array of size B-Z denoting the packed bins and an
array of size n denoting the remaining elements — both padded with dummies.

Let i := max(n, B-Z). We devise an algorithm for performing such oblivious
bin packing in O(logn) parallel steps consuming n CPUs. The details of this
algorithm and a more formal definition of oblivious bin packing are deferred to
the full version [6].

5 Our Basic OPRAM Construction

We now describe our basic OPRAM construction.

5.1 Notations

Addresses in each recursion level. Recall that we reviewed the Circuit ORAM
construction earlier. Here we define some notations for expressing recursion lev-
els, including given each logical memory request, which metadata blocks to fetch
from each recursion level.

In the presentation below, we assume that each position map block can store
the position labels of v blocks at the next recursion level, i.e., the branching
factor is denoted by ~. Given a logical address addr of a data block, we say
that its level-d prefix (denoted addr'®) is the d most significant characters of
addr when expressed in base-y format. Specifically, a block at address addr{®
in recursion level d will store the position labels for the v blocks at addresses
{(addr'®|j) : j € [4]} in recursion level d + 1; we say that the level-(d + 1)
address (addr'®|[j) is the jth child of the level-d address addr'®. For the special
case v = 2, we sometimes refer to the level-(d + 1) addresses (addr(®||0) and
(addr'®||1) as the left child and the right child respectively of the level-d address
addr®.

Ezxample 1. We give an example for v = 2, i.e., when each position map block
can store exactly two position labels. Imagine that one of the memory requests
among the batch of m requests asks for the logical address (0101100)5 in binary
format. For this request,

Circuit OPRAM 93

— A fetch CPU at recursion level 0 will look for the level-0 address (0«), and the
fetched block will contain the position labels for the level-1 addresses (00x)
and (01x); and a corresponding fetch CPU at recursion level 1 will receive
the position label for the level-1 address (01x).

— A fetch CPU at recursion level 1 will look for the level-1 address (01%), and
the fetched block will contain the position labels for the level-2 addresses
(010%) and (011%); and a corresponding fetch CPU at the next recursion level
is to receive the position label for (010%);

— This goes on until the final recursion level is reached. Except for the final
recursion level which stores actual data blocks, all other recursion levels store
position map blocks.

Here we focused on what happens for fetching one logical address (0101100); —
but keep in mind that there are m such addresses in a batch and thus the above
process is repeated m times in parallel.

Notations for varying number of CPUs. For simplicity, below we use m (omitting
the subscript ¢) to denote the number of CPUs of the present PRAM step; we
use the notation m to denote the number of CPUs in the previous PRAM step.
Without loss of generality, we also assume that both m and m are powers of 2,
since if not, we can always round it to the nearest power of 2 while incurring only
a constant factor blowup. Recall that due to our bounded change assumption
on the number of CPUs, we may also assume without loss of generality that
m > % Therefore, if m < m it must be the case that m :=

Our OPRAM scheme will try to maintain the following invariant: at the end
of a PRAM step with m CPUs, the OPRAM data structure will have exactly 2m
disjoint subtrees. Henceforth, we assume that at the beginning of the PRAM step
we are concerned about, there are exactly 2m disjoint subtrees since m denotes
the number of CPUs in the previous PRAM step.

NEA

Parameter a. Throughout the description, we use @ = w(1) to denote an appro-
priately small super constant function in NV such that the failure probability is
at most ﬁ, i.e., negligible in N.

5.2 Data Structures

Subtrees and overflowing pool. For each of the recursion levels, we maintain a
binary tree structure as in Circuit ORAM [36]. We refer the reader to Sect. 2.1 for
a review of the Circuit ORAM algorithm. However, instead of having a complete
tree, our OPRAM scheme truncates the tree at height ¢ := log,(2m) containing
2m buckets. In this way, we can view the tree data structure as 2m disjoint
subtrees.

In the Circuit ORAM algorithm, all buckets with heights smaller than ¢
contain at most O(m+«alog N) blocks. In our OPRAM scheme, these blocks are
treated as overflowing blocks, and they are held in an overflowing data structure
called a pool as described below.

94 T.-H. Hubert Chan and E. Shi

Position map. As in Circuit ORAM (see Sect. 2.1), each address addr is associated
with a random path in one of the subtrees, and the path is identified by a leaf
node. We use a position map posmap[addr] to store the position identifier for
address addr.

Our main path invariant states that a block with address addr must reside
on the path to the leaf posmap[addr] in one of the subtrees, or reside in the
overflowing pool. When block addr is accessed (via read or write), its position
posmap|addr]| will be updated to a new leaf chosen uniformly and independently
at random. As in previous works [31,35,36], the position map is stored in a
smaller OPRAM recursively. We use the notation pos-OPRAMs to denote all
recursion levels for storing the position map, and we use data-OPRAM to denote
the top recursion level for storing data blocks.

5.3 Overview of One Simulated PRAM Step

To serve each batch of memory requests, a set of CPUs interact with memory
in two synchronized phases: in the fetch phase, the request CPUs receive the
contents of the requested blocks; in the second maintain phase, the CPUs col-
laborate to maintain the data structure to be ready for the next PRAM step.
The description below can be regarded as an expanded version of Sect.2.4. In
particular, we now spell out what happens if m; varies over time. Further, it
turns out that for OPRAM, the recursion is somewhat more complicated than
ORAM, we also spell out all the details of the recursion — this choice is made
also partly in anticipation of the additional computational security techniques
described later in the full version [6] where it is somewhat important to not
treat the recursion as a blackbox like most earlier tree-based ORAM/OPRAM
works [3,7,8,35,36]. Our algorithm below employs several subroutines the details
of which will be expanded in Sects. 6 and 7 respectively.

Fetch phase. The fetch phase has an array of m addresses as input denoted
(addry, ..., addr,,). Recall that at the beginning of the fetch phase, each recursion
level has 2m disjoint subtrees, where m is the number of active CPUs in the
previous PRAM step.

(i) Preparation: all recursion levels in parallel. For all recursion levels d :=
0,1,...,D in parallel, perform the following:

— Generate level-d prefix addresses. Write down the level-d prefixes of all
m requests addresses (addry, ..., addr,,). Clearly, this step can be accom-
plished in O(1) parallel step with m CPUs.

— Conflict resolution. Given a list of m possibly dummy level-d addresses
denoted (add r§d>7 ...,add rff?), we run an instance of the oblivious conflict
resolution algorithm to suppress duplicate requests (and pad the resulting
array with dummies). This step can be accomplished in O(logm) parallel
steps with m CPUs.

— Discover which children addresses are needed by the next recursion level.
Let Addr(® .= {addr§d>}i€[m} denote the list of level-d addresses after con-
flict resolution. Each of these m level-d addresses has 7y children addresses

Circuit OPRAM 95

in the next recursion level. By jointly examining Addr'? and Addr<d+1>,
recursion level d learns for each non-dummy addrgd> € Addr<d>, which
of its children are needed for the next recursion level (see Sect.6.1 for
details of this subroutine). At the end of this step, each of the m level-
d addresses receives a bit vector containing - bits, indicating whether
each child address is needed by the next recursion level. As mentioned
in Sect. 6.1, this can be accomplished through O(1) number of oblivious
sorts. Therefore, it takes m CPUs O(logm) steps to complete.

— Choose fresh position labels for the mext recursion level. For any child
that is needed, recursion level d chooses a new position label for the
next recursion level. For recursion level d, the result of this step is a new
position array

{addr!¥ (npos; : j € 7)) }icpm]

where npos; is a fresh random label in level d + 1 if addrl@Hj is needed
in the next recursion level, otherwise npos; := L. Later in our algorithm,
each recursion level d will inform the next recursion level d + 1 of the
chosen new position labels.

This step can be accomplished in O(y) steps with m CPUs — for our
statistically secure OPRAM scheme, we shall assume v = O(1).

— Pool lookup. We have m CPUs each of which now seeks to fetch the level-
d block at address addr'”. The m CPUs first tries to fetch the desired
blocks inside the central pool; and at the end, the fetched blocks will be
marked as dummy in the pool.

If m > aloglog N, then we rely on an instance of the oblivious rout-
ing algorithm, such that each of these m CPUs will attempt to receive
the desired block from the pool. If m < aloglog IV, oblivious routing is
too expensive, instead we invoke a special-case algorithm for small m to
accomplish this in O(«log N) steps with m CPUs.

We defer the details of the algorithm to Sect. 6.

(ii) Fetch: level by level. Now, for each recursion level, m CPUs will each look for
a block in one of the subtrees. This step must be performed sequentially one
recursion level at a time since each recursion level must receive the position
labels from the previous level before looking for blocks in the subtrees.
For each recursion level d = 0,1, ..., D in sequential order, we perform the
following:

— Receive position labels from previous recursion level. Unless d = 0 in which
case the position labels can be fetched in O(1) parallel step, each of the
m level-d addresses will receive a pair of position labels from the previous
recursion level denoted (pos,npos), where pos represents the tree path
to look for the desired block, and npos denotes a freshly chosen label to
be assigned to the block after the fetch is complete. This can be accom-
plished through an instance of oblivious routing consuming O(logm) par-
allel steps with m CPUs.

96 T.-H. Hubert Chan and E. Shi

— Subtree lookup. Now, each of the m CPUs receives an instruction of the
form (addr'® pos) that could be possibly dummy. Each CPU will now
read a tree path leading to the leaf node numbered pos, in search of the
block with logical address addr‘® (but without removing the block). If
found, the CPU will remember the location where the block is found —
and this information will later be useful for the simultaneous removal step
that is part of the maintain phase. If a CPU receives a dummy instruction,
it simply scans through a randomly chosen path in a random subtree.
At this moment, each of the m CPUs has fetched the desired block either
from the pool or the tree path (or the CPU has fetched dummy if it
received a dummy instruction to start with). The fetched position labels
(as well as the new position labels chosen for the next recursion level) are
ready to be routed to the next recursion level.

(iii) Oblivious multicast: once per batch of requests. Finally, when the
data-OPRAM has fetched all requested blocks, we rely on a standard obliv-
ious routing algorithm (see Sect.4) to route the resulting blocks to the
request CPUs. This step takes O(logm) parallel time with m CPUs.

Remark 1. Note that in the above exposition, we made explicit which steps
can be parallelized across recursion levels and which steps must be performed
sequentially across recursion levels — in particular, the level-to-level position
label routing must be performed sequentially across recursion levels since the
next recursion level must receive the position labels before learning which tree
paths to traverse. Although this distinction may not be very useful in this paper,
it will turn out to be important in a companion paper by Chan et al. [5], where
the authors further parallelize the level-to-level routing algorithm. In particular,
Chan et al. [5] introduce a new and better notion of an OPRAM’s “depth” by
assuming that the OPRAM can consume more CPUs than the original PRAM. In
this case, they show that an OPRAM’s depth can be made asymptotically smaller
by further parallelizing Circuit OPRAM’s level-to-level routing algorithm.

Maintain phase. All of the following steps are performed in parallel across all
recursion levels d =0,1,...,D:

(1) Simultaneous removal of fetched blocks from subtrees. After each of the m
CPUs fetches its desired block from m tree paths, they perform a simulta-
neous removal procedure to remove the fetched blocks from the tree paths.
This step can be accomplished in O(log N) parallel steps using m CPUs.
We defer a detailed description of this new simultaneous removal subrou-
tine in Sect. 7.1.

(ii) Passing updated blocks to the pool. Each CPU updates the contents of the
fetched block — if the block belongs to a position map level, the block’s
content should now store the new position labels (for the next recursion
level) chosen earlier in the preparation phase. Further, each block will be
tagged with a new position label that indicates where the block can now
reside in the current recursion level — this position label was received ear-
lier from the previous recursion level during the fetch phase (recall that

(iii)

(iv)

(vi)

(vii)

Circuit OPRAM 97

each recursion level chooses position labels for the next recursion level).
The updated blocks are merged into the pool. The pool temporarily
increases its capacity to hold these extra blocks, but the extra memory
will be released at the end of the maintain phase during a cleanup opera-
tion.

Increasing the number of subtrees if necessary. At this moment, if m > m,
i.e., if the number of CPUs has increased since the last PRAM step, then
we increase the number of subtrees to 2m, and merge all smaller heights of
the tree into the pool. If the number of CPUs has decreased (by a factor
of 2) since the last PRAM step, we will handle this case later.

Selection of eviction candidates. Following the deterministic, reverse-
lexicographical order eviction strategy of Circuit ORAM [36], we choose
the next 2m eviction paths (pretending that all subtrees are part of the
same big ORAM tree). The 2m eviction paths will go through 2m subtrees
henceforth referred to as evicting subtrees. If m has decreased (by a factor
of 2) since the last PRAM step, then not all subtrees are evicting subtrees.
We devise an eviction candidate selection algorithm that will output one
(possibly dummy) block to evict for each evicting subtree, as well as the
remainder of the pool (with these selected blocks removed). The block
selected for each evicting subtree is based on the deepest criterion with
respect to the current eviction path. When m > aloglog N, we rely on
oblivious sorting to accomplish this in O(log N) parallel steps with m
CPUs. When m < aloglog N, oblivious sorting will be too expensive, so
we rely on a different algorithm to accomplish this step in O(«log N) par-
allel steps with m CPUs. We defer a detailed description of the algorithm
to Sect. 7.2.

Eviction into subtrees. In parallel, for each evicting subtree, the eviction
algorithm of Circuit ORAM [36] is performed for the candidate block the
subtree has received. The straightforward strategy takes O(log N) parallel
steps consuming m CPUs.

After the eviction algorithm completes, if the candidate block fails to be
evicted into the subtree, it will be returned to the pool; otherwise if the
candidate block successfully evicts into the subtree, a dummy block is
returned to the pool.

Decreasing the number of subtrees if necessary. If m < m, this means that
the number of CPUs has decreased since the previous PRAM step. Also
note that in this case, by assumption, it must be the case that m = %
At this moment, we will halve the number of subtrees by reconstructing
one more height of the big Circuit ORAM tree containing 2m buckets. Let
Z be the bucket size of the ORAM tree. To reconstruct a height of size
2m, we must reconstruct 2m buckets each of size Z. This can be achieved
by repeating the eviction candidate selection algorithm Z number of times
(see Sect. 7.3 for details).

Cleanup. Finally, since the pool size has grown in the above process, we
perform a compression procedure to remove dummy blocks and compress
the pool back to c-m~+alog N size. Probabilistic analysis (in full version [6])

98

6

T.-H. Hubert Chan and E. Shi

shows that the pool occupancy is bounded by ¢ - m + alog N except with
negl(N) probability, and thus ensures that no real blocks are lost during
this reconstruction with all but negligible probability.

Again, if m > aloglog N, this can be accomplished through a simple
oblivious sort procedure in O(log N) steps with m CPUs. Else if m <
aloglog N, we devise a different procedure to perform the pool cleanup
that completes in O(alog N) parallel steps consuming m CPUs.

Details of the Fetch Phase

The outline of the fetch phase was described in Sect.5. Almost all steps are
self-explanatory as described in Sect. 5, and it remains to spell out only a couple
subroutines of the preparation stage.

6.1 Discovering Which Children Addresses are Needed

Recall that during the preparation stage, for each recursion level, each conflict
resolved address wants to learn which of its « child addresses are needed by the
next recursion level. Henceforth we assume that v = O(log N).

We can accomplish this task using the following algorithm. We use Addr{®

to denote an array of size m that contain the conflict resolved (possibly dummy)
addresses for recursion level d.

For each recursion level d = 0,1,...,D — 1 in parallel:

Let X be the concatenation of Addr{® and Addr{®*") where each element addi-
tionally carries a tag denoting whether it comes from Addr‘? or Addri®+1),
Oblivious sort X such that the addresses from Addr{® always appear imme-
diately before its up to ~ children addresses that come from Addrldth
henceforth we say that these addresses share the same key. Let the resulting
array be X'.

Invoke an instance of the oblivious aggregation algorithm, such that each
address in X’ that comes from Addr'? receives a (compacted) bit vector
indicating whether each of its 7y children is needed in the next recursion level.
Notice that as long as v := O(log N), the resulting bit vector can be packed
in a single block.

For each element of the resulting array in parallel, if the element comes from
Addr D , mark it as dummy. Let the resulting array be denoted Y.
Obliviously sort the resulting array Y such that all dummy elements are
pushed to the end. Output Y1 : m].

Clearly, the above algorithm can be completed in O(logm) steps with m

CPUs.

Circuit OPRAM 99

6.2 Fetching and Removing Blocks from the Pool

Recall that another step of the preparation stage is to look for desired blocks
from the pool and then remove any fetched block from the pool (by marking it
as dummy). To achieve this, we consider two cases — and recall that the pool
size is upper bounded by O(m+ «log N) except with negligible probability (due
to our probabilistic analysis in the full version [6]).

— Case 1: m > «loglog N. In this case, we simply invoke an instance of the
oblivious routing algorithm (particularly, the variant that removes routed ele-
ments from the source array) to accomplish this. This step can be completed
in O(log N) parallel steps consuming m CPUs for an appropriately small
super-constant a = w(1).

— Case 2: m < aloglog N. In this case, oblivious sorting would be too expen-
sive. Therefore, we instead adopt the following algorithm. Recall that in this
case, the pool size is dominated by O(alog N).

e First, each of the m CPUs perform a linear scan of the pool to look for
its desired block.

e Next, all m CPUs perform a a pipelined linear scan of the pool. During
the linear scan, each CPU marks its fetched block (if any) as dummy. To
ensure no write conflicts, we require that CPU number ¢ starts its scan
in the i-th step, i.e., in a pipelined fashion.

Clearly, the above algorithm can be accomplished in O(m 4 alog N) parallel
steps consuming m CPUs.

6.3 Performance of the Fetch Phase

Taking into account the cost of all steps of the fetch phase, we have the following
lemma.

Lemma 1 (Performance of the fetch phase). Suppose that the block size
B = 2(log N). Then, to serve the batch of m requests, the fetch phase, over all
O(log N) levels of recursion, completes in O(log® N) parallel steps with m CPUs
when m > aloglog N; and in O(« log? N) parallel steps when m < aloglog N.

7 Details of the Maintain Phase

An overview of the maintain phase was provided in Sect. 5.3. It remains to spell
out the details of various subroutines needed by the maintain phase.

7.1 Simultaneous Removal of Fetched Blocks from Subtrees

Problem definition. Suppose that there are m fetch paths for each batch of m
memory requests. Simultaneous removal provides the following abstraction:

— Inputs: Each of m CPUs has a tuple of the form (pathid;,s;) or L. More
specifically, 1 denotes nothing to remove, or else

100 T.-H. Hubert Chan and E. Shi

e pathid;, denotes the leaf identifier of a random tree path containing
O(log N) slots. In particular, a tree path contains O(log N) heights and
each height contains O(1) slots; and

e s; denotes a slot in the tree path to remove a block from;

Note that each tree path is random such that each disjoint subtree may receive

at most alog N tree paths. Although the m paths, we are guaranteed that
all the non-dummy inputs of the m CPUs must correspond to distinct slots,
i.e., no two CPUs want to remove from the same slot.

Outputs: Each of the m CPUs outputs an array of length O(log N), denoting
for each slot on its path: (1) whether the CPU is the representative CPU;
and (2) if so, whether the block in the slot needs removal. The outputs should
maintain the following invariants: every slot on the m input paths has exactly
one representative, and if some CPU wanted to remove the block in the slot,
then the representative is informed of the removal instruction.

Note that given the above output, each CPU simply carry out the instruction

for every physical slot it is representative for:

if the instruction is to remove, the CPU reads the block and writes dummy
back;

if the instruction is not to remove, the CPU reads the block and writes the
same block back;

if the CPU is not a representative for this physical slot, do nothing for this
slot.

Simultaneous removal algorithm. We describe our simultaneous removal algo-
rithm below. We note that since all the fetch paths are already observable by
the adversary, it is okay for us to employ a non-oblivious propagation algorithm.

Sorting fetch paths. All m CPUs write down their input tuple, forming an
array of size m. We now obliviously sort this array by their fetch path such
that the leftmost fetch path appears first, where the other of the fetch paths
are determined by the leaves they intersect. This step takes O(mlogm) total
work and O(logm) parallel steps.

Table creation. In parallel, fill out a table) where each row corresponds to a
slot in the tree, and each column corresponds to a fetch path (in sorted order
from left to right). Specifically, Q[¢][¢] = 1 if the i-CPU wants to remove the
block in slot ¢ on its fetch path; else Q[¢][i] = 0. It is not hard to see that this
step can be completed in O(1) parallel steps with mlog N CPUs.

Notice that since the m fetch paths may overlap, table) may contain entries
that correspond to the same physical slot. However, since the fetch paths were
sorted from left to right, all entries corresponding to the same physical slot
must appear in consecutive locations in the same row. Further, it is not hard
to see that except with negligible probability, at most alog IV entries in @
correspond to the same physical slot (since each disjoint subtree receives at
most alog N fetch paths except with negligible probability).

Henceforth we say that Q[{][i] is a representative if Q[¢][i] is the first occur-
rence of a physical slot in the row Q[/].

Circuit OPRAM 101

— Oblivious aggregation. Now, for each row of the table @), invoke an instance
of the oblivious aggregation algorithm (for bounded-size groups) such that
the representative of each group learns the OR of all entries belonging to the
group. As mentioned above, since the group size is bounded by alog N, we
can complete such oblivious aggregation in O(loglog N) parallel steps with
ﬁ CPUs, or alternatively, in O(log N) steps with ﬁ CPUs.
Therefore, over all rows of the table @, this step completes in O(log N) parallel
steps with m CPUs.

7.2 Evictions

Recall that in the sequential Circuit ORAM [36], whenever a fetched (and possi-
bly updated) block is added to the root, two path evictions must be performed.
The goal of Circuit OPRAM is to simulate the stochastic process of Circuit
ORAM. However, since Circuit OPRAM does not maintain the tree structure
for lower heights of the tree, we only need to partially simulate Circuit ORAM’s
stochastic process for the O(m) disjoint subtrees that Circuit OPRAM does
maintain. Our algorithms described below make use of certain non-blackbox
properties of the Circuit ORAM algorithm [36]. In our description below, we
will point out these crucial properties as the need arises, without re-explaining
the entire Circuit ORAM construction [36].

Select 2m distinct eviction paths in 2m distinct subtrees. At this point, a batch
of m requests have been made, and m possibly dummy blocks have been fetched,
possibly update, and merged into the pool. As mentioned earlier, we now con-
sider the pool as a flattened data structure containing all the smaller levels of
the big Circuit ORAM tree as well as the stash. To simulate Circuit ORAM’s
stochastic process, at this point we must perform 2m evictions on 2m distinct
paths. We leverage Circuit ORAM’s deterministic, reverse-lexicographical order
for determining the next 2m eviction paths. The specifics of the eviction path
selection criterion is not important here, and the reader only needs to be aware
that this selection criterion is fixed a priori and data independent. For more
details on eviction path selection, we refer the reader to Circuit ORAM [36].

Fact 2. Observe that at this point, the number of disjoint subtrees is at least 2m.
Due to Circuit ORAM’s eviction path selection criterion, all 2m eviction paths
will not only be distinct, but also correspond to distinct subtrees — henceforth
we refer to these subtrees as evicting subtrees. For the special case when m stays
the same over time, all 2m subtrees are evicting subtrees, and exactly one path
is evicted in each subtree.

Select 2m eviction candidates. We will now leverage a special property of the
Circuit ORAM’s eviction algorithm described earlier by Fact1 such that we
perform a “partial eviction” only on the subtrees maintained by our Circuit
OPRAM. Recall that Fact 1 says the following;:

102 T.-H. Hubert Chan and E. Shi

— For Circuit ORAM’s eviction algorithm, at most one block passes from
path[: ¢] to path[i + 1 :] for each height ¢ on the eviction path denoted path.
In this case we also say that the block passes through the boundary between
height ¢ and height 7 + 1.

— Moreover, if a block does pass through the boundary between height i and
height ¢ 4+ 1, it must be the block that is deepest with respect to the eviction
path, where deepest is a criterion defined by Circuit ORAM [36]. Intuitively,
a block is deeper if it can reside in a bucket on the eviction path with higher
height. The reader can refer to Circuit ORAM [36] for details.

Therefore, we only need to elect one candidate block from the pool for each of
the 2m eviction paths on which we would like to perform eviction. We describe
an algorithm for performing such selection based on two different cases:

— Case 1: when m > aloglog N. We devise an algorithm based on a constant
number of oblivious sorts. Since the pool contains O(m+ alog N) blocks, this
algorithm completes in O(log N) parallel steps with m CPUs.

(a) In the beginning, each block in the pool is tagged with the block’s position
identifier. Now, for each block in the pool in parallel, compute and tag
the block with the additional metadata (treeid, priority) which will later
be used as a sort key:

e treeid denotes the block’s destined subtree if the destined subtree is
an evicting subtree, otherwise treeid := 1. All dummy blocks have
treeid := 1.

e priority denotes the block’s eviction priority within the subtree. The
block’s priority value can be computed based on the block’s position
identifier and the current eviction path (in the subtree identified by
treeid), a higher priority is assigned to blocks that can be reside deeper
(i.e., closer to leaf) along the eviction path. The definition of deep is
the same as in Circuit ORAM [36].

(b) Now, invoke an instance of the oblivious bin-packing algorithm, where
each evicting subtree can be regarded as a bin of capacity 1, and all the
blocks are balls tagged with its destination bin. We wish to place one ball
into each bin — if multiple balls are eligible for a bin, we prefer to place
the ball with a higher priority value. The output of the algorithm is one
(possibly dummy) eviction candidate for each evicting subtree, as well as
the remainder of the pool minus those chosen blocks.

— Case 2: when m < a«aloglogN. In this case, the pool contains
O(alog N) blocks, and performing oblivious sort will cause a total work of
2(log N loglog N), which is too expensive if m is small. Instead, we perform
the following, which can be accomplished in O(alog N) parallel steps with
2m CPUs — below we describe the algorithm assuming 2m CPUs, but clearly
the algorithm also works with m CPUs since we can always have each CPU
simulate O(1) CPUs.

(a) Assign one CPU for each of the 2m eviction paths. Each CPU linearly
scans through the pool and selects the deepest element with respect to

Circuit OPRAM 103

the eviction path. If no element is eligible for the current eviction path, a
dummy element is selected. Clearly, this incurs O(«alog N) parallel steps.
This step outputs an array of 2m elements selected for eviction for each of
the 2m eviction paths. The rest of the algorithm will output the remainder
of the pool.

(b) In O(alog N + m) parallel steps, the 2m CPUs make a “pipelined linear
scan”, where CPU i starts its linear scan in the i-th step (note that this
avoids write conflicts). When each CPU is making a linear scan, if the
(real) block is what the CPU has selected for eviction, replace it with
dummy; otherwise, write the original block back.

(¢) Output the resulting pool.

Evictions. At this point, each of the 2m eviction paths has received one can-
didate block (which can be dummy). Hence, these 2m evictions can be carried
out in parallel, each according to the (sequential) eviction algorithm of Circuit
ORAM [36]. More specifically, we first expand the capacity of each eviction path
by adding a bucket at the beginning of the path that holds the eviction candi-
date selected earlier; we call this the smallest bucket on the path. We then run
Circuit ORAM’s (sequential) eviction algorithm on each of these 2m (expanded)
paths in parallel.

At the end, the block in the smallest bucket on each eviction path is returned
to the pool. Note that if the eviction candidate has been successfully evicted
into the path, then the smallest block on the path would be dummy, and thus a
dummy block is returned to the pool. Doing this according to Circuit ORAM’s
eviction algorithm [36] takes O(log N) parallel runtime with 2m CPUs.

In a final cleanup step described later, we suppress a subset of the dummy
blocks in the pool such that the pool size will not keep growing.

7.3 Data Structure Cleanup

Adjusting the number of subtrees. If m > m, i.e., the number of CPUs has
decreased (by a factor of 2 according to our assumption) since the last PRAM
step, we will halve the number of subtrees. This means that we must reconstruct
one more height of the big Circuit ORAM tree.

Let Z = O(1) be the bucket size of the ORAM tree. To reconstruct a height
of size 2m, we must reconstruct m buckets each of size Z. To achieve this, we
invoke an instance of the oblivious bin packing algorithm, where we wish to
pack 2m buckets each of capacity Z. If a block can legally reside in a bucket by
Circuit ORAM'’s path invariant, it is deemed eligible for a bucket. If more than
Z blocks are eligible for a bucket, we break ties arbitrarily. Such oblivious bin
packing can be completed in O(logm) parallel steps with m CPUs.

Although the reconstructed height of the big ORAM tree may contain differ-
ent blocks from the scenario had we maintained the whole tree from the start,
in the full version [6], we will show that the difference is in our favor in the sense
that it will not make the pool occupancy larger.

104 T.-H. Hubert Chan and E. Shi

Compress the pool. During the simulation of this PRAM step, the pool size has
enlarged by at most O(m). We now compress the pool size by removing a subset
of the dummy blocks. There are two cases — recall also that the pool size is
bounded by O(m + alog N) except with negligible probability which we shall
formally prove in the full version [6]:

— Case 1: m > aloglog N. In this case, we can perform such compression
through a simple oblivious sort operation that move all dummy blocks to
the end of the array representing the pool, and then truncating the array
retaining only the first ¢-m 4+ alog N blocks for an appropriate constant c.
This can be completed in O(log N) parallel steps with m CPUs.

— Case 2: m < aloglog N. In this case, oblivious sorting would be too expen-
sive. Instead, we perform compression by conducting a pipelined, partial bub-
ble sort. Let s = O(m + alog N) be the current pool size, and suppose that
we need to compress the array back to s’ := s — O(m) blocks. Recall that
a normal bubble sort of s elements would make s bubbling passes over the
array, where after the i-th pass, the largest ¢ elements are at the end. Here we
make only O(m) bubbling passes where each CPU is in charge of O(1) passes.
The passes are performed in a pipelined fashion to avoid write conflicts. At
the end of this partial bubble sort, the last s — s’ blocks of the array may be
removed.

This is completed in O(m + alog N) parallel steps with m CPUs.

7.4 Performance of the Maintain Phase

Accounting for the cost of all of the above steps, we can easily derive the following
lemma for the performance of the maintain phase.

Lemma 2 (Performance of the maintain phase). Suppose that the block
size B = 2(log N). Then, to serve the batch of m requests, the maintain phase,
over all O(log N) levels of recursion, completes in O(log® N) parallel steps with
m CPUs when m > aloglog N; and in O« log? N) parallel steps when m <
aloglog N.

Deferred Materials

In the interest of space, we defer to our full online version [6] the following
addtional contents: (1) detailed proofs, (2) further optimizations for small m,
(3) how to reduce a loglog factor relying on PRFs and achieving computational
security, and (4) extensions for large block sizes and non-uniform block sizes.

Acknowledgments. We are extremely grateful to Rafael Pass without whose insights
and support this work would not have been possible. We are grateful to Joshua Gancher
for helpful discussions in an earlier phase of the project, and to Kai-Min Chung for
many supportive conversations. We thank Ling Ren for (re)explaining the position
map compression trick to us and Kartik Nayak for very helpful comments on a draft of
the paper. This work is supported in part by NSF grants CNS-1314857, CNS-1514261,

Circuit OPRAM 105

CNS-1544613, CNS-1561209, CNS-1601879, CNS-1617676, an Office of Naval Research
Young Investigator Program Award, a DARPA Safeware grant (subcontract under
IBM), a Packard Fellowship, a Sloan Fellowship, Google Faculty Research Awards, a
VMWare Research Award, and a Baidu Research Award.

References

1.

10.

11.

12.

13.

14.

Ajtai, M., Komlés, J., Szemerédi, E.: An O(n log n) sorting network. In: Proceed-
ings of the Fifteenth Annual ACM Symposium on Theory of Computing, STOC
1983, pp. 1-9. ACM, New York (1983)

Apon, D., Katz, J., Shi, E., Thiruvengadam, A.: Verifiable oblivious storage. In:
Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 131-148. Springer, Heidelberg
(2014). doi:10.1007/978-3-642-54631-0-8

Boyle, E., Chung, K.-M., Pass, R.: Oblivious parallel RAM and applications.
In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 175-204.
Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0_7

Boyle, E., Naor, M.: Is there an oblivious RAM lower bound? In: Proceedings
of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
Cambridge, MA, USA, 14-16 January 2016, pp. 357-368 (2016)

Hubert Chan, T.-H., Chung, K.-M., Shi, E.: On the depth of oblivious parallel
ORAM (2017, manuscript)

Hubert Chan, T.-H., Shi, E.: Circuit OPRAM: unifying statistically and compu-
tationally secure ORAMs and OPRAMs (2016). Online full version of the present
paper https://eprint.iacr.org/2016,/1084

Chen, B., Lin, H., Tessaro, S.: Oblivious parallel RAM: improved efficiency and
generic constructions. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol.
9563, pp. 205-234. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49099-0_8
Chung, K.-M., Liu, Z., Pass, R.: Statistically-secure ORAM with O(log2 n) over-
head. In: Sarkar, P., Iwata, T. (eds.) ASTACRYPT 2014. LNCS, vol. 8874, pp.
62-81. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8_4
Dachman-Soled, D., Liu, C., Papamanthou, C., Shi, E., Vishkin, U.: Oblivious
network RAM and leveraging parallelism to achieve obliviousness. In: Iwata, T.,
Cheon, J.H. (eds.) ASTACRYPT 2015. LNCS, vol. 9452, pp. 337-359. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48797-6_15

Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion
ORAM: a constant bandwidth blowup oblivious RAM. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 145-174. Springer, Heidelberg (2016).
doi:10.1007/978-3-662-49099-0_6

Fletcher, C.W., van Dijk, M., Devadas, S.: A secure processor architecture for
encrypted computation on untrusted programs. In: STC (2012)

Fletcher, C.W., Ren, L., Kwon, A., van Dijk, M., Devadas, S.: Freecursive ORAM
[nearly] free recursion and integrity verification for position-based oblivious RAM.
In: ASPLOS (2015)

Fletcher, C.W., Ren, L., Kwon, A., van Dijk, M., Stefanov, E., Devadas, S.: RAW
Path ORAM: a low-latency, low-area hardware ORAM controller with integrity
verification. IACR Cryptology ePrint Archive 2014:431 (2014)

Fletcher, C.W., Ren, L., Yu, X., van Dijk, M., Khan, O., Devadas, S.: Suppressing
the oblivious RAM timing channel while making information leakage and program
efficiency trade-offs. In: HPCA, pp. 213-224 (2014)

http://dx.doi.org/10.1007/978-3-642-54631-0_8
http://dx.doi.org/10.1007/978-3-662-49099-0_7
https://eprint.iacr.org/2016/1084
http://dx.doi.org/10.1007/978-3-662-49099-0_8
http://dx.doi.org/10.1007/978-3-662-45608-8_4
http://dx.doi.org/10.1007/978-3-662-48797-6_15
http://dx.doi.org/10.1007/978-3-662-49099-0_6

106

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

T.-H. Hubert Chan and E. Shi

Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: De Cristofaro,
E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1-18. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39077-7_1

Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with he-over-
ORAM architecture. Cryptology ePrint Archive, Report 2014/345 (2014). http://
eprint.iacr.org/

Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC (1987)

Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43, 431-473 (1996). Please check and confirm if the inserted vol-
ume id and page range are correct for Ref. [18]

Goodrich, M.T., Mitzenmacher, M.: Privacy-preserving access of outsourced data
via oblivious RAM simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011. LNCS, vol. 6756, pp. 576-587. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22012-8_46

Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: CCS (2012)
Hagerup, T.: Fast and optimal simulations between CRCW PRAMs. In: Finkel, A.,
Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 45-56. Springer, Heidelberg
(1992). doi:10.1007/3-540-55210-3_172

Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506-525. Springer,
Heidelberg (2014). doi:10.1007/978-3-662-45608-8_27

Kushilevitz, E., Lu, S., Ostrovsky, R.: On the (in)security of hash-based oblivious
RAM and a new balancing scheme. In: SODA (2012)

Liu, C., Huang, Y., Shi, E., Katz, J., Hicks, M.: Automating efficient RAM-model
secure computation. In: S & P, May 2014

Maas, M., Love, E., Stefanov, E., Tiwari, M., Shi, E., Asanovic, K., Kubiatowicz,
J., Song, D.: Phantom: practical oblivious computation in a secure processor. In:
CCS (2013)

Nayak, K., Katz, J.: An oblivious parallel ram with o(log2 n) parallel runtime
blowup. Cryptology ePrint Archive, Report 2016/1141 (2016). http://eprint.iacr.
org/2016/1141

Nayak, K., Wang, X.S., Ioannidis, S., Weinsberg, U., Taft, N., Shi, E.: GraphSC:
parallel secure computation made easy. In: IEEE S & P (2015)

Pinkas, B., Reinman, T.: Oblivious RAM revisited. In: Rabin, T. (ed.) CRYPTO
2010. LNCS, vol. 6223, pp. 502-519. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14623-7_27

Ren, L., Fletcher, C.W., Kwon, A.; Stefanov, E., Shi, E., van Dijk, M., Devadas,
S.: Constants count: practical improvements to oblivious RAM. In: 24th USENIX
Security Symposium (USENIX Security 15), pp. 415-430. USENIX Association,
Washington, D.C. (2015)

Ren, L., Yu, X., Fletcher, C.W., van Dijk, M., Devadas, S.: Design space exploration
and optimization of path oblivious RAM in secure processors. In: ISCA, pp. 571—
582 (2013)

Shi, E., Hubert Chan, T.-H., Stefanov, E., Li, M.: Oblivious RAM with O((log N)?)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASTACRYPT 2011. LNCS, vol. 7073,
pp. 197-214. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25385-0_11
Stefanov, E., Shi, E.: Multi-cloud oblivious storage. In: ACM Conference on Com-
puter and Communications Security (CCS) (2013)

http://dx.doi.org/10.1007/978-3-642-39077-7_1
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-22012-8_46
http://dx.doi.org/10.1007/978-3-642-22012-8_46
http://dx.doi.org/10.1007/3-540-55210-3_172
http://dx.doi.org/10.1007/978-3-662-45608-8_27
http://eprint.iacr.org/2016/1141
http://eprint.iacr.org/2016/1141
http://dx.doi.org/10.1007/978-3-642-14623-7_27
http://dx.doi.org/10.1007/978-3-642-14623-7_27
http://dx.doi.org/10.1007/978-3-642-25385-0_11

33.

34.

35.

36.

37.

38.

39.

40.

Circuit OPRAM 107

Stefanov, E., Shi, E.: Oblivistore: high performance oblivious cloud storage. In:
IEEE Symposium on Security and Privacy (S & P) (2013)

Stefanov, E., Shi, E., Song, D.: Towards practical oblivious RAM. In: Network and
Distributed System Security Symposium (NDSS) (2012)

Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path
ORAM - an extremely simple oblivious ram protocol. In: CCS (2013)

Wang, X.S., Hubert Chan, T.-H., Shi, E., Circuit, O.: On tightness of the Goldreich-
Ostrovsky lower bound. In: ACM CCS (2015)

Wang, X.S., Huang, Y., Hubert Chan, T.-H., Shelat, A., Shi, E.: SCORAM: obliv-
ious RAM for Secure Computation. In: CCS (2014)

Williams, P., Sion, R.: Usable PIR. In: Network and Distributed System Security
Symposium (NDSS) (2008)

Williams, P., Sion, R.: Round-optimal access privacy on outsourced storage. In:
ACM Conference on Computer and Communication Security (CCS) (2012)
Williams, P.; Sion, R., Carbunar, B.: Building castles out of mud: practical access
pattern privacy and correctness on untrusted storage. In: CCS, pp. 139-148 (2008)

	Circuit OPRAM: Unifying Statistically and Computationally Secure ORAMs and OPRAMs
	1 Introduction
	1.1 Technical Highlights
	1.2 Related Work

	2 Informal Overview of Our Results
	2.1 Background: Circuit ORAM
	2.2 Warmup: The CLT OPRAM Scheme
	2.3 Our Construction: Intuition
	2.4 Putting it Altogether
	2.5 Extensions
	2.6 Paper Organization

	3 Preliminaries
	3.1 Parallel Random-Access Machines
	3.2 Oblivious Parallel Random-Access Machines

	4 Building Blocks
	5 Our Basic OPRAM Construction
	5.1 Notations
	5.2 Data Structures
	5.3 Overview of One Simulated PRAM Step

	6 Details of the Fetch Phase
	6.1 Discovering Which Children Addresses are Needed
	6.2 Fetching and Removing Blocks from the Pool
	6.3 Performance of the Fetch Phase

	7 Details of the Maintain Phase
	7.1 Simultaneous Removal of Fetched Blocks from Subtrees
	7.2 Evictions
	7.3 Data Structure Cleanup
	7.4 Performance of the Maintain Phase

	References

