
Batched Multi-hop Multi-key FHE from
Ring-LWE with Compact Ciphertext Extension

Long Chen1,2, Zhenfeng Zhang1,2(B), and Xueqing Wang1,3

1 University of Chinese Academy of Sciences, Beijing, China
2 Trusted Computing and Information Assurance Laboratory, Institute of Software,

Chinese Academy of Sciences, Beijing, China
{chenlong,zfzhang}@tca.iscas.ac.cn

3 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

wangxueqing@iie.ac.cn

Abstract. Traditional fully homomorphic encryption (FHE) schemes
support computation on data encrypted under a single key. In STOC
2012, López-Alt et al. introduced the notion of multi-key FHE
(MKFHE), which allows homomorphic computation on ciphertexts
encrypted under different keys. In this work, we focus on MKFHE
constructions from standard assumptions and propose a new con-
struction of ring-LWE-based multi-hop MKFHE scheme. Our work is
based on Brakerski-Gentry-Vaikuntanathan (BGV) FHE scheme where,
in contrast, all the previous works on multi-key FHE with standard
assumptions were based on Gentry-Sahai-Waters (GSW) FHE scheme.
Therefore, our construction can encrypt a ring element rather than
a single bit and naturally inherits the advantages in aspects of the
ciphertext/plaintext ratio and the complexity of homomorphic opera-
tions. Moveover, our MKFHE scheme supports the Chinese Remain-
der Theorem (CRT)-based ciphertexts packing technique, achieves
poly (k, L, log n) computation overhead for k users, circuits with depth at
most L and an n dimensional lattice, and gives the first batched MKFHE
scheme based on standard assumptions to our knowledge. Furthermore,
the ciphertext extension algorithms of previous schemes need to perform
complex computation on each ciphertext, while our extension algorithm
just needs to generate evaluation keys for the extended scheme. So the
complexity of ciphertext extension is only dependent on the number of
associated parities but not on the number of ciphertexts. Besides, our
scheme also admits a threshold decryption protocol from which a gener-
alized two-round MPC protocol can be similarly obtained as prior works.

1 Introduction

Fully homomorphic encryption (FHE) is a very attractive cryptography primitive
that allows computation on encrypted data and has numerous theoretical and
practical applications [Gen09,BV11b,DPSZ12,GSW13]. In STOC 2012, López-
Alt et al. introduced a notion of multi-key FHE (MKFHE) [LATV12], which
c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part II, LNCS 10678, pp. 597–627, 2017.
https://doi.org/10.1007/978-3-319-70503-3_20

598 L. Chen et al.

is a variant of FHE allowing computation on data encrypted under different
and independent keys. One of the most appealing applications of MKFHE is to
construct on-the-fly multiparty computation (MPC) protocols.

López-Alt et al. [LATV12] proposed the first MKFHE construction based
on the NTRU cryptosystem [HPS98], which was optimized later in [DHS16].
However, the security of this construction is based on a new and somewhat
non-standard assumption on polynomial rings. Clear and McGoldrick [CM15]
proposed an LWE-based MKFHE construction for an unlimited number of
keys using the Gentry-Sahai-Waters (GSW) FHE scheme [GSW13,ASP14]. In
EUROCRYPT 2016, Mukherjee and Wichs [MW16] presented a construction
of MKFHE based on LWE that simplifies the scheme of Clear and McGoldrick
[CM15] and admits a simple 1-round threshold decryption protocol. Based on
this threshold MKFHE, they successfully constructed a general two-round MPC
protocol upon it in the common random string model.

The schemes in [CM15,MW16] need to determine all the involved parties
before the homomorphic computation and do not allow any new party to join in,
which called single-hop MKFHE in [PS16]. Recently, Peikert and Shiehian [PS16]
proposed a notion of multi-hop MKFHE, in which the result ciphertexts of homo-
morphic evaluations can be used in further homomorphic computations involving
additional parties (secret keys). In multi-hop MKFHE, any party can dynami-
cally join the homomorphic computation at any time. A similar notion named
fully dynamic MKFHE was proposed by Brakerski and Perlman in [BP16].
A slight difference is that in fully dynamic MKFHE the bound of the number of
users does not need to be input during the setup procedure.

The method to construct multi-hop MKFHE in [PS16] is maintaining com-
mitment randomness relative to a fixed public parameter, along with an encryp-
tion of that randomness. Their homomorphic evaluation algorithm requires only
a few standard GSW-style matrix operations. This comes at the cost of relatively
larger ciphertexts, which grow at least quadratically in the maximum number
of keys. In [BP16], Brakerski and Perlman provided a fully dynamic MKFHE
scheme with an approach of extending the refresh keys to the ones under a
joint secret key at first and then bootstrapping the ciphertexts by the extended
refresh keys. Specifically, their multi-key ciphertexts grow only linearly in the
number of different involving secret keys. In addition, they described an “on-
the-fly” bootstrapping algorithm that requires only a linear amount of “local”
memory. However, as [PS16] analyzed, [BP16] is comparatively inefficient since
their bootstrapping is generally very costly and some efficient bootstrapping
techniques such as [ASP13,HS15,DM15] seem not to be applicable here.1 From
above, one can obverse that MKFHE is still far from practical, even comparing
with existing results of single key FHE.

1 Most of practical bootstrapping techniques [ASP13,HS15,DM15] are based on ring-
LWE schemes and few can be applied to the LWE-based GSW scheme like that used
in [BP16].

Batched Multi-hop MKFHE with Compact Ciphertext Extension 599

1.1 Motivations

Encrypting a ring element. There are two most widely studied single-key FHE
schemes based on standard assumptions, the BGV type scheme [BV11a,BGV12,
GHS12b,HS15] and the GSW type scheme [GSW13,BV14,ASP14]. Both of them
have an LWE version and a ring-LWE version. As the analysis in [GSW13], the
most efficient one among them is the ring-LWE based BGV scheme in aspects of
the ciphertext/plaintext ratio and the complexity of homomorphic operations.
Actually, the plaintext of ring-LWE BGV scheme is a ring element, while both
the LWE version and ring-LWE version of GSW scheme can only encrypt one bit
for each ciphertext according to [GSW13]. The major reason is that the GSW
noise depends also on the plaintext size after a homomorphic multiplication.
Consequently, MKFHE from the GSW scheme [CM15,MW16,BP16,PS16] can
only encrypt a single bit even based on the ring-LWE assumption. Therefore,
if we can encrypt a ring element in MKFHE schemes, the efficiency will be
improved considerably.

SIMD operations. Currently, the most efficient FHE schemes are those that
allow SIMD (Single Instruction Multiple Data) style operations, by packing some
plaintexts into the same number of independent “slots” as the plaintext space.
Gentry et al. [GHS12b] showed that if the circuit C has size t = poly(λ), depth L,
and average width w = O(λ), and we set the packing parameter as l = Θ(λ), then
we get an O(L · log λ)-depth implementation of C using O(t/λ ·poly log(λ)) l-fold
gates. If implementing each l-fold gates takes Õ(Lbλc) time, then the total time
to evaluate C is no more than Õ(t · Lb · λc−1). Smart and Vercauteren described
a ciphertext-packing technique based on polynomial-CRT [SV14], and Gentry et
al. [GHS12b] used the technique to achieve a nearly optimal homomorphic eval-
uation (up to poly-logarithmic factors). Besides, two other ciphertexts packing
techniques have been proposed [BGH13,HAO15] so far, both of which are based
on kinds of matrix operations rather than the algebra structure of the rings. How-
ever, it is not clear how ciphertext packing techniques can be applied to standard
assumption based MKFHE schemes [CM15,MW16,BP16,PS16] so far.

Generally, since existing MKFHE schemes [CM15,MW16,BP16,PS16] from
standard assumptions are all based on GSW scheme, one interesting theoretical
problem is that whether we can construct MKFHE from other existing standard
assumption based single key FHE schemes?

Compact ciphertext extension. In the MKFHE schemes [CM15,MW16,BP16,
PS16], each party’s messages are encrypted by different public keys at first, and
the original ciphertexts correspond to different secret keys. When several parties
decide to jointly evaluate a circuit, a ciphertext extension algorithm is used
to transform the original ciphertexts to larger dimensional ciphertexts under
a same new secret key which is a concatenation of all the involved parities’
secret keys. Generally, the outputs of ciphertext extension can be viewed as the
ciphertexts in a single-key FHE scheme with a larger dimensional secret key.
After that, the circuit is finally evaluated under the new larger dimensional

600 L. Chen et al.

single-key FHE scheme. Particularly, in [CM15,MW16], a GSW ciphertext is
extended to a k times dimensional ciphertext matrix, by adding sub-blocks which
are derived from the encryption of randomness. The ciphertext extension in
[PS16] is similar to that in [CM15,MW16], while the additional sub-blocks are
derived from commitment randomness relative to a fixed public parameter, along
with an encryption of that randomness. In [BP16], the ciphertext extension of a
GSW ciphertext is completed by bootstrapping the ciphertext with an extended
refreshed key which needs to be generated in advance. All of their ciphertext
extension algorithms need to perform complex computations for each ciphertext,
which will be a heavy burden if the number of ciphertexts is large. We observe
that such a ciphertext extension procedure is not needed in [LATV12]. For a
standard assumption based MKFHE scheme, a natural question is whether one
can directly compute homomorphic operations for the ciphertexts under different
keys and reduce the dependence of the computation cost of ciphertext extension
(if necessary) on the number of ciphertexts.

1.2 Our Contributions

Note that all previous MKFHE [CM15,MW16,BP16,PS16] are all constructed
from the GSW scheme. In this paper, we construct a new ring-LWE based multi-
hop MKFHE scheme from the BGV scheme, so our work naturally inherits the
advantages of the second generation FHE [Lin]. For example, our scheme can
encrypt a ring element and support the CRT-based ciphertexts packed tech-
nique. So it is much more efficient than prior works in aspects of the cipher-
text/plaintext ratio, the complexity of homomorphic operations and other com-
putation overhead. The detailed comparisons are provided in Tables 1, 2 and 3 in
Subsect. 4.7. Similar to [PS16], a priori bound on the number of users is required
at the setup phase. Our scheme also admit a threshold decryption protocol as
[MW16], so a 2-round MPC can be similarly obtained from our construction.

A simple ciphertext extension is also used in our construction to transform
BGV ciphertexts under different secret keys to larger dimensional ciphertexts
under the concatenation of all involving secret keys, which is realized by just
padding the ciphertext vectors with zeros. However, due to the structure of
the BGV cryptosystem, the generation of new evaluation keys is needed. As
the result, the complexity of the extension procedure is dependent only on the
number of involved secret keys but not on the number of ciphertexts. The evalu-
ation keys are generated in the key-generation phase, and can be pre-computed
before encryption and even be publicly stored for the next time evaluation if the
involved parties are unchanged. This is beneficial for a possible scenario where
multiple ciphertexts are encrypted with the same key.

Generally, both the LWE version and the ring-LWE version of our construc-
tion can be provided. In the text, we choose to present the ring-LWE version. It
is easy for readers to get the analogous LWE version without much effort. More-
over, our technique of constructing MKFHE can be extended to other (ring-
)LWE based second generation FHE schemes such as [BV11a,Bra12], and all

Batched Multi-hop MKFHE with Compact Ciphertext Extension 601

optimization techniques about these FHE schemes [GHS12a,GHS12c,GHPS13,
ASP13,HS14,HS15,CP16] also can apply here.

From a technical point of view, we show the evaluation key of BGV scheme
can be generated from a GSW encryption of a secret key the first time. We
believe this technique can help us to better understand the internal connection
between these two famous FHE schemes.

1.3 Technique Overview

In the ring-LWE based BGV scheme, given level-l ciphertexts cl = (〈a, zl〉 +
2e + μ,a) ∈ R2

q under the secret key sl = (1,−zl) ∈ R2
q and c′

l = (〈a′, z′
l〉 + 2e′ +

μ′,a′) ∈ R2
q under the secret key s′

l = (1,−z′
l) ∈ R2

q , one can trivially extend
them to ciphertexts c̄l = (cl,0) ∈ R4

q and c̄′
l = (0, c′

l) ∈ R4
q under the same secret

key s̄l = (sl, s′
l) ∈ R4

q which is a concatenation of the two parties’ secret keys. For
extended ciphertexts, the homomorphic addition is just the vector addition. But
for homomorphic multiplication, one need to compute the tensor product of the
two ciphertexts, then use the evaluation key to relinearization the ciphertext.
Since the corresponding secret key of c̄l ⊗ c̄′

l ∈ R16
q is ŝl = s̄l ⊗ s̄l ∈ R16

q , the
required evaluation key is

evkl =
{(〈

ai,j , z∗
l−1

〉
+ 2ei,j + 2j ŝl[i],ai,j

)
i=1,...,16, j=0,...,�log q�

}
(1)

for next level secret key s̄l−1 = (1,−z∗
l−1) ∈ R4

q and some ai,j ∈ R3
q . So the main

obstacle is to generate the evaluation key evkl.

Generating BGV’s evk from GSW scheme. Intuitively, evkl can be viewed as a
kind of “encryption” of each element of ŝl ∈ R16

q . Our first observation is that
evkl of the BGV scheme can be generated from a GSW encryption of ŝl. In fact,
the variant of GSW encryption for the plaintext ŝl[i] is

GSW.Encs̄l−1(ŝl[i]) = r
(
Az∗

l−1 + 2e,A
)

+ 2E + ŝl[i] · G ∈ R(�log q�+1)4×4
q .

Here
G =

(
1, . . . , 2�log q�

)T

⊗ I4 ∈ Z
(�log q�+1)4×4
q

is the gadget matrix, A ∈ R
4(�log q�+1)×3
q is a random matrix, r ∈ Rq and

E ∈ R4(�log q�+1)×4. Note that the plaintext is encrypted in low bits, which
is different from the original GSW scheme in [GSW13,ASP14]. Then the j-th
row has the form

(〈
aj , z∗

l−1

〉
+ 2ej + 2j ŝl[j],aj

) ∈ R4
q for some random vector

aj ∈ R3
q . This gives the evaluation key evkl we need.

The next task is to generate GSW.Encs̄l−1(ŝl[i]). Our basic idea is to take
advantage of the ciphertext extension method in [CM15,MW16]. Specifically,
each element of ŝl is a product of two elements of s̄l, where s̄l is the con-
catenation of each party’s secret key. So if one party’s public key includes
GSW.Encsl−1(sl[i]), i = 1, 2, it can be extended to a larger dimensional cipher-
text GSW.Encs̄l−1(sl[i]) under the secret key s̄l−1 = (sl−1, s′

l−1) ∈ R4
q , and also

602 L. Chen et al.

GSW.Encs′
l−1

(s′
l[i]) can be extended to GSW.Encs̄l−1(s

′
l[i]). If we can homomor-

phically multiply GSW.Encs̄l−1(sl[i]) and GSW.Encs̄l−1(s
′
l[i

′]), i, i′ = 1, 2, we get
all the element of GSW.Encs̄l−1(ŝl[i]), i = 1, . . . , 16. Then we can derive �log q�+1
BGV ciphertexts

(〈aj , z∗
l−1〉 + 2ej + 2j ŝl[j],aj

) ∈ R4
q , j = 0, . . . , �log q�

under the secret key s̄l−1 = (sl−1, s′
l−1) = (1,−z∗

l−1) from each GSW encryption
GSW.Encs̄l−1(ŝl[i]), and therefore get the supposed evaluation key.

GSW Scheme with ring element plaintext. However, the plaintext of the tradi-
tional GSW scheme is in {0, 1} while we encrypt ŝl[i] ∈ Rq. When the plaintext
is an element in Rq, the homomorphic multiplication can not work normally as
explained before since the noise will be out of control. To deal with this problem,
we propose a variant of GSW scheme with ring element plaintext. Specifically, we
observe that when we compute GSW.Enc(a) � GSW.Enc(b) for some a, b ∈ Rq,
the noise in the result ciphertext only depends on b but not on a. So we can
compute

�log q�∑
i=0

GSW.Enc (Powersof2(a)[i]) � GSW.Enc (BitDecomp(b)[i]).

Such a homomorphic multiplication in our GSW scheme with ring element plain-
text can only be performed once, but it is enough for us to successfully compute
GSW.Encs̄l−1(ŝl[i]).

1.4 Organization

In Sect. 2, some background knowledge is provided. We introduce a special GSW
scheme with ring element plaintext which is used to generate evaluation keys and
existing techniques about the BGV scheme in Sect. 3. In Sect. 4, we give a formal
description of our ring-LWE based MKFHE construction. Finally, in Sect. 5, we
present a threshold decryption mechanism and a two round MPC protocol from
our scheme. The conclusion is provided in Sect. 6.

2 Preliminaries

In this paper, we use bold lower case letters to denote vectors and bold upper
case letters to denote matrices. All vectors are represented as columns. For a
matrix A, we use A[i, :] to denote the i-th row vector, and A[i, j] to denote the
entry in the i-th row and j-th column. For a vector a, a[i] denotes the i-th entry.

For a positive integer m, let Φm(X) be the m-th cyclotomic polynomial
which has degree n = φ(m) where φ(·) is the Euler’s function. We will use the
ring R = Z[X]/Φm(X) and its localization RN , for some modulus N . When
dealing with RN , we assume that the coefficients are in [−N/2, N/2) (except
for R2 whose coefficients are in {0, 1}). Given a polynomial a ∈ R, we denote
by ‖a‖∞ = max0≤j≤n−1 |aj | the standard l∞-norm and ‖a‖1 =

∑n−1
j=0 |aj | the

standard l1-norm.

Batched Multi-hop MKFHE with Compact Ciphertext Extension 603

2.1 Hardness Assumption

The ring-LWE problem introduced by [LPR13a] can be seen as a ring version
of the LWE problem [Reg09]. Now we recall its definition. Let K be the m-th
cyclotomic number field having dimension n = φ(m) and R = OK be its ring
of integers which embeds as a lattice. R∨ ⊂ K is the dual fractional ideal of R.
The noise estimation can be taken with respect to the canonical embedding norm
‖a‖can

∞ = ‖σ(a)‖∞, where σ is the canonical embedding defined in [LPR13a]. To
map from norms in the canonical embedding to norms on the coefficients of the
polynomial, we have

‖a‖∞ ≤ cm‖a‖can∞ , (2)

where cm is the ring expansion factor, see [DPSZ12] for more details.

Definition 1 (Ring-LWE [LPR13a,LPR13b]). For an s ∈ R∨
q and a distribu-

tion χ over the field tensor product KR = K ⊗Q R, a sample from the ring-LWE
distribution As,χ over Rq ×KR/qR∨ is generated by choosing a ← Rq uniformly
at random, choosing e ← χ, and outputting (a, b = a · s + e).

The decisional version of the ring-LWE problem, denoted R-DLWEq,χ, is
to distinguish with non-negligible advantage between independent samples from
As,χ, where s is uniformly chosen from R∨

q once and for all, and the same num-
ber of uniformly random and independent samples from Rq × KR/qR∨.

On the hardness, the theorem below captures reductions from GapSVP
(GapSIVP) on ideal lattices to ring-LWE for certain parameters. We state the
result in terms of canonical norm B-bounded distributions over the ring. Here-
after, “canonical norm” sometimes will be omit.

Definition 2 (B-bounded distribution over the ring). A distribution
ensemble {χn}n∈N

, supported over KR, is called (canonical norm) B-bounded
if

Pr
e←χn

[‖e‖can
∞ > B] = negl (n) .

Theorem 1 [LPR13a,LPR13b]. Let R be the m-th cyclotomic ring, having
dimension n = φ(m). Let q = q(n), q = 1 mod m be a poly(n)-bounded inte-
ger, and B = ω(

√
n log n). There is a poly(n)-time quantum reduction from

nω(1)q/B-approximate SIVP (or SVP) on ideal lattices in R to solve R-DLWEq,χ

where χ is a distribution bounded by B with overwhelming probability.

It has been shown for ring-LWE that one can equivalently assume that s is
alternatively sampled from the noise distribution χ [LPR13a].

2.2 Smudging Lemma

We rely on the following lemma, which says that adding large noise “smudges
out” any small values.

604 L. Chen et al.

Lemma 1 [AJL+12]. Let B1 = B1(λ), and B2 = B2(λ) be positive integers and
let e1 ∈ [−B1, B1] be a fixed integer. Let the integer e2 ∈ [−B2, B2] be chosen
uniformly at random. Then the distribution of e2 is statistically indistinguishable
from that of e2 + e1 as long as B1/B2 = negl(λ).

Similarly, when R = Z[X]/Φm(X), let e1 ∈ Rq be a fixed ring element
where ‖e1‖∞ ≤ B1, and e2 be another ring element whose coefficients are chosen
uniformly at random from [−B2, B2]. Then the distribution of e2 is statistically
indistinguishable from that of e2 + e1 as long as B1/B2 = negl(λ).

2.3 Bit Decomposition Technique

The bit decomposition technique is first introduced in [BV11a] and widely used
in FHE schemes. Let β = �log q� + 1. We describe the subroutines as follows.

– BitDecomp(V ∈ Z
n×d
q): Decompose each coefficient of V in bit representation.

Namely, write V =
∑�log q�

j=0 2j · Uj , with all Uj ∈ {0, 1}n×d, and output[
U0,U1, . . . ,U�log q�

] ∈ {0, 1}n×dβ .
– Powersof2(V ∈ Z

n×d
q): Let Wj = 2jV mod q ∈ Z

n×d
q , j = 0, . . . , �log q� and

output
[
W0,W1, . . . ,W�log q�

] ∈ Z
n×dβ
q .

Obviously, BitDecomp(U) ·Powerof2(V)T = U ·VT , where U,V ∈ Z
n×d
q . Conse-

quently, let g =
(
1, 2, . . . , 2�log q�)T ∈ Z

β
q , Id be the d dimensional identity matrix

and G = g⊗Id ∈ Z
dβ×d
q . For any matrix C ∈ Z

n×d
q , C̄ = BitDecomp(C) ∈ Z

n×dβ
q

and C̄ · G = C. Moreover, when a is an element in the ring Rq = R/qR where
R = Z[x]/Φm[X], a can be represented as a vector in Z

n
q and we can apply

BitDecomp and Powersof2 algorithms to a as well.

2.4 Cryptographic Definitions

Definition 3. A leveled multi-hop, multi-key FHE scheme is a tuple of efficient
randomized algorithms (Setup, Gen, Enc, Dec, Eval) described as follows:

– Setup(1λ, 1K , 1L): Given the security parameter λ, a bound K on the number
of keys, and a bound L on the circuit depth, output a public parameter pp.

– Gen(pp): Given the public parameter pp, output public key pki and secret key
ski (i = 1, . . . ,K) for each party.

– Enc(pp, pki, μ): Given the public key pki of party i and a message μ, output
a ciphertext cti. Without loss of generality, cti contains the index of corre-
sponding secret key and the level tag.

– Dec(pp, (ski1 , ski2 , . . . , skik
), ctS): Given a ciphertext ctS corresponding to a

set of parties S = {i1, . . . , ik} ⊆ [K] and their secret keys ski1 , ski2 , . . . , skik
,

output the message μ.
– Eval(pp, C, (ctS1 , pkS1), . . . , (ctSt

, pkSt
)): Given (a description of) a boolean

circuit C along with t tuples (ctSi
, pkSi

), each comprising of a ciphertext ctSi

corresponding to a set of secret keys indexed by Si = {i1, . . . , iki
} ⊆ [K] and a

set of public keys pkSi
= {pkj ,∀j ∈ Si}, output a ciphertext ct corresponding

to the set of secret keys indexed by S =
⋃t

i=1 Si ⊆ [K].

Batched Multi-hop MKFHE with Compact Ciphertext Extension 605

Notice that the input ciphertexts of Eval can be fresh or the intermediate results
of any homomorphic operations, which is allowed by the multi-hop property.

Definition 4 (Correctness). A leveled multi-hop, multi-key FHE scheme is
correct if for any circuit C of depth at most L having t input wires and any tuples
{(ctSi

, pkSi
)}i∈[t], letting μi = Dec(skSi

, ctSi
), where skSi

= {skj ,∀j ∈ Si},
i = 1, . . . t, it holds that

Pr [Dec(skS ,Eval(C, (ctS1 , pkS1), . . . , (ctSt
, pkSt

))) �= C(μ1, . . . , μt)] = negl(λ),

where S =
⋃t

i=1 Si, pp ← Setup(1λ, 1K , 1L), (pkj , skj) ← Gen(pp) for j ∈ [S].

Definition 5 (Compactness). A leveled multi-hop, multi-key FHE scheme is
compact if there exists a polynomial poly(·, ·, ·) such that in Definition 3, |ct| ≤
poly(λ,K,L). In other words, the length of ct is independent of the size of C, but
can depend polynomially on λ, K, and L.

3 GSW Scheme with Ring Element Plaintext

In this section, we describe a variant of ring-LWE based GSW scheme with ring
element plaintext, which can also be converted to a MKFHE scheme using the
key extension technique in [CM15,MW16]. As explained in the introduction, this
scheme will be used for the evaluation key generation in the Eval algorithm of the
MKFHE scheme. The analogous LWE based scheme can be similarly constructed
without effort, so we omit the description.

3.1 Basic Scheme

Here we present basic algorithms of our ring-GSW scheme. The differences
between our scheme and the original ring-LWE based GSW scheme in [GSW13]
include the following. First, the plaintext here is a Rq ring element instead of one
bit, so our scheme do not support the general homomorphic multiplication gate.
But we show that in a special case that the second plaintext has a small l1 norm,
one homomorphic multiplication is allowed. Second, the plaintext in our scheme
is encrypted in low bits for the convenience of transformation to the evaluation
key of the BGV scheme. Third, the decryption algorithm of our scheme is not
presented, since it will not be used in our construction.

Our scheme is parameterized by an integer m (that defines the cyclotomic
polynomial Φm and φ(m) = n), a modulus q(= poly(n)), a small constant integer
p, a (canonical norm) B-bounded discrete distribution χ in R = Z[X]/Φm for
B � q and an integer N = O(n log q). Let β = �log q� + 1. We use ring Rq =
R/qR.

RGSW.Keygen(1n): Sample z ∈ R with a distribution χ, then we define the secret
key as a vector s = (1,−z)T ∈ R2

q . Pick a random vector a ∈ R2β
q uniformly at

random and vectors e ∈ R2β with a distribution χ2β . Output the public key as

P = [az + pe,a] = [b,a] ∈ R2β×2
q .

606 L. Chen et al.

RGSW.EncRand(μ,P): This procedure is to generate the encryption of random-
ness that is used in the real encryption. When input μ ∈ Rq, pick β ring elements
ri ← χ for i = 1, . . . , β and two vectors e′

1, e
′
2 ← χβ , and output

RGSW.EncRands(μ) = F = [f1, f2] ∈ Rβ×2
q ,

where for i = 1 . . . β,

f1[i] = b[i]ri + pe′
1[i] + Powersof2(μ)[i] ∈ Rq

and
f2[i] = a[i]ri + pe′

2[i] ∈ Rq.

Notice that Fs = pẽ + Powersof2(μ)T ∈ Rβ
q for some small ẽ ∈ Rβ . In fact,

ẽ[i] = e[i]ri + e′
1[i] − e′

2[i]z for i = 1, . . . , β.

RGSW.Enc(μ,P): On inputs μ ∈ Rq and the public key P, pick a random ring

element r
$←− χ and an error matrix E = [e1, e2] ← χ2β×2, and output

RGSW.Enc(μ)s = C = rP + pE + μG

= [rb, ra] + pE + μG

= [raz + p(re + e1), ra + pe2] + μG ∈ R2β×2
q ,

where G = (I, 2I, . . . , 2β−1I)T ∈ R2β×2
q , and

RGSW.EncRand(r,P) = F ∈ Rβ×2
q .

Notice that C · s = pẽ + μGs ∈ R2β
q for some small ẽ. The corresponding

decryption algorithm is not provided.

RGSW.HomAdd(C1,C2): Addition of two ciphertext matrices is just standard
addition in Rq.

RGSW.HomMult(C1,C2): On input two ciphertexts C1,C2 ∈ R2β×2
q , first com-

putes the bit decomposition C1 = [D0, . . . ,Dβ−1]
T ∈ R2β×2β

q of C1 such that
C1 =

∑β−1
i=0 2iDi, and then present the multiplication as

C1 � C2 := C1 · C2.

The homomorphic multiplication can be accelerated using FFT/NTT as [DM15].
Notice that RGSW.HomMult operation can not always output a legal ciphertext
with small noise. But in a special case that C2 encrypts a plaintext with a
small l1 norm, the noise in the output will be small. A rigorous analysis will be
provided in Subsect. 3.3.

Batched Multi-hop MKFHE with Compact Ciphertext Extension 607

RGSW.CTExt (Ci,Fi, {Pj , j = 1, . . . , k}): given a ciphertext Ci ∈ R2β×2
q , an

encryption of randomness Fi and public keys of all parties, output an extended
ciphertext as

C̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ci · · · X1 · · · 0

0
. . .

... 0
... Ci

...
...

. . .
0 · · · Xk · · · Ci

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R2kβ×2k
q (3)

where each sub block Xj ∈ R2β×2
q is constructed from Fi and {Pj}j=1,...,k as

Xj [u, :] = BitDecomp(b̃j [u])Fi ∈ R2
q for u = 1, . . . , 2β.

3.2 Security

The view of the attacker is the following distribution (P,F,C) generated via,
(sk, pk = P) ← RGSW.Keygen(params), F ← RGSW.EncRand(r,P) and C ←
RGSW.Enc(μ,P). We prove semantic security of our GSW scheme with ring
element plaintext by relying on the semantic security of the underlying ring-
LWE scheme [LPR13a,LPR13b]. The proof consists of the following hybrids:

– First, we change the public key P to a random matrix R2β×2
q according the

ring LWE assumption.
– Second, we change the encryption of randomness F to β ring LWE encryption

of 0.
– Third, we change the encryption C to 2β ring LWE encryption of 0.

Finally, this distribution is completely independent of the plaintext μ which
concludes the proof of security.

3.3 Noise Growth

The noise growth by the evaluation of the homomorphic operation can be
analysed by the following lemma.

Lemma 2. Let β = �log q� + 1 and k ≥ 1. Let s ∈ R2k
q be a secret key. Let

C1,C2 ∈ R2kβ×2k
q be ciphertexts that encrypt μ1, μ2 ∈ Rq with noise vectors

e1, e2 ∈ R2kβ, respectively. Let Cadd := C1 ⊕ C2 and Cmult := C1 � C2. Then,
we have

Cadds = peadd + (μ1 + μ2)Gs,

Cmults = pemult + (μ1μ2)Gs,

where eadd := e1 + e2 and emult := C1e2 + μ2e1. In particular, ‖emult‖can
∞ ≤

Õ(φ(m)k)‖e2‖can
∞ + ‖μ2‖1‖e1‖can

∞ .

608 L. Chen et al.

Proof. The statements for Cadd can be immediately proved. For Cmult, we have

Cmults = C1 · C2s

= C1 · (pe2 + μ2Gs)

= pC1 · e2 + μ2C1s

= p(C1 · e2 + μ2e1) + (μ1μ2)Gs.

Remind that C1 =
∑β

i=1 2iDi, where each Di ∈ R2kβ×2k
q has entries with coef-

ficients in {0, 1}. So the canonical norm of them are bounded by φ(m). Then we
have

‖emult‖can
∞ ≤ Õ(φ(m)k)‖e2‖can

∞ + ‖μ2‖1‖e1‖can
∞ .

��
From the above lemma, we can see that the noise term in Cmult is only concerned
with the l1 norm of μ2. From this observation, we get the following important
corollary.

Corollary 1. Let β = �log q� + 1, k ≥ 1 and φ(m) = n. Let C1,C2 ∈ R2kβ×2k
q

be ciphertexts that encrypt μ1, μ2 ∈ Rq with B bounded distribution noise vectors
e1, e2 ∈ R2β � Z

2βφ(m), respectively. Cmult and emult is defined as before. If
‖μ2‖∞ ≤ 1, we have ‖ emult ‖∞≤ Õ(n) · B.

Proof. From Lemma 2, we have

‖emult‖can
∞ ≤ Õ(kφ(m))‖e2‖can

∞ + ‖μ2‖1‖e1‖can
∞ .

Since ‖μ2‖∞ ≤ 1, ‖μ2‖1 ≤ n. So by (2) we have

‖ emult ‖∞≤ cm ‖ emult ‖can
∞ ≤ Õ(kn) · B.

��

3.4 Correctness of Ciphertext Extension

In this subsection, we will explain the method of [CM15,MW16] to extend GSW
ciphertexts corresponding to one single secret key to larger dimensional GSW
ciphertexts corresponding to a concatenation of multiple keys.

Specifically, let Ci ∈ R2β×2
q be a GSW ciphertext encrypting the message μ

under secret key si = (1,−zi)T ∈ R2
q , i.e.,

Ci = ri [azi + pei,a] + E + μG

= ri [azi + pei,a] + E + μG ∈ R2β×2
q .

(4)

Given a sequence of public vectors from different parties

bj = azj + pej ∈ R2β
q , j = 1, . . . , i − 1, i + 1, . . . , k

Batched Multi-hop MKFHE with Compact Ciphertext Extension 609

and the i-th party’s encryptions of the randomness

RGSW.EncRand(ri, pki) = Fi ∈ Rβ×2
q ,

we show that the Ci can be extended to a larger GSW ciphertext C̄ ∈ R2kβ×2k
q

encrypting the same message μ under the secret key s̄ = (s1| . . . |sk) ∈ R2k
q for

sj = (1,−zj)T ∈ R2
q , j ∈ [k], such that

C̄ · s̄ = pe + μḠs̄,

where ẽ ∈ R2kβ is a small noise vector. Here the matrix Ḡ can be written as

Ḡ =
[
I2k, 2I2k, . . . , 2�log q�I2k

]T

∈ R2kβ×2k
q .

Let the extended ciphertext

C̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ci · · · X1 · · · 0

0
. . .

... 0
... Ci

...
...

. . .
0 · · · Xk · · · Ci

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ R2kβ×2k
q (5)

to be a matrix whose sub blocks in R2β×2
q are all zero except the ones in the

diagonal line and the ith column. Since Cisi = pei +μGsi, we also need to make
sure that

Xjsi + Cisj = pẽ + μGsj , (6)

where ẽ ∈ R2β is a small noise vector.
Therefore, for si = (1,−zi)T and sj = (1,−zj)T , we can define

b̃j = bj − bi ∈ R2β
q .

Let the uth row of Xj be

Xj [u, :] = BitDecomp(b̃j [u])Fi ∈ R2
q (7)

for u = 1, . . . , 2β. Hence

Xj [u, :]si =
(
BitDecomp(b̃j [v])Fi

)
si

= BitDecomp(b̃j [v]) · (
pe + Powersof2(ri)T

)

= pe′ + b̃j [v] · ri,

and
Xjsi = pe′ + rib̃j (8)

610 L. Chen et al.

where e′ is bounded by βB (canonical norm). According to the Eq. (4), we have

Cisj = ri(azi + pe) − riazj + Esj + μGsj

= ri (bi − bj) + Esj + μGsj

.

Therefore, as the Eq. (6) holds for ẽ = e′ + Esj which is bounded by βB2

(canonical norm).
Formally, the ciphertext extension algorithm can be described as follow.

– RGSW.CTExt (Ci,Fi, {Pj , j = 1, . . . , k}), given a ciphertext Ci ∈ R2β×2
q ,

an encryption of randomness Fi and public keys of all parties, output an
extended ciphertext as (5) where each sub block Xj ∈ R2β×2

q is constructed
from Fi and {Pj}j=1,...,k as (7).

4 New Construction of Ring-LWE MKFHE

In this section, we present the details of our method to extend the BGV
scheme to a MKFHE scheme. As explained in Definition 3, MKFHE consists
of five algorithms, i.e., MKFHE.Setup, MKFHE.Gen, MKFHE.Enc, MKFHE.Dec
and MKFHE.Eval. For convenience, in the following we use RGSW.Encs (μ) (pre-
sented in Sect. 3) to denote a GSW ciphertext (which may be not fresh) that can
be decrypted to μ with the secret key s. Also we directly adopt the same sub-
routines such as modulus switching ModulusSwitch and key switching SwitchKey
as the single key BGV scheme. For details of the original BGV scheme, see
AppendixA.

4.1 Basic Schemes

MKFHE.Setup(1λ, 1K , 1L): Given the security parameter λ, a bound K on the
number of keys, and a bound L on the circuit depth, generate the noise distri-
bution χ = χ(λ,K,L) which is a B-bounded distribution over R, L decreasing
modules qL � qL−1 � · · · � q0 for each level and a small integer p coprime
with all ql’s. Let βl = �log ql� + 1, and choose L + 1 random public vectors
al ∈ R2βl

ql
for l = L, . . . , 0. All the following algorithms implicitly take the public

parameter pp =
(
R,χ,B, {ql,al}l∈{L,...,0}, p

)
as input.

MKFHE.Gen(j ∈ [K]): Generate keys for the j-th party. For l from L down to 0,
do the following:

1. Choose zl,j ← χ, and set sl,j := (1,−zl,j)T ∈ R2
ql

. The secret key for the j-th
party is skj = {sl,j}l∈{L,...,0}.

2. Generate 2βl ring-LWE instances

ptl,j := [bl,j = alzl,j + pel,j ,al] ∈ R2βl×2
ql

,

where el,j ← χ2βl . The public key pkj for the j-th party consists of all the
ptl,j , l = L, . . . , 0.

Batched Multi-hop MKFHE with Compact Ciphertext Extension 611

3. For i = 1, . . . , 2βl, compute RGSW.Enc (Powersof2(sl,j)[i], ptl−1,j) and get

Φi,l,j = RGSW.Encsl−1,j
(Powersof2(sl,j)[i])

= ri,l,j [bl−1,j ,al−1] + pEi,l,j + Powersof2(sl,j)[i]G

together with

Fi,l,j = RGSW.EncRand(ri,l,j , ptl−1,j) ∈ Rβl×2
ql

.

Also compute

Ψi,l,j = RGSW.Encsl−1,j
(BitDecomp(sl,j)[i])

= r′
i,l,j [bl−1,j ,al−1] + pE′

i,l,j + BitDecomp(sl,j)[i]G

together with

F′
i,l,j = RGSW.EncRand(r′

i,l,j , ptl−1,j) ∈ Rβl×2
ql

.

The evaluation key generation material is

emj =
{
(Φi,l,j ,Fi,l,j) ,

(
Ψi,l,j ,F′

i,l,j

)}
i∈[2βl],l∈[L]

.

Later, the emj will be used to generate evaluation keys for the homomorphic
evaluation algorithm.

MKFHE.Enc(pkj , μ): Given the public key pkj of the j-th party and a message
μ ∈ Rp, choose a random ring element r ∈ R2. Similar to the BGV scheme, the
level-L ciphertext c = (c0, c1) ∈ R2

qL
encrypts a plaintext element μ ∈ Rp with

respect to sL = (1,−zL), where

c0 = rbL,j [1] + pe + μ ∈ RqL
and c1 = raL[1] + pe′ ∈ RqL

.

Let S be an ordered set containing all indexes of the parities that the ciphertext
corresponding to. Without loss of generality, we assume that the indexes in S
are always arranged from small to large and S has no duplicate elements. Here
we set S = {j}. Usually, the ciphertext ct contains c, the set S and a tag l to
label the number of the level. Finally, output a tuple ct = (c, {j}, L).

MKFHE.Dec(skS , ct = (c, S, l)): Suppose S = {j1, . . . , jk} and skS consists of
all the parties’ secret keys whose indexes are contained in S, i.e., skS =
{skj1 , . . . , skjk

}. Let

s̄l = (sl,j1 |sl,j2 | · · · |sl,jk
) ∈ R2k

ql
,

where sl,j is the key of the j-th party to decrypt level-l ciphertexts. Once given
a level-l ciphertext c ∈ R2k

ql
, compute

μ = 〈c, s̄l〉 mod ql mod p.

612 L. Chen et al.

MKFHE.Eval((pki1 , . . . , pkik
), emS , C, (ct1, . . . , ctt)): Assume that the sequence

of ciphertexts are at the same level-l (If needed, use SwitchKey and ModulusS-
witch to make it so). For j ∈ [t], parse ctj as (cj , Sj , l), let |Sj | = kj , S =⋃t

j=1 Sj = {i1, . . . , ik} , pkS = (pki1 , . . . , pkik
), and thus cj ∈ R

2kj
ql . Then the

outline of the evaluation of the Boolean circuit C is as follows.

1. For j ∈ [t], compute MKFHE.CTExt(cj , S) = c̄j to get extended 2k dimen-
sional ciphertexts which encrypts the same message under the key s̄l. Here
s̄l := (sl,i1 , . . . , sl,ik

) is indexed by S.
2. Compute MKFHE.EVKGen(emS) = evkS to generate the evaluation key for

the extended scheme.
3. Call the two basic homomorphic operations for the extended ciphertexts

MKFHE.EvalAdd(evkS , c̄i, c̄j) and MKFHE.EvalMult(evkS , c̄i, c̄j) to evaluate
each gate of the circuit C.

Note that, we have given a detailed description of the first four algorithms
MKFHE.Setup, MKFHE.Gen, MKFHE.Enc and MKFHE.Dec. For MKFHE.Eval,
we just provided an outline of the algorithm. In the following subsections, we
will detail the ciphertext extension algorithm MKFHE.CTExt and the evaluation
key generation algorithm MKFHE.EVKGen. Also, we will explain how to call
the algorithm MKFHE.EvalAdd and MKFHE.EvalMult to evaluate addition and
multiplication for larger dimensional ciphertexts.

4.2 The Ciphertext Extension

In this subsection, we detail the ciphertext extension algorithm MKFHE.CTExt
which converts a BGV ciphertext to a larger dimensional ciphertext under a new
larger dimensional secret key. In fact, the new secret key is a concatenation of
secret keys from a larger set of parties.

MKFHE.CTExt(ct, S′): On input a ciphertext ct = (c, S, l) and a set of parties’s
indexes S′ for S ⊆ S′, where S has k members {i1, i2, . . . , ik} and S′ has k′

members {j1, j2, . . . , jk′} for k′ > k. c ∈ R2k
ql

corresponds to the decryption key
sl ∈ R2k

ql
, so 〈c, sl〉 mod ql = pe + μ. Sequentially divide c into k sub-vectors

which can be indexed by S = {i1, i2, . . . , ik}, i.e.,

c = (ci1 |ci2 | · · · |cik
) ∈ R2k

ql

where each ci1 ∈ R2
ql

. The extended ciphertext c̄ ∈ R2k′
ql

consists of k′ sequential
sub-vectors of 2 dimensional, which can be indexed by S′ = {j1, j2, . . . , jk′}, i.e.,

c̄ =
(
c′

j1 |c′
j2 | · · · |c′

jk′

)
∈ R2k′

ql
.

If an index j in S′ is also included in S, we set c′
j = cj , otherwise c′

j = 0.
Obviously, c̄ corresponds to the secret key

s̄l =
(
sj1,l|sj2,l| · · · |sjk′ ,l

) ∈ R2k′
ql

,

Batched Multi-hop MKFHE with Compact Ciphertext Extension 613

where sj,l is the key of the j-th party to decrypt the level-l ciphertexts. And the
decryption is performed by the inner product and modulus, i.e.,

〈c̄, s̄l〉 =
k′∑

t=1

〈c′
jt

, sjt,l〉 =
k∑

ι=1

〈ciι
, siι,l〉 = 〈c, sl〉 = pe + μ, (9)

and μ = 〈c̄, s̄l〉 mod ql mod p. The second equality in (9) holds because other
c′

j ’s are all 0.

4.3 Homomorphic Operations

In this subsection, we explain how to perform the algorithms MKFHE.EvalAdd
and MKFHE.EvalMult on extended ciphertexts when a proper evaluation key is
provided. The evaluation key we needed is

τs̄′
l→s̄l−1 = {Kt,ζ}t=1,...,βl;ζ=1,...,4k2 (10)

for s̄′
l = s̄l ⊗ s̄l and Kt,ζ ∈ R2k

ql
such that 〈Kt,ζ , s̄l−1〉 = pet,ζ + 2t−1s̄′

l[ζ] ∈ Rql

and the canonical norm of et,ζ is small.

MKFHE.EvalAdd(evkS , c̄1, c̄2): Take two (extended) ciphertexts c̄1, c̄2 ∈ R2k
ql

at
the same level-l under the same s̄l as inputs (If needed, use SwitchKey and
ModulusSwitch to make it so). First, compute c̄′

3 ← c̄1 + c̄2 mod ql under the
secret key s̄l ∈ R2k

ql
. Second, use SwitchKey(c̄′

3, τs′
l→sl−1 , ql) to generate ciphertext

c̄′′
3 under the secret key s̄l−1 (s̄′

l’s coefficients include all of s̄l’s since s̄′
l = s̄l ⊗ s̄l

and s̄l’s first coefficient is 1). Third, compute c̄3 = ModulusSwitch(c̄′′
3 , l).

MKFHE.EvalMult(evkS , c̄1, c̄2): Take two (extended) ciphertexts c̄1, c̄2 ∈ R2k
ql

at
the same level-l under the same s̄l. (If needed, use SwitchKey and ModulusSwitch
to make it so). First, compute c̄′

3 ← c̄1⊗c̄2 mod ql under the secret key s̄l ∈ R2k
ql

.
Second, use SwitchKey(c̄′

3, τs′
l→sl−1 , ql) to generate a ciphertext c̄′′

3 under the
secret key s̄′

l = s̄l ⊗ s̄l. Third, compute c̄3 = ModulusSwitch(c̄′′
3 , l).

4.4 Evaluation Key Generation

In this subsection, we detail the evaluation key generation algorithm EVKGen,
which inputs the public keys of involved parties and outputs the extended BGV
evaluation key as (10). Remind that all parties share L common random public
matrices al ∈ R2βl

ql
for l = L, . . . , 0 and βl = �log ql� + 1. The evaluation key

generation material emj for the jth party consists of all the Φi,l,j , Ψi,l,j , Fi,l,j

and F′
i,l,j for l = L, . . . , 0 and i = 1, . . . , 2βl.

MKFHE.EVKGen(emS , pkS). Notice that S contains k elements, and emS con-
sists of a collection of evaluation key generation materials {emj1 , . . . , emjk

} and
the public keys {pkj1 , . . . , pkjk

} belonging to parties in S. To generate a level-l
evaluation key as (10), compute as follows.

614 L. Chen et al.

1. For each j∗ ∈ S, use the GSW extend algorithm to get larger dimensional
ciphertexts under a key s̄l−1

Φ̄i,l,j∗ = RGSW.CTExt (Φi,l,j∗ , pkS ,Fi,l,j∗)
= RGSW.Encs̄l−1 (Powersof2(sl,j∗)[i])

and
Ψ̄i,l,j∗ = RGSW.CTExt

(
Ψi,l,j∗ , pkS ,F′

i,l,j∗
)

= RGSW.Encs̄l−1 (BitDecomp(sl,j∗)[i])

where s̄l−1 = (sl−1,j1 |sl−1,j2 | · · · |sl−1,jk
) ∈ R2k

ql
.

2. Set s̄l = (sl,j1 |sl,j2 | · · · |sl,jk
) ∈ R2k

ql
and s̄′

l = s̄l ⊗ s̄l ∈ R4k2

ql
. If we can compute

RGSW.Encs̄l−1 (s̄l[ζ] · s̄l[ζ ′]) from
{
Φ̄i,l,j , Ψ̄i,l,j

}
and

{
Φ̄i′,l,j′ , Ψ̄i′,l,j′

}
, where

s̄l[ζ] and s̄l[ζ ′] are any two elements of s̄l, we have the GSW encryptions of
all the elements of s̄′

l under the key s̄l−1. The details of how to accomplish
this task will be explained later.

3. Given the RGSW.Encs̄l−1 (s̄′
l[ζ]), compute

τs̄′
l→s̄l−1 = {Kt,ζ}t=1,...,βl;ζ=1,...,4k2 (11)

for Kζ ∈ R2k
ql

such that 〈Kt,ζ , s̄l−1〉 = pet,ζ +2t−1s̄′
l[ζ] ∈ Rql

. Also, the details
will be provided later.

Details of Step 2. Since we need to compute the GSW encryptions of s̄[ζ] · s̄[ζ ′],
the intuition may be the homomorphic multiplication of the GSW encryptions
of s̄[ζ] and s̄[ζ ′] ∈ Rq. But the noise will be out of control in this way accord-
ing to Lemma 2, because the absolute value of the message s̄[ζ ′] can be larger
than ql/2. Alternatively, we know that 〈Powersof2(̄sl[ζ]),BitDecomp(̄sl[ζ ′])〉 =
s̄l[ζ] · s̄l[ζ ′]. So we homomorphically compute the inner product of the GSW
encryptions of Powersof2(̄sl[ζ]) = Powersof2(sl,j [t]) and BitDecomp(̄sl[ζ ′]) =
BitDecomp(sl,j′ [t′]), since ζ = 2(j − 1) + t and ζ ′ = 2(j′ − 1) + t′, 1 ≤ j ≤ k,
t = 1 or 2. Namely we compute

RGSW.Encs̄l−1 (̄sl[ζ] · s̄l[ζ
′])

=

βl∑

ι=1

(
RGSW.Encs̄l−1 (Powersof2(̄sl[ζ])[ι]) � RGSW.Encs̄l−1

(
BitDecomp(̄sl[ζ

′])[ι]
))

=

βl∑

ι=1

(
RGSW.Encs̄l−1 (Powersof2(sl,j [t])[ι]) � RGSW.Encs̄l−1

(
BitDecomp(sl,j′ [t′])[ι]

))

=

βl∑

ι=1

Φ̄βl(t−1)+ι,l,j � Ψ̄βl(t
′−1)+ι,l,j′ .

(12)
The l∞ norm of BitDecomp(sl,j′ [t′])[ι] is less than 1. According to Corollary 1,
the canonical norm of the noise in the result ciphertext of homomorphic multi-
plication is bounded by Õ(n)B∗ if the noise in the input ciphertexts is bounded
by B∗. So the noise in the final output ciphertext RGSW.Encs̄l−1 (̄sl[ζ] · s̄l[ζ ′]) of
(12) is bounded by Õ(nβ2

l)B2 for βl = �log ql�+1 if the noise in emj is bounded
by B.

Batched Multi-hop MKFHE with Compact Ciphertext Extension 615

Details of Step 3. After above procedure, we have the GSW ciphertext

RGSW.Encs̄l−1 (̄s
′
l[ζ]) = Cζ ∈ R2kβl×2k

ql

so that
Cζ s̄l−1 = pe + s̄′

l[ζ]Gs̄l−1.

Since
G =

[
I2k, 2I2k, . . . , 2�log q�I2k

]T

∈ R2kβl×2k
ql

,

let the 2t · k + 1th row of Cζ be ct,ζ ∈ R2k
ql

, so we have

〈ct,ζ , s̄l−1〉 = pet,ζ + 2t−1s̄′
l[ζ] ∈ Rql

for some small et,ζ . This is the evaluation key as (10).

4.5 Packing Ciphertexts

We show that if the underlying single key BGV ciphertexts is batched, we can
get a batched multi-key FHE scheme. The extended ciphertext c̄ = (c1| . . . |ck) ∈
R2k

ql
has O(n) plaintext slots if the plaintext μ ∈ Rp has O(n) slots by the Chinese

Remainder Theorem. The O(n)-fold addition gate and the O(n)-fold multipli-
cation gate can be evaluated directly by MKFHE.EvalAdd and MKFHE.EvalMult
since the plaintext space is Rp. In the following we provide the homomorphic
permutation operation. Given the extended ciphertext c̄ ∈ R2k

ql
, we first apply

the automorphisms ρi as (15) to each ring element of c. Since

〈c̄, s̄l〉 = pe + μ + k[X]Φm[X],

we have the equality
〈
c̄[Xi], s̄[Xi]l

〉
= pe[Xi] + μ[Xi] + k[Xi]Φm[Xi].

In view of Φ(X) divides Φ(Xi) for i ∈ Z
∗
m, c̄[Xi] ∈ R2k

ql
is an encryption of

μ[Xi] under the key s̄[Xi]. So the homomorphic permutation is completed by
KeySwitching and get an level-(l − 1) ciphertext which encrypts μ[Xi] under the
key s̄l−1.

In this case, the evaluation key generation material for the jth party should
also include the RGSW.Enc

(
sl,j [Xi], ptl−1,j

)
for i ∈ Z

∗
m. By applying the GSW

ciphertext extension and extracting certain rows, we can successfully compute
the evaluation key

τs̄′
l[X

i]→s̄l−1 = {Kt,ζ}t=1,...,βl;ζ=1,...,4k2

for Kζ ∈ R2k
ql

such that 〈Kt,ζ , s̄l−1〉 = peζ + 2t−1s̄′
l[ζ][Xi] ∈ Rql

.

616 L. Chen et al.

4.6 Analysis

An analysis of the evaluation key generation procedure is as follows.

Lemma 3. Assume the noise in each Φi,l,j and Ψi,l,j is bounded by B, and k is
the number of the parities involved in the evaluation. The noise of each evaluation
key in (11) is bounded by Õ(nk)B2.

Proof. For βl = �log ql� + 1, if the noise in each Φi,l,j and Ψi,l,j is bounded
by B, the noise in each Φ̄i,l,j and Ψ̄i,l,j is bounded by βlB

2 (canonical norm).
According to Corollary 1, the noise in Φ̄βl(t−1)+ι,l,j � Ψ̄βl(t′−1)+ι,l,j′ is bounded
by O(nkβl)B2. So the noise in ciphertext RGSW.Encs̄l−1 (̄sl[ζ] · s̄l[ζ ′]) in (12) is
bounded by O(nkβ2

l B2). The final evaluation key in (10) is just derived from the
RGSW.Encs̄l−1 (̄sl[ζ]· s̄l[ζ ′]), so the bound of noise is also O(nkβ2

l)B2 = Õ(nk)B2.
��

An analysis of the homomorphic operation procedure is as follows.

Definition 6. We say an (extended) BGV ciphertext c̄ ∈ R2k
ql

(k ≥ 1) encrypts
μ ∈ Rp under a key s̄l ∈ R2k

ql
if 〈c̄, s̄l〉 mod ql = pe + μ.

Lemma 4. If the (extended) ciphertexts c̄1, c̄2 ∈ R2k
ql

(k ≥ 1) encrypt μ1, μ2 ∈
Rp, respectively, under a key s̄l ∈ R2k

ql
, the extended ciphertext c̄1 + c̄2 ∈ R2k

ql

encrypts μ1 + μ2 ∈ Rp under the decryption key s̄l ∈ R2k
ql

.

Lemma 5. If the (extended) ciphertexts c̄1, c̄2 ∈ R2k
ql

(k ≥ 1) encrypt μ1, μ2 ∈
Rp, respectively, under the decryption key s̄l ∈ R2k

ql
, the extended ciphertext

c̄1 ⊗ c̄2 ∈ R4k2

ql
encrypts the μ1 · μ2 ∈ Rp under the key s̄′

l = s̄l ⊗ s̄l ∈ R4k2

ql
.

Moreover, given the evaluation key as (10) where the canonical norm of et,ζ is
bounded by B, we can use SwitchKey(τs̄′

l→s̄l−1 , c̄1 ⊗ c̄2) to get c̄∗ ∈ R2k
ql

which
encrypts μ1 · μ2 ∈ Zp under the key s̄l−1 ∈ R2k

ql
with the noise bounded by

O(k2βl) · B. Here

s̄l−1 = (sl−1,j1 |sl−1,j2 | · · · |sl−1,jk
) ∈ R2k

ql
, (13)

where sl−1,j is the key of the jth party to decrypt level-(l − 1) ciphertexts and
the first entry of sl−1,j is 1.

Assuming the noise in the public key ptj and the evaluation key generation
material emj is bounded by B, the noise in the evaluation key is bounded by
Õ(kn)·B according to Lemma 3. If the level-l ciphertexts have a noise bounded by
Bl, the ciphertexts after homomorphic operations and before modulus switching
have a noise bounded by B2

l + Õ(k3n) · B by Lemma 5. Finally, we apply the
Scale function. The noise is now at most

Bl−1 =
ql−1

ql

(
B2

l + Õ(k3n) · B2
)

+ ηScale,l

Batched Multi-hop MKFHE with Compact Ciphertext Extension 617

where ηScale,l is an additive term. Let Bl be bounded by Bmax for all l. Also

we let Bmax ≥ 2
(
Õ

(
K3n

) · B2 + ηScale,l

)
for all l and the upper bound of the

parties’ number K, and ql/ql−1 ≥ 2 · Bmax for all l. Then we have

Bl−1 =
ql−1

ql

(
B2

l + Õ(k3n) · B2
)

+ ηScale,l

≤ ql−1

ql
B2

max + Õ(k3n) · B2 + ηScale,l

≤ 1
2 · Bmax

B2
max +

1
2
Bmax

≤ Bmax.

Therefore, it is enough to set Bmax as poly(n,K) and the largest modulus qL as
poly(n,K)L. For approximation factors of the presumed hardness, our scheme
is poly(n,K)L due to the above analysis. So our scheme can similarly bootstrap
as [BGV12].

4.7 Parameters and Comparisons

The comparisons of main properties of various schemes are provided in Tables 1,
2 and 3. To ensure security, we can set the dimension of the underlying (ring-)
LWE problem as n = O(λ log qL) = Õ(λL) for our scheme and n = O(λ) for
previous schemes, where λ is the the security parameter.

Comparison with [LATV12]. The first advantage over [LATV12] is that the
security of our scheme is based on the LWE assumption or the ring-LWE
assumption which is currently supported by a worst-case hardness theorem,
but not on a somewhat non-standard assumption on polynomial rings such as
the decisional small polynomial ratio (DSPR) assumption. The second advan-
tage is that our construction admits a threshold decryption protocol, therefore
can obtain a 2-round MPC, while only a “on-the-fly” MPC can be obtained
from [LATV12]. Moreover, when [LATV12] is modified to avoid the recent sub-
exponential attacks on the NTRU problem, our scheme still holds some advan-
tages in efficiency. In fact, the attacks [ABD16,MSZ16,CJL16] have complexity
2Õ(

√
n/ log q), where n is the degree of the ring, and q is the largest modulus

in the modulus chain. To get security against attacks running in time 2λ, we
need log q > K · L to support noise growth and n > (λKL)2 to thwart the
attacks. This gives public key of size λ2K4L5 and ciphertext of size λ2K3L3 for
[LATV12], while our ring-LWE based scheme has public key of size λ2L6 and
ciphertext of size λkL2.

Comparison with [PS16] and [BP16]. For approximation factors of the presumed
hardness, our scheme is poly(K,n)L due to the above analysis, while [PS16] is
poly(K,n,L)K+L and [BP16] is poly(K,n). Comparing to [BP16], our scheme
needs to take larger dimensions to compensate for larger approximation fac-
tors when L is large. But thanks to the ring element plaintext space and the

618 L. Chen et al.

SIMD operations, our construction has much better amortized per-bit timing.
Moreover, when considering the threshold decryption protocol, because of the
Smudging Lemma, [PS16] and [BP16] also need exponential large modulus/error
rate in λ and K as well as our scheme. In this case, [PS16] and [BP16] do not
own an advantage in hardness assumptions when constructing a 2-round MPC
protocol.

Table 1. Main properties comparisons. k denotes the actual number of parties involved
in the evaluation, with a designed bound of K in [PS16]. L denotes the circuit depth
that the scheme is designed to homomorphically evaluate.

Scheme Assumption Public key Ciphertext/plaintext Key hops Batch

[CM15] LWE Õ(λ2L2) Õ(k2λ2L2) Single No

[CM15] ring-LWE Õ(λL2) Õ(k2λL2) Single No

[BP16] LWE Õ(λ3) Õ(kλ) Multiple No

[PS16] scheme #1 LWE Õ(λ(K + L)2) Õ(kλ3(K + L)4) Multiple No

[PS16] scheme #2 LWE/KDM Õ(λ4(K + L)4) Õ(k2λ2(K + L)2) Multiple No

Our scheme LWE Õ(λ3L7) Õ(kλL) Multiple No

Our scheme ring-LWE Õ(λ2L6) Õ(kL) Multiple Yes

Table 2. Complexity of party extension. The meanings of the symbols are as
same as Table 1. t(≥ k) denotes the number of involved ciphertexts in an eval-
uation. The ciphertexts extension in [BP16] denotes the evluation of the circuit
C(x, y) = NAND (Decx(c1),Decy(c2)), and the evaluation key generation is to generate
the extended refresh key. The matrix multiplication is performed by the algorithm in
[WV12], which has complexity of O(n2.37) for n dimensional square matrices. It is hard
to give an exact complexity for multiplication of rectangular matrices with the algo-
rithm in [WV12], so we just provide the upper bound of the complexity by the naive
algorithm.

Scheme Assumption Approximate factor Ciphertexts extension Evaluation key generation

[CM15] LWE poly(K, λ)L t · Õ(kλ4.37L4.37) ***

[CM15] ring-LWE poly(K, λ)L t · Õ(kλL) ***

[BP16] LWE poly(K, λ) Õ(k2λ4) Õ(kλ4.37)

[PS16] scheme #1 LWE poly(K, λ, L)K+L < t · Õ(k2λ4(K + L)4) ***

[PS16] scheme #2 LWE/KDM poly(K, λ, L)K+L < t · Õ(k2λ5(K + L)4) ***

Our scheme LWE poly(K, λ, L)L Õ(1) Õ(k4.37λ4.37L7.37)

Our scheme ring-LWE poly(K, λ, L)L Õ(1) Õ(k3λ3L6)

5 Threshold Decryption and Two Round MPC

We now show how to implement a threshold decryption for the MKFHE con-
struction presented in the previous section, hence a 2-round MPC protocol can
be constructed according to the result of [MW16].

Batched Multi-hop MKFHE with Compact Ciphertext Extension 619

Table 3. Complexity of evaluation. The meanings of the symbols are as same as
Tables 1 and 2. Also we just provide the complexity of the naive algorithm as the
upper bound of rectangular matrix multiplication complexity.

Scheme Assumption Per gate complexity Overhead

[CM15] LWE Õ(k2.37λ2.37L2.37) Õ(k2.37λ2.37L3.37)

[CM15] ring-LWE Õ(k3λL2) Õ(k3λL2)

[BP16] LWE Õ(k2λ4) Õ(k2λ4)

[PS16] scheme #1 LWE < Õ(k2λ5(K + L)7) < Õ(k2λ5(K + L)7)

[PS16] scheme #2 LWE/KDM Õ(k2.37λ2.37(K + L)2.37) Õ(k2.37λ2.37(K + L)2.37)

Our scheme LWE Õ(k3λ3L5) Õ(k3λ3L5)

Our scheme ring-LWE Õ(k2λL3) Õ(k2L2)

5.1 Definitions

Definition 7 [MW16]. A Threshold multi-key FHE scheme (TMKFHE) is a
MKFHE scheme with two additional algorithms MFHE.PartDec, MFHE.FinDec
described as follows:

– ρi ← MFHE.PartDec(ct, (pk1, . . . , pkK), i, ski): On input an expanded cipher-
text under a sequence of K keys and the i-th secret key, output a partial
decryption ρi.

– μ ← MFHE.FinDec(ρ1, . . . , ρK): On input K partial decryption, output the
plaintext μ.

Along with the properties of multi-key FHE we require the scheme to satisfy the
following properties.

Correctness. The following holds with probability 1:

MKFHE.FinDec(ρ1, . . . , ρN) = C(μ1, . . . , μh)

where {ρi ← MKFHE.PartDec(ct, (pk1, . . . , pkK), i, ski)}i∈[K] are the partial
decryptions and ct is the final output ciphertext by the evaluation algorithm
for the circuit C.

Simulatability. There exists a PPT simulator Sthr which, on input index i ∈
[K], all but the i-th keys {skj}j∈[K]/{i}, the evaluated ciphertext ct and the
output message μ := C(μ1, . . . , μh), produces a simulated partial decryption
ρ′

i ← Sthr
(
μ, ct, i, {skj}j∈[K]/{i}

)
such that

ρi ≈ ρ′
i

where ρi ← MFHE.PartDec (ct, (pk1, . . . , pkN), i, ski). Note that the randomness
is only over the random coins of the simulator and the MFHE.PartDec procedure,
and all other values are assumed to be fixed (and known).

620 L. Chen et al.

Theorem 2 [MW16]. Given any threshold multi-key fully homomorphic scheme
defined as above, one can construct a two-round MPC protocol for any cir-
cuit which achieves honest-but-curious security in the CRS model. Additionally
assuming the existence of NIZKs, then one can construct a two-round MPC pro-
tocol for any circuit which achieves fully malicious security in the UC framework
in the CRS model.

5.2 Construction

We now show how to implement a threshold decryption for the MKFHE con-
struction presented in the previous section. Since Smudging Lemma1 is involved
to ensure the simulatability, we should choose the modulus qL as large as
2O(K,λ,L), which implies the approximate factor for the underlying problem to
be exponentially large. Note that the same problem exists in [MW16] as well.

MKFHE.PartDec(c̄, (pk1, . . . , pkk), i, ski): On input an expanded ciphertext c̄ ∈
R2k

q under a sequence of keys (pk1, . . . , pkk) and the ith secret key at level-l
sl,i ∈ R2

q , do the following:

– Parse c̄ as a concatenation of k sub-vectors ci ∈ R2
q such that c̄ = (c1| . . . |ck).

– Then compute γi = 〈si, ci〉 ∈ Rq and output ρi = γi + esm
i ∈ Rq, where each

coefficient of the random “smudging noise” esm
i is uniformly sampled from

[−Bdec
smdg, B

dec
smdg] for Bdec

smdg = 2λBmax and Bmax = Õ(λK).

MFHE:FinDec(p1, . . . , pk): Given ρ1, . . . , ρk, compute the sum ρ :=
∑k

i=1 ρi. Out-
put μ := ρ mod p.

5.3 Correctness and Simulation Security

Theorem 3. The above threshold decryption procedures for MKFHE satisfy the
correctness and the (statistical) simulation security.

Correctness. The entire scheme is the same as MKFHE except the decryption.
If C is an evaluated ciphertext encrypting a bit μ and the secret keys are s̄l =
(sl,1, . . . , sl,k), by the correctness analysis of the non-threshold MKFHE, we have

〈s̄l, c̄〉 =
∑
i∈[k]

〈sl,i, ci〉 = μ + pe,

where ‖e‖∞ ≤ K · B0. Therefore, if the partial decryptions ρi are computed as
above, we have ∑

i∈[k]

ρi =
∑
i∈[k]

γi + p
∑
i∈[k]

esm
i

=
∑
i∈[k]

〈sl,i, ci〉 + pesm

= μ + pe + pesm,

(14)

Batched Multi-hop MKFHE with Compact Ciphertext Extension 621

where esm =
∑

i∈[k] e
sm
i has norm ‖esm‖∞ ≤ K · Bdec

smdg ≤ K · 2O(λ)Bmax and
e has norm ‖e‖∞ ≤ Bmax. If we set q0 = 4K · 2λBmax, then ‖e0 + esm‖ < q/4
and the correctness holds immediately.

Simulatability. The simulator Sthr
(
μ, ĉ, i, {sl,j}j∈[k]/{i}

)
takes as inputs the

secrets keys {sl,j}j∈[k]/{i}, the evaluated ciphertext ĉ ∈ R2k
q and the output

value μ = C(μ1, . . . , μk) encrypted in ĉ. It outputs the simulated partial decryp-
tion as

ρ′
i = μ + pesm

i − p
∑
i�=j

γi

for esm ∈ [−Bdec
smdg, B

dec
smdg] where γi = 〈sl,i, ci〉. To see the indistinguishability,

note that if ρi = γi + esm
i is the real partial decryption then according to (14)

ρi = μ + pe + pesm
i − p

∑
i�=j

γi.

The difference between the real value ρi and the simulated value ρ′
i is the noise

e of norm ‖e‖∞ ≤ Bmax. By Lemma 1, the distributions of esm
i and esm

i + e
are statistically close since each coefficient of esm

i is uniformly sampled from
[−Bdec

smdg, B
dec
smdg] where Bdec

smdg = 2λBmax, so that Bdec
smdg/‖e‖∞ ≥ 2λ. Therefore,

the simulated partial decryption and the real one are statistically indistinguish-
able.

6 Conclusion

In this paper, we show the multi-hop multi-key FHE can be achieved from the
BGV scheme. Therefore, the scheme inherits the advantages of the BGV scheme,
for example, it can encrypt a ring element as the plaintext and support the CRT-
based packed ciphertexts technique. Moreover, the complexity of the ciphertext
extension procedure in out scheme is dependent only on the number of involved
secret keys but not on the number of ciphertexts.

Acknowledgement. We would like to thank Jiang Zhang and Qiang Tang for
thoughtful discussions. Also we would like to thank the anonymous reviewers for their
valuable comments. The work is supported by the National Key Research and Devel-
opment Program of China (Nos. 2017YFB0802005, 2017YFB0802504) the National
Natural Science Foundation of China (No. U1536205) and the National Basic Research
Program of China (No. 2013CB338003).

A The BGV Cryptosystem

In this section, we revisit the BGV scheme from [BGV12]. As explained in the
introduction, our MKFHE is based on the BGV FHE scheme.

622 L. Chen et al.

A.1 Modulus Switching

In the BGV LFHE scheme, since the noise term grows with homomorphic opera-
tions of the cryptosystem, switching modulus from qi+1 to qi is used to decrease
the noise term roughly by the ratio qi+1/qi.

– ModulusSwitch(c, i): The operation takes a ciphertext c = (c0, c1) defined
modulo qi as input, and produces a ciphertext c′ = (c′

0, c
′
1) defined modulus

qi−1, such that [c0 − z · c1]qi
≡ [c′

0 − z · c′
1]qi−1 (modp). Then change the level

tag from i to i − 1.

The Modulus Switching procedure makes use of the function Scale(x, q, q′)
that takes an element x ∈ Rq as input and returns an element y ∈ Rq′ such
that in coefficient representation it holds that y ≡ x(modp), and y is the closest
element to (q′/q) · x that satisfies this mod-p condition for p � q. The details
are available in [BGV12,GHS12c]. Once we have a level-0 ciphertext ct, we can
no longer use modulus switching technique to reduce the noise. Then the boot-
strapping technique is needed to regain a fresh cipher.

Lemma 6 [BGV12,GHS12c]. Let qi > qi−1 > p be positive integers satisfying
qi = qi−1 = 1(mod p). Let c,s be two ring elements over R = Z[X]/Φm(X)
such that

‖c · s‖can
qi

< qi/2 − qi

qi−1
pn · φ(m)‖s‖can,

and let c′ = Scale(c, qi, qi−1, p). Denoting e = cs mod Φm(X) and e′ = c′s
mod Φm(X) (arithmetic in Z[X] = Φm(X)), it holds that e mod qi−1 mod p ≡
e′ mod qi mod p in coefficient representation, and

‖e′‖can
qi−1

<
qi−1

qi
· ‖e‖can

qi
+ pn · φ(m) · ‖s‖can.

A.2 Key Switching

After some homomorphic evaluation operations, we have on our hands not a
“normal” ciphertext which is valid relative to a “normal” secret key, but an
“extended ciphertext” which is valid with respect to an “extended secret key”.
Let β = �log q� + 1. The key switching approach consists of two procedures, i.e.,

– SwitchKeyGen(s1 ∈ Rk
q , s2 = (1,−z2)T ∈ R2

q): Compute s = Powersof2(s1) ∈
Rkβ

q , sample k·β ring-LWE instances (ai, aiz2+pei), i = 1, · · · , kβ, and output

τs1→s2 := {Ki = (aiz2 + pei + s[i], ai) ∈ R2
q}i=1,··· ,kβ .

– SwitchKey(τs1→s2 , c ∈ Rk
q): Since c̄ = BitDecomp(c), output

c′ =
∑

i

c̄[i]Ki

as the new ciphertext under the secret key s2. The correctness requires that
〈Ki, s2〉 = pe + Powersof2(s1)[i] for a small norm e.

Batched Multi-hop MKFHE with Compact Ciphertext Extension 623

A.3 BGV LFHE Scheme

Following we list the basic algorithms of BGV schemes. See [BGV12,GHS12c] for
details. Specifically, the BGV scheme is parameterized by a sequence of decreas-
ing module qL � qL−1 � · · · � q0, and an “level-l ciphertext” in the scheme is
c = (c0, c1) ∈ R2

ql
. Let βl = �log ql� + 1 for l = L, . . . , 0. After each homomor-

phic operation, modulus ql at level-l is switched to ql−1 at level-l − 1. Also, the
corresponding secret key is switched.

BGV.KeyGen(1λ, 1L): Given the security parameter λ and L, choose the noise
distribution χ = χ(λ,L) which is a B-bounded distribution over R, L decreasing
module qL � qL−1 � · · · � q0 for each level, and a small integer p coprime with
all ql’s. For l from L down to 0, do the following:

1. Choose a vector zl ← χ, and set sl := (1,−zl)T ∈ R2
ql

.
2. Generate ring-LWE instances ptl := (bl = al · zl + pel mod ql, al) ∈ R2

ql
for

al ∈ Rql
, set ptl as the level-l public key relative to the secret key sl.

3. Set s′
l = sl ⊗ sl ∈ R4

ql
, run τs′

l→sl−1 ← SwitchKeyGen(s′
l, sl−1) (omit this step

when l = 0).

The public key is pk = {ptl}l∈{L,...,0}, the evaluation key is evk = {τs′
l→sl−1}l∈[L]

and the secret key is sk = {sl}l∈{L,...,0}.

BGV.Enc(pk, μ): To encrypt an element μ ∈ Rp, choose two random elements
r, e ← χ and output level-L ciphertext c = (c0, c1) ∈ R2

qL
where

c0 = rbL + pe + μ ∈ RqL
and c1 = raL ∈ RqL

.

BGV.Dec(sk, c, l): Given a level-l ciphertext c = (c0, c1) ∈ R2
ql

, compute

μ = 〈c1, sl〉 mod ql mod p.

BGV.HomAdd(evk, c1, c2): Take two ciphertexts c1 and c2 at the same level-l
under the same sl as inputs (If needed, use SwitchKey and ModulusSwitch to
make it so). First, compute c1 + c2 mod ql and pad zeros to get c′

3 ∈ R4
ql

under
the key s′

l := sl ⊗sl. Second, use SwitchKey(τs′
l→sl−1 , c

′
3) to generate a ciphertext

c̄3 under the secret key sl−1 (s′
l’s coefficients include all of sls since s′

l = sl ⊗ sl

and sl’s first coefficient is 1). Third, compute c3 = ModulusSwitch(c̄3, l).

BGV.HomMult(evk, c1, c2): Take two ciphertexts c1 and c2 at same level-l under
the same sl as inputs (If needed, use SwitchKey and ModulusSwitch to make it
so). First, compute c̃3 = c1 ⊗ c2 under the secret key s′

l = sl ⊗ sl. Second, use
SwitchKey(c̃3, τs′

l→sl−1 , ql) to generate a ciphertext c′
3 under the secret key sl−1.

Third, compute c3 = ModulusSwitch(c′
3, l).

624 L. Chen et al.

A.4 Packing Ciphertexts

Let p be a prime integer, coprime to m, and Rp be the localisation of R at p. The
polynomial Φm(X) factors modulo p into k(R) irreducible factors, i.e., Φm(X) ≡∏k(R)

i=1 Fi(X)(mod p). Each Fi(X) has degree d(R) = φ(m)/k(R), where d(R) is
the multiplicative order of p in Z

∗
m. In the packed ciphertext scheme, each of

these k(R) factors corresponds to a “plaintext slot”, i.e.

Rp
∼= Zp[X]/F1(X) × · · · × Zp[X]/Fk(R)(X) ∼= (F

pd(R))k(R)
.

More precisely, we have k(R) = |Z∗
m/ 〈p〉 | isomorphisms

ψi : Zp[X]/Fi(X) → F
pd(R) , i = 1, . . . , k(R),

that allow to represent k(R) plaintext elements of Fpd as a single element in Rp.
By the Chinese Remainder Theorem, addition and multiplication correspond to
the SIMD operations on the slots, which allows us to process k(R) input values
at once.

Beyond addition and multiplications, we can also manipulate elements in Rp

using a set of automorphisms on Rp of the form a(X) �→ a(Xj), or in more detail

ρj : Rp → Rp, a (X) + (p, Φm (X)) �→ a
(
Xj

)
+ (p, Φm (X)) (j ∈ Z

∗
m) . (15)

Actually, the Galois group Gal(Q[X]/Φm(X)) consists of all the transforma-
tions X �→ Xi for i ∈ Z

∗
m, hence there are exactly φ(m) of them. Specifically,

Gal(Q[X]/Φm(X)) contains a subgroup G = {(X �→ Xpi

) : j = 0, 1, . . . , d − 1}
corresponding to the Frobenius automorphisms modulo p. This subgroup does
not permute the slots at all, but the quotient group H = Gal/G does. Clearly,
G has order d and H has order φ(m)/d = k. We can homomorphically evaluate
these automorphisms by applying them to the batched BGV ciphertext elements
and then preforming a “key switching”. As discussed in [GHS12b], the combi-
nations of automorphisms in H can induce any permutations on the plaintext
slots.

Theorem 4 [GHS12b]. Let l, t, ω and W be parameters. Then any t-gate fan-
in-2 arithmetic circuit C with average width ω and maximum width W , can be
evaluated using a network of O (�t/l� · �l/w� · log W · poly log(l)) l-fold gates of
types l-Add, l-Mult, and l-Permute. The depth of this network of l-fold gates is
at most O(log W) times that of the original circuit C, and the description of the
network can be computed in time Õ(t) given the description of C.

Using this theorem, Gentry et al. showed, as the batched BGV scheme with
bootstrapping [BGV12], the total overhead is polylogarithmic in the security
parameter.

Batched Multi-hop MKFHE with Compact Ciphertext Extension 625

References

[ABD16] Albrecht, M., Bai, S., Ducas, L.: A subfield lattice attack on overstretched
NTRU assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 153–178. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53018-4 6

[AJL+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computation
and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-29011-4 29

[ASP13] Alperin-Sheriff, J., Peikert, C.: Practical bootstrapping in quasilinear time.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
1–20. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 1

[ASP14] Alperin-Sheriff, J., Peikert, C.: Faster bootstrapping with polynomial error.
In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp.
297–314. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44371-2 17

[BGH13] Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in LWE-based
homomorphic encryption. In: Kurosawa, K., Hanaoka, G. (eds.) PKC
2013. LNCS, vol. 7778, pp. 1–13. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36362-7 1

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: Proceedings of the 3rd Innovations
in Theoretical Computer Science Conference, pp. 309–325. ACM (2012)

[BP16] Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE
with short ciphertexts. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016.
LNCS, vol. 9814, pp. 190–213. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-53018-4 8

[Bra12] Brakerski, Z.: Fully homomorphic encryption without modulus switching
from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO
2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-32009-5 50

[BV11a] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) LWE. In: 52 Annual IEEE Symposium on Foundations of
Computer Science, vol. 2011, no. 2, pp. 97–106 (2011)

[BV11b] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from
ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-22792-9 29

[BV14] Brakerski, Z., Vaikuntanathan, V.: Lattice-based FHE as secure as PKE. In:
Proceedings of the 5th Conference on Innovations in Theoretical Computer
Science, pp. 1–12. ACM (2014)

[CJL16] Cheon, J.H., Jeong, J., Lee, C.: An algorithm for NTRU problems, crypt-
analysis of the GGH multilinear map without a low-level encoding of zero.
LMS J. Comput. Math. 19(A), 255–266 (2016)

[CM15] Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled FHE from
learning with errors. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015.
LNCS, vol. 9216, pp. 630–656. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48000-7 31

http://dx.doi.org/10.1007/978-3-662-53018-4_6
http://dx.doi.org/10.1007/978-3-662-53018-4_6
http://dx.doi.org/10.1007/978-3-642-29011-4_29
http://dx.doi.org/10.1007/978-3-642-40041-4_1
http://dx.doi.org/10.1007/978-3-662-44371-2_17
http://dx.doi.org/10.1007/978-3-642-36362-7_1
http://dx.doi.org/10.1007/978-3-642-36362-7_1
http://dx.doi.org/10.1007/978-3-662-53018-4_8
http://dx.doi.org/10.1007/978-3-662-53018-4_8
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1007/978-3-642-32009-5_50
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-662-48000-7_31
http://dx.doi.org/10.1007/978-3-662-48000-7_31

626 L. Chen et al.

[CP16] Crockett, E., Peikert, C.: Λoλ: functional lattice cryptography. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, pp. 993–1005 (2016)

[DHS16] Doröz, Y., Hu, Y., Sunar, B.: Homomorphic AES evaluation using the mod-
ified LTV scheme. Des. Codes Crypt. 80(2), 333–358 (2016)

[DM15] Ducas, L., Micciancio, D.: FHEW: bootstrapping homomorphic encryption
in less than a second. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 617–640. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-46800-5 24

[DPSZ12] Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation
from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-32009-5 38

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
vol. 9, pp. 169–178 (2009)

[GHPS13] Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Field switching in BGV-
style homomorphic encryption. J. Comput. Secur. 21(5), 663–684 (2013)

[GHS12a] Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomor-
phic encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC
2012. LNCS, vol. 7293, pp. 1–16. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-30057-8 1

[GHS12b] Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with
polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012). doi:10.
1007/978-3-642-29011-4 28

[GHS12c] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the
AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-32009-5 49

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp.
75–92. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 5

[HAO15] Hiromasa, R., Abe, M., Okamoto, T.: Packing messages and opti-
mizing bootstrapping in GSW-FHE. In: Katz, J. (ed.) PKC 2015.
LNCS, vol. 9020, pp. 699–715. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-46447-2 31

[HPS98] Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key
cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–
288. Springer, Heidelberg (1998). doi:10.1007/BFb0054868

[HS14] Halevi, S., Shoup, V.: Algorithms in HElib. In: Garay, J.A., Gennaro, R.
(eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 554–571. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44371-2 31

[HS15] Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-46800-5 25

[LATV12] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption. In: Pro-
ceedings of the Forty-Fourth Annual ACM Symposium on Theory of Com-
puting, pp. 1219–1234. ACM (2012)

http://dx.doi.org/10.1007/978-3-662-46800-5_24
http://dx.doi.org/10.1007/978-3-662-46800-5_24
http://dx.doi.org/10.1007/978-3-642-32009-5_38
http://dx.doi.org/10.1007/978-3-642-30057-8_1
http://dx.doi.org/10.1007/978-3-642-30057-8_1
http://dx.doi.org/10.1007/978-3-642-29011-4_28
http://dx.doi.org/10.1007/978-3-642-29011-4_28
http://dx.doi.org/10.1007/978-3-642-32009-5_49
http://dx.doi.org/10.1007/978-3-642-32009-5_49
http://dx.doi.org/10.1007/978-3-642-40041-4_5
http://dx.doi.org/10.1007/978-3-662-46447-2_31
http://dx.doi.org/10.1007/978-3-662-46447-2_31
http://dx.doi.org/10.1007/BFb0054868
http://dx.doi.org/10.1007/978-3-662-44371-2_31
http://dx.doi.org/10.1007/978-3-662-46800-5_25

Batched Multi-hop MKFHE with Compact Ciphertext Extension 627

[Lin] Lindell, Y.: Tutorials on the foundations of cryptography
[LPR13a] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning

with errors over rings. J. ACM (JACM) 60(6), 43 (2013)
[LPR13b] Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryp-

tography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38348-9 3

[MSZ16] Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps:
cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw,
M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53008-5 22

[MW16] Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-
key FHE. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9666, pp. 735–763. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49896-5 26

[PS16] Peikert, C., Shiehian, S.: Multi-key FHE from LWE, revisited. In: Hirt,
M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 217–238. Springer,
Heidelberg (2016). doi:10.1007/978-3-662-53644-5 9

[Reg09] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. J. ACM (JACM) 56(6), 34 (2009)

[SV14] Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des.
Codes Crypt. 71(1), 57–81 (2014)

[WV12] Williams, V.V.: Multiplying matrices faster than Coppersmith-Winograd.
In: Proceedings of the Annual ACM Symposium on Theory of Computing,
vol. 129, no. 8, 887–898 (2012)

http://dx.doi.org/10.1007/978-3-642-38348-9_3
http://dx.doi.org/10.1007/978-3-642-38348-9_3
http://dx.doi.org/10.1007/978-3-662-53008-5_22
http://dx.doi.org/10.1007/978-3-662-49896-5_26
http://dx.doi.org/10.1007/978-3-662-49896-5_26
http://dx.doi.org/10.1007/978-3-662-53644-5_9

	Batched Multi-hop Multi-key FHE from Ring-LWE with Compact Ciphertext Extension
	1 Introduction
	1.1 Motivations
	1.2 Our Contributions
	1.3 Technique Overview
	1.4 Organization

	2 Preliminaries
	2.1 Hardness Assumption
	2.2 Smudging Lemma
	2.3 Bit Decomposition Technique
	2.4 Cryptographic Definitions

	3 GSW Scheme with Ring Element Plaintext
	3.1 Basic Scheme
	3.2 Security
	3.3 Noise Growth
	3.4 Correctness of Ciphertext Extension

	4 New Construction of Ring-LWE MKFHE
	4.1 Basic Schemes
	4.2 The Ciphertext Extension
	4.3 Homomorphic Operations
	4.4 Evaluation Key Generation
	4.5 Packing Ciphertexts
	4.6 Analysis
	4.7 Parameters and Comparisons

	5 Threshold Decryption and Two Round MPC
	5.1 Definitions
	5.2 Construction
	5.3 Correctness and Simulation Security

	6 Conclusion
	A The BGV Cryptosystem
	A.1 Modulus Switching
	A.2 Key Switching
	A.3 BGV LFHE Scheme
	A.4 Packing Ciphertexts

	References

