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Abstract. We study the question of minimizing the computational com-
plexity of (robust) secret sharing schemes and error correcting codes. In
standard instances of these objects, both encoding and decoding involve
linear algebra, and thus cannot be implemented in the class AC0. The fea-
sibility of non-trivial secret sharing schemes in AC0 was recently shown
by Bogdanov et al. (Crypto 2016) and that of (locally) decoding errors
in AC0 by Goldwasser et al. (STOC 2007).

In this paper, we show that by allowing some slight relaxation such
as a small error probability, we can construct much better secret shar-
ing schemes and error correcting codes in the class AC0. In some cases,
our parameters are close to optimal and would be impossible to achieve
without the relaxation. Our results significantly improve previous con-
structions in various parameters.

Our constructions combine several ingredients in pseudorandomness
and combinatorics in an innovative way. Specifically, we develop a gen-
eral technique to simultaneously amplify security threshold and reduce
alphabet size, using a two-level concatenation of protocols together with
a random permutation. We demonstrate the broader usefulness of this
technique by applying it in the context of a variant of secure broadcast.

1 Introduction

The motivation for this paper comes from two different sources. The first is the
general theme of improving performance at the price of allowing some small
probability of error or failure. This is evident throughout computer science. For
example, randomized algorithms tend to be much more efficient than their deter-
ministic counterparts. In cryptography and coding theory, randomization with
small failure probability can often be used to amplify security or improve effi-
ciency. This is arguably a good tradeoff in practice.

The second source of motivation is the goal of minimizing the computational
complexity of cryptographic primitives and related combinatorial objects. For
example, a line of work on the parallel complexity of cryptography [2,3,16,18,29]
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successfully constructed one way functions and other cryptographic primitives
in the complexity class NC0 based on different kinds of assumptions, including
very standard cryptographic assumptions. Works along this line have found sev-
eral unexpected applications, most recently in the context of general-purpose
obfuscation [24]. The study of low-complexity cryptography is also motivated
by the goal of obtaining stronger negative results. For instance, low-complexity
pseudo-random functions imply stronger hardness results for learning [30] and
stronger natural proof barriers [27], and low-complexity decryption [8] implies a
barrier for function secret sharing [10].

In this paper, we address the question of minimizing the complexity of secret
sharing schemes and error correcting codes by introducing additional random-
ization and allowing for a small failure probability. We focus on the complexity
class AC0, which is the lowest class for which a secret can be reconstructed or a
message be decoded with negligible error probability. We show that the random-
ization approach can be used towards obtaining much better parameters than
previous constructions. In some cases, our parameters are close to optimal and
would be impossible to achieve without randomization.

We now give a more detailed account of our results, starting with some
relevant background.

1.1 (Robust) Secret Sharing in AC0

A secret sharing scheme allows a dealer to randomly split a secret between n
parties so that qualified subsets of parties can reconstruct the secret from their
shares while unqualified subsets learn nothing about the secret. We consider here
a variant of threshold secret sharing (also known as a “ramp scheme”), where any
k parties can learn nothing about the secret, whereas all n parties together can
recover the secret from their shares. We also consider a robust variant where the
secret should be correctly reconstructed even if at most d shares are corrupted
by an adversary, possibly in an adaptive fashion. We formalize this below.

Definition 1 (secret sharing). An (n, k) secret sharing scheme with message
alphabet Σ0, message length m, and share alphabet Σ is a pair of functions
(Share,Rec), where Share : Σm

0 → Σn is probabilistic and Rec : Σn → Σm
0 is

deterministic, which satisfy the following properties.

– Privacy: For a privacy threshold k, the adversary can choose a sequence W =
(w1, . . . , wk) ∈ [n]k of share indices to observe, either adaptively (where each
wi depends on previously observed shares Share(x)w1 , . . . ,Share(x)wi−1) or
non-adaptively (where W is picked in one shot). We say that the scheme is
ε-private if for every such strategy, there is a share distribution D over Σk

such that for every secret message x ∈ Σm
0 , Share(x)W is ε-close (in statistical

distance) to D. We refer to ε as the privacy error and say that the scheme
has perfect privacy if ε = 0.

– Reconstruction: We say that the scheme has reconstruction error η if for every
x ∈ Σm

0 ,
Pr[Rec(Share(x)) = x] ≥ 1 − η.
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We say the scheme has perfect reconstruction if η = 0.

We are also interested in robust secret sharing, where an adversary is allowed
to modify at most d shares.

– Robustness: For any secret x ∈ Σm
0 , let Y = Share(x). Consider an arbitrary

adversary who (adaptively or non-adaptively) observes d shares and can then
arbitrarily change these d shares, transforming Y to Y ′. The scheme is d-
robust if for every such adversary,

Pr[Rec(Y ′) = x] ≥ 1 − η.

If the share alphabet and the message alphabet are both Σ, then we simply
say the alphabet of the scheme is Σ. By saying that a secret sharing scheme is
in AC0, we mean that both the sharing function and the reconstruction function
can be computed by (uniform) AC0 circuits.

A recent work of Bogdanov et al. [7] considers the complexity of sharing and
reconstructing secrets. The question is motivated by the observation that almost
all known secret sharing schemes, including the well known Shamir’s scheme [31],
require the computation of linear functions over finite fields, and thus cannot be
implemented in the class AC0 (i.e., constant depth circuits). Thus a natural ques-
tion is whether there exist secret sharing schemes in AC0 with good parameters.
In the case of threshold secret sharing, Bogdanov et al. [7] showed a relation
between the approximate degree1 of a function and the privacy threshold of a
secret sharing scheme. Using this and known approximate degree lower bounds,
they obtained several secret sharing schemes with sharing and reconstruction
functions computable in AC0. However, to achieve a large privacy threshold (e.g.,
k = Ω(n)) their construction needs to use a large alphabet (e.g., size 2poly(n)).
In the case of binary alphabet, they can only achieve privacy threshold Ω(

√
n)

with perfect reconstruction and privacy threshold Ω((n/ log n)2/3) with constant
reconstruction error η < 1/2. This limit is inherent without improving the best
known approximate degree of an AC0 function [11]. Furthermore, their schemes
only share one bit, and a naive approach of sharing more bits by repeating the
scheme multiple times will lead to a bad information rate. This leaves open the
question of improving these parameters. Ideally, we would like to share many bits
(e.g., Ω(n)), obtain a large privacy threshold (e.g., Ω(n)), and achieve perfect
reconstruction and small alphabet size at the same time.

In order to improve the AC0 secret sharing schemes from [7], we relax their
perfect privacy requirement and settle for the notion of ε-privacy from Defin-
ition 1. (This relaxation was recently considered in [9], see discussion below.)
Note that this relaxation is necessary to improve the privacy threshold of AC0

secret sharing schemes, unless one can obtain better approximate degree lower
bounds of an explicit AC0 function (as [7] showed that an explicit AC0 secret
1 The approximate degree of a Boolean function is the lowest degree of a real polyno-

mial that can approximate the function within, say, an additive difference of 1/3 on
every input.
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sharing scheme with privacy threshold k and perfect privacy also implies an
explicit function in AC0 with approximate degree at least k). Like most schemes
in [7], we only require that the secret can be reconstructed by all n parties. On
the other hand, we always require perfect reconstruction. We show that under
this slight relaxation, we can obtain much better secret sharing schemes in AC0.
For an adaptive adversary, we can achieve both a constant information rate and
a large privacy threshold (k = Ω(n)) over a binary alphabet. In addition, our
privacy error is exponentially small. Specifically, we have the following theorem.

Theorem 1 (adaptive adversary). For every n ∈ N and constant γ ∈
(0, 1/4), there exists an explicit (n,Ω(n)) secret sharing scheme in AC0 with

alphabet {0, 1}, secret length m = Ω(n), adaptive privacy error 2−Ω(n
1
4 −γ) and

perfect reconstruction.

Note that again, by using randomization and allowing for a small privacy
error, we can significantly improve both the privacy threshold and the informa-
tion rate, while also making the scheme much more efficient by using a smaller
alphabet.

Remark 1. We note that a recent paper by Bun and Thaler [11] gave improved
lower bounds for the approximate degree of AC0 functions. Specifically, for any
constant α > 0 they showed an explicit AC0 function with approximate degree at
least n1−α, and by the relation established in [7] this also gives a secret sharing
scheme in AC0 with privacy threshold n1−α. However, our results are stronger in
the sense that we can achieve threshold Ω(n), and furthermore we can achieve
perfect reconstruction while the secret sharing scheme in [11] only has constant
reconstruction error.

Remark 2. Our construction of AC0 secret sharing schemes is actually a gen-
eral transformation and can take any such scheme in [7] or [11] as the starting

point. The error 2−Ω(n
1
4 −γ) in Theorem 1 comes from our use of the one-in-a-box

function [28], which has approximate degree n1/3. We can also use the new AC0

function of [11] with approximate degree n1−α, which will give us an error of

2−Ω(n
1
2 −γ) but the reconstruction error will become a constant. We note that

the privacy error of our construction is also close to optimal, without further
improvement on the lower bounds of approximate degree of AC0 functions. This
is because a privacy error of 2−s will imply an AC0 function of approximate
degree Ω(s/ log n). Thus if one can achieve a sufficiently small privacy error
(e.g., 2−Ω(n)), then this will give an improved approximate degree lower bound
for an AC0 function. See Appendix A of the full version for a more detailed
explanation.

A very recent paper by Bogdanov and Williamson [9] considered a similar
relaxation as ours. Specifically, they showed how to construct two distributions
over n bits that are (k, ε)-wise indistinguishable, but can be distinguished with
advantage 1 − η by some AC0 function. Here (k, ε)-wise indistinguishable means
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that if looking at any subset of k bits, the two distributions have statistical
distance at most ε. Translating into the secret sharing model, this roughly implies
an AC0 secret sharing scheme with binary alphabet, privacy threshold k, privacy
error ε and reconstruction error η. Bogdanov and Williamson [9] obtained several
results in this case. Specifically, they showed a pair of such distributions for any
k ≤ n/2 with ε = 2−Ω(n/k), that can be distinguished with η = Ω(1) by the OR
function; or for any k with ε = 2−Ω((n/k)1−1/d), that can be distinguished with
η = 0 by a depth-d AND-OR tree.

We note the following important differences between our results and the
corresponding results by Bogdanov and Williamson [9]: first, the results in [9],
in the language of secret sharing, only consider a 1-bit secret, while our results
can share Ω(n) bits with the same share size. Thus our information rate is much
larger than theirs. Second, we can achieve a privacy threshold of k = Ω(n) while
simultaneously achieving an exponentially small privacy error of ε = 2−nΩ(1)

and
perfect reconstruction (η = 0). In contrast, the results in [9], when going into
the range of k = Ω(n), only have constant privacy error. In short, our results are
better than the results in [9], in the sense that we can simultaneously achieve
asymptotically optimal information rate and privacy threshold, exponentially
small privacy error and perfect reconstruction. As a direct corollary, we have the
following result, which is incomparable to the results in [9].

Corollary 1. There exists a constant α > 0 such that for every n and k ≤ αn,
there exists a pair of (k, 2−nΩ(1)

)-wise indistinguishable distributions X, Y over
{0, 1}n and an AC0 function D such that Pr[D(X)] − Pr[D(Y )] = 1.

Next, we extend our AC0 secret sharing schemes to the robust case, where the
adversary can tamper with several parties’ shares. Our goal is to simultaneously
achieve a large privacy threshold, a large tolerance to errors, a large information
rate and a small alphabet size. We can achieve a constant information rate with
privacy threshold and error tolerance both Ω(n), with constant size alphabet,
exponentially small privacy error and polynomially small reconstruction error.
However, here we can only handle a non-adaptive adversary. Specifically, we have
the following theorem.

Theorem 2 (non-adaptive adversary). For every n ∈ N, every η = 1
poly(n) ,

there exists an explicit (n,Ω(n)) robust secret sharing scheme in AC0 with share
alphabet {0, 1}O(1), message alphabet {0, 1}, message length m = Ω(n), non-
adaptive privacy error 2−nΩ(1)

, non-adaptive robustness Ω(n) and reconstruction
error η.

1.2 Error Correcting Codes for Additive Channels in AC0

Robust secret sharing schemes are natural generalizations of error correcting
codes. Thus our robust secret sharing schemes in AC0 also give error correcting
codes with randomized AC0 encoding and deterministic AC0 decoding. The model
of our error correcting codes is the same as that considered by Guruswami and
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Smith [20]: stochastic error correcting codes for additive channels. Here, the code
has a randomized encoding function and a deterministic decoding function, while
the channel can add an arbitrary error vector e ∈ {0, 1}n of Hamming weight
at most ρn to the transmitted codeword of length n. As in [20], the error may
depend on the message but crucially does not depend on the randomness used
by the encoder. Formally, we have the following definition.

Definition 2. For any n,m ∈ N, any ρ, ε > 0, an (n,m, ρ) stochastic
binary error correcting code (Enc,Dec) with randomized encoding function Enc :
{0, 1}m → {0, 1}n, deterministic decoding function Dec : {0, 1}n → {0, 1}m and
decoding error ε, is such that for every x ∈ {0, 1}m, every e = (e1, . . . , em) ∈
{0, 1}m with hamming weight at most ρn,

Pr[Dec(Enc(x) + e) = x] ≥ 1 − ε.

An (n,m, ρ) stochastic error correcting code (Enc,Dec) can be computed by
AC0 circuits if both Enc and Dec can be computed by AC0 circuits.

Previously, Guruswami and Smith [20] constructed such codes that approach
the Shannon capacity 1 − H(ρ). Their encoder and decoder run in polynomial
time and have exponentially small decoding error. Here, we aim at constructing
such codes with AC0 encoder and decoder. In a different setting, Goldwasser
et al. [19] gave a construction of locally decodable codes that can tolerate a
constant fraction of errors and have AC0 decoding. Their code has deterministic
encoding but randomized decoding. By repeating the local decoder for each bit
for O(log n) times and taking majority, one can decode each bit in AC0 with
error probability 1/poly(n) and thus by a union bound the original message
can also be decoded with error probability 1/poly(n). However we note that
the encoding function of [19] is not in AC0, and moreover their message rate
is only polynomially small. In contrast, our code has constant message rate
and can tolerate a constant fraction of errors (albeit in a weaker model) when
the decoding error is 1/poly(n) or even 2−poly log(n). The rate and tolerance are
asymptotically optimal. We can achieve even smaller error (2−Ω(r/ log n)) with
message rate 1/r. Furthermore both our encoding and decoding are in AC0.
Specifically, we have the following theorems.

Theorem 3 (error-correcting codes). For any n ∈ N and ε = 2−poly log(n),
there exists an (n,Ω(n), Ω(1)) stochastic binary error correcting code with decod-
ing error ε, which can be computed by AC0 circuits.

Theorem 4 (error-correcting codes with smaller decoding error). For
any n, r ∈ N, there exists an (n,m = Ω(n/r), Ω(1)) stochastic binary error
correcting code with decoding error 2−Ω(r/ log n), which can be computed by AC0

circuits.

Note that Theorem 4 is interesting mainly in the case where r is at least
poly log n.
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Remark 3. We note that, without randomization, it is well known that deter-
ministic AC0 circuits cannot compute asymptotically good codes [25]. Thus the
randomization in our AC0 encoding is necessary here. For deterministic AC0

decoding, only very weak lower bounds are known. In particular, Lee and Viola
[23] showed that any depth-c AC0 circuit with parity gates cannot decode beyond
error (1/2−1/O(log n)c+2)d, where d is the distance of the code. While the rep-
etition code can be decoded in AC0 with a near-optimal fraction of errors by
using approximate majority, obtaining a similar positive result for codes with a
significantly better rate is open.

1.3 Secure Broadcasting with an External Adversary

We apply our ideas and technical approach to the following flavor of secure
broadcasting in the presence of an adversary. The problem can be viewed as
a generalization of a one-time pad encryption. In a one-time pad encryption,
two parties share a secret key which can be used to transmit messages with
information-theoretic security. Suppose that each party wants to transmit an
m-bit string to the other party. If an external adversary can see the entire com-
munication, then it is well known that to keep both messages secret, the parties
must share a secret key of length at least 2 m. This can be generalized to the case
of n parties, where we assume that they have access to a public broadcast chan-
nel, and each party wants to securely communicate an m-bit string to all other
parties. This problem can be useful, for example, when n collaborating parties
want to compute a function of their secret inputs without revealing the inputs to
an external adversary. Again, if the adversary can see the entire communication,
then the parties need to share a secret key of length at least nm.

Now, what if we relax the problem by restricting the adversary’s power?
Suppose that instead of seeing the entire communication, the adversary can
only see some fraction of the communicated messages. Can we get more efficient
solutions? We formally define this model below, requiring not only the secrecy
of the inputs but also correctness of the outputs in the presence of adaptive
tampering with a bounded fraction of messages.

Definition 3. Let n,m ∈ N and α, ε > 0. An (n,m,α, ε, η)-secure broadcast-
ing protocol is an n-party protocol with the following properties. Initially, each
party i has a local input xi ∈ {0, 1}m and the parties share a secret key. The
parties can then communicate over a public broadcast channel. At the end of the
communication, each party computes a local output. We require the protocol to
satisfy the following security properties.

– (Privacy) For any adaptive adversarial observation W which observes at most
1 − α fraction of the messages, there is a distribution D, such that for any
inputs x = (x1, . . . , xn) ∈ ({0, 1}m)n leading to a sequence of messages Y ,
the distribution YW of observed messages is ε-close to D.

– (Robustness) For any adaptive adversary that corrupts at most 1−α fraction
of the messages, and any n-tuple of inputs x = (x1, . . . , xn) ∈ ({0, 1}m)n, all
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n parties can reconstruct x correctly with probability at least 1 − η after the
communication.

The naive solution of applying one-time pad still requires a shared secret key
of length at least nm, since otherwise even if the adversary only sees part of the
communication, he may learn some information about the inputs. However, by
using randomization and allowing for a small error, we can achieve much better
performance. Specifically, we have the following theorem.

Theorem 5 (secure broadcasting). For any n,m, r ∈ N with r ≤ m, there
exists an explicit (n,m,α = Ω(1), n2−Ω(r), n2−Ω(r)+nm2−Ω(m/r)) secure broad-
casting protocol with communication complexity O(nm) and shared secret key of
length O(r log(nr)).

1.4 Overview of the Techniques

Secret sharing. Here we give an overview of the techniques used in our construc-
tions of AC0 secret sharing schemes and error correcting codes. Our construc-
tions combine several ingredients in pseudorandomness and combinatorics in an
innovative way, so before describing our constructions, we will first describe the
important ingredients used.

The secret sharing scheme in [7]. As mentioned before, Bogdanov et al. [7] were
the first to consider secret sharing schemes in AC0. Our constructions will use
one of their schemes as the starting point. Specifically, since we aim at perfect
reconstruction, we will use the secret sharing scheme in [28] based on the so called
“one-in-a-box function” or Minsky-Papert CNF function. This scheme can share
one bit among n parties, with binary alphabet, privacy threshold Ω(n1/3) and
perfect reconstruction.

Random permutation. Another important ingredient, as mentioned before, is
random permutation. Applying a random permutation, in many cases, reduces
worst case errors to random errors, and the latter is much more convenient to
handle. This property has been exploited in several previous work, such as the
error correcting codes by Guruswami and Smith [20]. We note that a random
permutation from [n] to [n] can be computed in AC0 [22,26,33].

K-wise independent generators. The third ingredient of our construction is the
notion of k-wise independent pseudorandom generators. This is a function that
stretches some r uniform random bits to n bits such that any subset of k bits is
uniform. Such generators are well studied, while for our constructions we need
such generators which can be computed by AC0 circuits. This requirement is
met by using k-wise independent generators based on unique neighbor expander
graphs, such as those constructed by Guruswami et al. [21] which use seed length
r = kpoly log(n).

Secret sharing schemes based on error correcting codes. Using asymptotically
good linear error correcting codes, one can construct secret sharing schemes that
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simultaneously achieve constant information rate and privacy threshold Ω(n)
(e.g., [12]). However, certainly in general these schemes are not in AC0 since
they need to compute linear functions such as parity. For our constructions, we
will use these schemes with a small block length (e.g., O(log n) or poly log(n))
such that parity with such input length can be computed by constant depth
circuits. For robust secret sharing, we will also be using robust secret sharing
schemes based on codes, with constant information rate, privacy threshold and
tolerance Ω(n) (e.g., [15]), with a small block length.

The constructions. We can now give an informal description of our constructions.
As mentioned before, our construction is a general transformation and can take
any scheme in [7] or [11] as the starting point. A specific scheme of interest is the
one in [7] based on the one-in-a-box function, which has perfect reconstruction.
Our goal then is to keep the property of perfect reconstruction, while increasing
the information rate and privacy threshold. One naive way to share more bits
is to repeat the scheme several times, one for each bit. Of course, this does not
help much in boosting the information rate. Our approach, on the other hand,
is to use this naive repeated scheme to share a short random seed R. Suppose
this gives us n parties with privacy threshold k0. We then use R and the k-wise
independent generator G mentioned above to generate an n-bit string Y , and
use Y to share a secret X by computing Y ⊕ X.

Note that now the length of the secret X can be as large as n and thus the
information rate is increased to 1/2. To reconstruct the secret, we can use the
first n parties to reconstruct R, then compute Y and finally X. Note that the
whole computation can be done in AC0 since the k-wise independent generator G
is computable in AC0. The privacy threshold, on the other hand, is the minimum
of k0 and k. This is because if an adversary learns nothing about R, then Y is
k-wise independent and thus by looking at any k shares in Y ⊕X, the adversary
learns nothing about X. This is the first step of our construction.

In the next step, we would like to boost the privacy threshold to Ω(n) while
decreasing the information rate by at most a constant factor. Our approach
for this purpose can be viewed as concatenating a larger outer protocol with
a smaller inner protocol, which boosts the privacy threshold while keeping the
information rate and the complexity of the whole protocol. More specifically,
we first divide the parties obtained from the first step into small blocks, and
then for each small block we use a good secret sharing scheme based on error
correcting codes. Suppose the adversary gets to see a constant fraction of the
shares, then on average for each small bock the adversary also gets to see only a
constant fraction of the shares. Thus, by Markov’s inequality and adjusting the
parameters, the adversary only gets to learn the information from a constant
fraction of the blocks. However, this is still not enough for us, since the outer
protocol only has threshold nΩ(1).

We solve this problem by using a threshold amplification technique. This is
one of our main innovations, and a key step towards achieving both constant
information rate and privacy threshold Ω(n) without sacrificing the error. On a
high level, we turn the inner protocol itself into another concatenated protocol
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(i.e., a larger outer protocol combined with a smaller inner protocol), and then
apply a random permutation. Specifically, we choose the size of the block men-
tioned above to be something like O(log2 n), apply a secret sharing scheme based
on asymptotically good error correcting codes and obtain O(log2 n) shares. We
then divide these shares further into O(log n) smaller blocks each of size O(log n)
(alternatively, this can be viewed as a secret sharing scheme using alphabet
{0, 1}O(log n)), and now we apply a random permutation of these smaller blocks.
If we are to use a slightly larger alphabet, we can now store each block together
with its index before the permutation as one share. Note that we need the index
information when we try to reconstruct the secret, and the reconstruction can
be done in AC0.

Now, suppose again that the adversary gets to see some small constant frac-
tion of the final shares, then since we applied a random permutation, we can
argue that each smaller block gets learned by the adversary only with some
constant probability. Thus, in the larger block of size O(log2 n), by a Chernoeff
type bound, except with probability 1/poly(n), we have that only some constant
fraction of the shares are learned by the adversary. Note that here by using
two levels of blocks, we have reduced the probability that the adversary learns
some constant fraction of the shares from a constant to 1/poly(n), which is much
better for the outer protocol as we shall see soon. By adjusting the parameters
we can ensure that the number of shares that the adversary may learn is below
the privacy threshold of the larger block and thus the adversary actually learns
nothing. Now, going back to the outer protocol, we know that the expected
number of large blocks the adversary can learn is only n/poly(n); and again by a
Chernoff type bound, except with probability 2−nΩ(1)

, the outer protocol guar-
antees that the adversary learns nothing. This gives us a secret sharing scheme
with privacy threshold Ω(n) while the information rate is still constant since we
only increased the number of shares by a constant factor. With the O(log n) size
alphabet, we can actually achieve privacy threshold (1 − α)n′ for any constant
0 < α < 1, where n′ is the total number of final parties.

To reduce to the binary alphabet, we can apply another secret sharing scheme
based on error correcting codes to each share of length O(log n). In this case then
we won’t be able to achieve privacy threshold (1 − α)n′, but we can achieve βn′

for some constant β > 0. This is because if the adversary gets to see a small con-
stant fraction of the shares, then by Markov’s inequality only for some constant
fraction of the smaller blocks the adversary can learn some useful information.
Thus the previous argument still holds.

As described above, our general construction uses two levels of concatenated
protocols, which corresponds to two levels of blocks. The first level has larger
blocks of size O(log2 n), where each larger block consists of O(log n) smaller
blocks of size O(log n). We use this two-level structure to reduce the probability
that an adversary can learn some constant fraction of shares, and this enables us
to amplify the privacy threshold to Ω(n). We choose the smaller block to have
size O(log n) so that both a share from the larger block with length O(log n)
and its index information can be stored in a smaller block. This ensures that the
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information rate is still a constant even if we add the index information. Finally,
the blocks in the second level are actually the blocks that go into the random
permutation. This general strategy is one of our main contributions and we hope
that it can find other applications.

The above construction gives an AC0 secret sharing scheme with good para-
meters. However, it is not a priori clear that it works for an adaptive adversary.
In standard secret sharing schemes, a non-adaptive adversary and an adaptive
adversary are almost equivalent since usually we have privacy error 0. More
specifically, a secret sharing scheme for a non-adaptive adversary with privacy
error ε and privacy threshold k is also a secret sharing scheme for an adap-
tive adversary with privacy error nkε and privacy threshold k. However in our
AC0 secret sharing scheme the error ε is not small enough to kill the nk factor.
Instead, we use the property of the random permutation to argue that our final
distribution is essentially symmetric; and thus informally no matter how the
adversary picks the shares to observe adaptively, he will not gain any advantage.
This will show that our AC0 secret sharing scheme also works for an adaptive
adversary.

To extend to robust secret sharing, we need to use robust secret sharing
schemes instead of normal schemes for the first and second level of blocks. Here
we use the nearly optimal robust secret sharing schemes based on various codes
by Cheraghchi [15]. Unfortunately since we need to use it on a small block length
of O(log n), the reconstruction error becomes 1/poly(n). Another tricky issue
here is that an adversary may modify some of the indices. Note that we need
the correct index information in order to know which block is which before the
random permutation. Suppose the adversary does not modify any of the indices,
but only modify the shares, then the previous argument can go through exactly
when we change the secret sharing schemes based on error correcting codes into
robust secret sharing schemes. However, if the adversary modifies some indices,
then we could run into situations where more than one block have the same index
and thus we cannot tell which one is correct (and it’s possible they are all wrong).
To overcome this difficulty, we store every index multiple times among the blocks
in the second level. Specifically, after we apply the random permutation, for every
original index we randomly choose O(log n) blocks in the second level to store
it. As the adversary can only corrupt a small constant fraction of the blocks in
the second level, for each such block, we can correctly recover its original index
with probability 1−1/poly(n) by taking the majority of the backups of its index.
Thus by a union bound with probability 1−1/poly(n) all original indices can be
correctly recovered. In addition, we use the same randomness for each block to
pick the O(log n) blocks, except we add a different shift to the selected blocks.
This way, we can ensure that for each block the O(log n) blocks are randomly
selected and thus the union bound still holds. Furthermore the randomness used
here is also stored in every block in the second level, so that we can take the
majority to reconstruct it correctly. In the above description, we sometimes need
to take majority for n inputs, which is not computable in AC0. However, we note
that by adjusting parameters we can ensure that at least say 2/3 fraction of the
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inputs are the same, and in this case it suffices to take approximate majority,
which can be computed in AC0 [32].

For our error correcting codes, the construction is a simplified version of the
robust secret sharing construction. Specifically, we first divide the message itself
into blocks of the first level, and then encode every block using an asymptot-
ically good code and divide the obtained codeword into blocks of the second
level. Then we apply a random permutation to the blocks of the second level as
before, and we encode every second level block by another asymptotically good
code. In short, we replace the above mentioned robust secret sharing schemes
by asymptotically good error correcting codes. We use the same strategy as in
robust secret sharing to identify corrupted indices. Using a size of O(log2 n) for
blocks in the first level will result in decoding error 1/poly(n), while using larger
block size (e.g., poly log(n)) will result in decoding error 2−poly log(n). This gives
Theorem 3. To achieve even smaller error, we can first repeat each bit of the
message r times for some parameter r. This serves as an outer error correct-
ing code, which can tolerate up to r/3 errors, and can be decoded in in AC0

by taking approximate majority. The two-level block structure and the argu-
ment we described before can now be used to show a smaller decoding error of
2−Ω(r/ log2 n). This gives Theorem 4.

Secure broadcasting. Rather than use the naive approach of one-time pad, here a
more clever solution is to use secret sharing (assuming that each party also has
access to local private random bits). By first applying a secret sharing scheme to
the input and then broadcasting the shares, a party can ensure that if the adver-
sary only gets to see part of the messages (below the secrecy threshold), then
the adversary learns nothing. In this case the parties do not even need shared
secret key. However, one problem with this solution is that the adversary cannot
be allowed to see more than 1/n fraction of the messages, since otherwise he can
just choose the messages broadcasted from one particular party, and then the
adversary learns the input of that party. This is the place where randomization
comes into play. If in addition, we allow the parties to share a small number
of secret random bits, then the parties can use this secret key to randomly per-
mute the order in which the they broadcast their messages (after applying the
secret sharing scheme). Since the adversary does not know the secret key, we
can argue that with high probability only a small fraction of each party’s secret
shares are observed. Therefore, by the properties of secret sharing we can say
that the adversary learns almost nothing about each party’s input. The crucial
features of this solution are that first, the adversary can see some fixed fraction
of messages, which is independent of the number of parties n (and thus can
be much larger than 1/n). Second, the number of shared secret random bits is
much smaller than the naive approach of one-time pad. Indeed, as we show in
Theorem 23, to achieve security parameter roughly r it is enough for the parties
to share O(r(log n + log r)) random bits. Finally, by using an appropriate secret
sharing scheme, the communication complexity of our protocol for each party
is O(m), which is optimal up to a constant factor. Note that here, by applying
random permutation and allowing for a small probability of error, we simulta-
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neously improve the security threshold (from 1/n to Ω(1)) and the length of the
shared secret key (from nm to O(r(log n + log r))).

Discussions and open problems. In this paper we continue the line of work on
applying randomization and allowing a small failure probability for minimizing
the computational complexity of cryptographic primitives and related combina-
torial objects while maximizing the level of achievable security. In the context
of secret sharing in AC0, we show how to get much better parameters by allow-
ing an (exponentially) small privacy error. We note that achieving exponentially
small error here is non-trivial. In fact, if we allow for a larger error then (for a
non-adaptive adversary) there is a simple protocol for AC0 secret sharing: one
can first take a random seed R of length Ω(n), and then apply a deterministic
AC0 extractor for bit-fixing sources to obtain an output Y of length Ω(n). The
secret X can then be shared by computing the parity of Y and X. This way, one
can still share Ω(n) bits of secret, and if the adversary only learns some small
fraction of the seed, then the output Y is close to uniform by the property of
the extractor, and thus X remains secret. However, by the lower bound of [14],
the error of such AC0 extractors (or even for the stronger seeded AC0 extrac-
tors) is at least 2−poly log(n). Therefore, one has to use additional techniques to
achieve exponentially small error. We also extended our techniques to robust AC0

secret sharing schemes, stochastic error correcting codes for additive channels,
and secure broadcasting. Several intriguing open problems remain.

First, in our robust AC0 secret sharing schemes, we only achieve reconstruc-
tion error 1/poly(n). This is because we need to use existing robust secret sharing
schemes on a block of size O(log n). Is it possible to avoid this and make the error
exponentially small? Also, again in this case we can only handle non-adaptive
adversaries, and it would be interesting to obtain a robust AC0 secret sharing
scheme that can handle adaptive adversaries. These questions are open also for
AC0 stochastic error correcting codes.

Second, as we mentioned in Remark 2 (see also [9]), a sufficiently small privacy
error in an AC0 secret sharing scheme would imply an improved approximate
degree lower bound for AC0 functions. Is it possible to improve our AC0 secret
sharing scheme, and use this approach to obtain better approximate degree lower
bound for AC0 functions? This seems like an interesting direction.

In addition, the privacy threshold amplification technique we developed, by
using two levels of concatenated protocols together with a random permutation,
is quite general and we feel that it should have applications elsewhere. We note
that the approach of combining an “outer scheme” with an “inner scheme” to
obtain the best features of both has been applied in many previous contexts.
For instance, it was used to construct better codes [1,20] or better secure multi-
party computation protocols [17]. However, in almost all of these previous appli-
cations, one starts with an outer scheme with a very good threshold (e.g., the
Reed-Solomon code which has a large distance) and the goal is to use the inner
scheme to inherit this good threshold while improving some other parameters
(such as alphabet size). Thus, one only needs one level of concatenation. In our
case, instead, we start with an outer scheme with a very weak threshold (e.g.,
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the one-in-a-box function which only has privacy threshold n1/3). By using two
levels of concatenated protocols together with a random permutation, we can
actually amplify this threshold to Ω(n) while simultaneously reducing the alpha-
bet size. This is an important difference to previous constructions and one of our
main contributions. We hope that these techniques can find other applications
in similar situations.

Finally, since secret sharing schemes are building blocks of many other impor-
tant cryptographic applications, it is an interesting question to see if the low-
complexity secret sharing schemes we developed here can be used to reduce the
computational complexity of other cryptographic primitives.

Paper organization. We introduce some notation and useful results in Sect. 2.
In Sect. 3 we give our privacy threshold amplification techniques. In Sect. 4, we
show how to increase the information rate using k-wise independent generators.
Combining all the above techniques, our final construction of AC0 secret sharing
schemes is given in Sect. 5. Instantiations appear in Sect. 6. Finally, we give our
constructions of robust AC0 secret sharing schemes, AC0 error correcting codes,
and secure broadcast protocols in Sect. 7. Some proofs and additional details
have been deferred to the full version [13].

2 Preliminaries

Let | · | denote the size of the input set or the absolute value of an input real
number, based on contexts.

For any set I of integers, for any r ∈ Z, we denote r + I or I + r to be
{i′ : i′ = i + r, i ∈ I}.

We use Σ to denote the alphabet. Readers can simply regard Σ as {0, 1}l

for some l ∈ N. For σ ∈ Σ, let σn = (σ, σ, . . . , σ) ∈ Σn. For any sequence
s = (s1, s2, . . . , sn) ∈ Σn and sequence of indices W = (w1, . . . , wt) ∈ [n]t with
t ≤ n, let sW be the subsequence (sw1 , sw2 , . . . , swt

).
For any two sequences a ∈ Σn, b ∈ Σ′n′

where a = (a1, a2, . . . , an), b =
(b1, b2, . . . , bn′), let a ◦ b = (a1, . . . , an, b1, . . . , bn′) ∈ Σn × Σ′n′

.
Let supp(·) denote the support of the input random variable. Let I(·) be the

indicator function.

Definition 4 (Statistical Distance). The statistical distance between two
random variables X and Y over Σn for some alphabet Σ, is SD(X,Y ) which
is defined as follows,

SD(X,Y ) = 1/2
∑

a∈Σn

|Pr[X = a] − Pr[Y = a]|.

Here we also say that X is SD(X,Y )-close to Y .

Lemma 1 (Folklore Properties of Statistical Distance [4]).

1. (Triangle Inequality) For any random variables X, Y , Z over Σn, we have

SD(X,Y ) ≤ SD(X,Z) + SD(Y,Z).
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2. ∀n,m ∈ N, any deterministic function f : {0, 1}n → {0, 1}m and any random
variables X, Y over Σn,

SD(f(X), f(Y )) ≤ SD(X,Y ).

We will use the following well known perfect XOR secret sharing scheme.

Theorem 6 (Folklore XOR secret sharing). For any finite field F, define
Share+ : F → F

n and Rec+ : F
n → F, such that for any secret x ∈ F, Share+(x) =

y such that y is uniformly chosen in F
n conditioned on

∑
i∈[n] yi = x and Rec+

is taking the sum of its input.
(Share+,Rec+) is an (n, n − 1) secret sharing scheme with share alpha-

bet and message alphabet both being F, message length 1, perfect privacy and
reconstruction.

Definition 5 (Permutation). For any n ∈ N, a permutation over [n] is defined
to be a bijective function π : [n] → [n].

Definition 6 (k-wise independence). For any set S, let X1, . . . , Xn be ran-
dom variables over S. They are k-wise independent (and uniform) if any k of
them are independent (and uniformly distributed).

For any r, n, k ∈ N, a function g : {0, 1}r → Σn is a k-wise (uniform) inde-
pendent generator, if for g(U) = (Y1, . . . , Yn), Y1, . . . , Yn are k-wise independent
(and uniform). Here U is the uniform distribution over {0, 1}r.

Definition 7 [21]. A bipartite graph with N left vertices, M right vertices and
left degree D is a (K,A) expander if for every set of left vertices S ⊆ [N ] of size
K, we have |Γ (S)| > AK. It is a (≤Kmax, A) expander if it is a (K,A) expander
for all K ≤ Kmax.

Here ∀x ∈ [N ], Γ (x) outputs the set of all neighbours of x. It is also a set
function which is defined accordingly. Also ∀x ∈ [N ], d ∈ [D], the function
Γ : [N ] × [D] → [M ] is such that Γ (x, d) is the dth neighbour of x.

Theorem 7 [21]. For all constants α > 0, for every N ∈ N, Kmax ≤ N , and
ε > 0, there exists an explicit (≤Kmax, (1−ε)D) expander with N left vertices, M
right vertices, left degree D = O((log N)(log Kmax)/ε)1+1/α and M ≤ D2K1+α

max .
Here D is a power of 2.

For any circuit C, the size of C is denoted as size(C). The depth of C is
denoted as depth(C). Usually when we talk about computations computable by
AC0 circuits, we mean uniform AC0 circuits, if not stated specifically.

Lemma 2 (Folklore properties of AC0 circuits [4,19]). For every n ∈ N,

1. ([4] Folklore) every Boolean function f : {0, 1}l=Θ(log n) → {0, 1} can be com-
puted by an AC0 circuit of size poly(n) and depth 2.

2. [19] for every c ∈ N, every integer l = Θ(logc n), if the function fl : {0, 1}l →
{0, 1} can be computed by a circuit with depth O(log l) and size poly(l), then
it can be computed by a circuit with depth c + 1 and size poly(n).
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Remark 4. We briefly describe the proof implied in [19] for the second property
of our Lemma 2. As there exists an NC1 complete problem which is downward
self-reducible, the function fl can be reduced to (AC0 reduction) a function with
input length O(log n). By Lemma 2 part 1, and noting that the reduction here
is an AC0 reduction, fl can be computed by an AC0 circuit.

3 Random Permutation

3.1 Increasing the Privacy Threshold

The main technique we use here is random permutation.

Lemma 3 [22,26,33]. For any constant c ≥ 1, there exists an explicit AC0

circuit C : {0, 1}r → [n]n with size poly(n), depth O(1) and r = O(nc+1 log n)
such that with probability 1 − 2−nc

, C(Ur) gives a uniform random permutation
of [n]; When this fails the outputs are not distinct.

In the following we give a black box AC0 transformation of secret sharing
schemes increasing the privacy threshold.

Construction 1. For any n, k,m ∈ N with k ≤ n, any alphabet Σ,Σ0, let
(Share,Rec) be an (n, k) secret sharing scheme with share alphabet Σ, message
alphabet Σ0, message length m.

Let (Share+,Rec+) be a (t, t − 1) secret sharing scheme with alphabet Σ by
Theorem6.

For any constant a ≥ 1, α > 0, large enough b ≥ 1, we can construct the
following (n′ = tnn̄, k′ = (1 − α)n′) secret sharing scheme (Share′,Rec′) with
share alphabet Σ × [n′], message alphabet Σ0, message length m′ = mn̄, where
t = O(log n), n̄ = bna−1.

Function Share′ : Σm′
0 → (Σ × [n′])n′

is as follows.

1. On input secret x ∈ Σmn̄
0 , parse x to be (x1, x2, . . . , xn̄) ∈ (Σm

0 )n̄.
2. Compute y = (y1, . . . , yn̄) = (Share(x1), . . . ,Share(xn̄)) and parse it to be

ŷ = (ŷ1, . . . , ŷnn̄) ∈ Σnn̄. Note that Share is from Σm
0 to Σn.

3. Compute (Share+(ŷ1), . . . ,Share+(ŷnn̄)) ∈ (Σt)nn̄ and split every entry to be
t elements in Σ to get y′ = (y′

1, . . . , y
′
n′) ∈ Σn′

. Note that Share+ is from Σ
to Σt.

4. Generate π by Lemma 3 which is uniformly random over permutations of [n′].
If it fails, which can be detected by checking element distinctness, set π to be
such that ∀i ∈ [n′], π(i) = i.

5. Let

Share′(x) = (y′
π−1(1) ◦ π−1(1), . . . , y′

π−1(n′) ◦ π−1(n′)) ∈ (Σ × [n′])n′
.

Function Rec′ : (Σ × [n′])n′ → Σm′
0 is as follows.



440 K. Cheng et al.

1. Parse the input to be (y′
π−1(1) ◦ π−1(1), . . . , y′

π−1(n′) ◦ π−1(n′)).
2. Compute y′ = (y′

1, . . . , y
′
n′) according to the permutation.

3. Apply Rec+ on y′ for every successive t entries to get ŷ.
4. Parse ŷ to be y.
5. Compute x by applying Rec on every entry of ŷ.
6. Output x.

Lemma 4. If Share and Rec can be computed by AC0 circuits, then Share′ and
Rec′ can also be computed by AC0 circuits.

Proof. As Share can be computed by an AC0 circuit, y can be computed by an
AC0 circuit (uniform). By Lemma 2 part 1, we know that (Share+,Rec+) both
can be computed by AC0 circuits. By Lemma 3, (π−1(1), π−1(2), . . . , π−1(n′))
can be computed by an AC0 circuit. Also

∀i ∈ [n′], y′
π−1(i) =

∨

j∈[n′]

(y′
j ∧ (j = π−1(i))). (1)

Thus Share′ can be computed by an AC0 circuit.
For Rec′, ∀i ∈ [n′], y′

i =
∨

j∈[n′](y
′
π−1(j) ∧ (π−1(j) = i)). As Rec+ can be

computed by an AC0 circuit, y can be computed by an AC0 circuit. As Rec can
be computed by an AC0 circuit, Rec′ can be computed by an AC0 circuit.

Lemma 5. If the reconstruction error of (Share,Rec) is η, then the reconstruc-
tion error of (Share′,Rec′) is η′ = n̄η.

Proof. According to the construction, as (Share+,Rec+) has perfect reconstruc-
tion by Lemma 6, the y computed in Rec′ is exactly (Share(x1), . . . ,Share(xn̄)).
As ∀i ∈ [n̄],Pr[Rec(Share(xi)) = xi] ≥ 1 − η,

Pr[Rec′(Share′(x)) = x] = Pr[
∧

i∈[n̄]

(Rec(Share(xi)) = xi)] ≥ 1 − n̄η, (2)

by the union bound.

In order to show privacy, we need the following Chernoff Bound.

Definition 8 (Negative Correlation [5,6]). Binary random variables
X1,X2, . . . , Xn are negative correlated, if ∀I ⊆ [n],

Pr[
∧

i∈I

(Xi = 1)] ≤
∏

i∈I

Pr[Xi = 1] and Pr[
∧

i∈I

(Xi = 0)] ≤
∏

i∈I

Pr[Xi = 0].

Theorem 8 (Negative Correlation Chernoff Bound [5,6]). Let
X1, . . . , Xn be negatively correlated random variables with X =

∑n
i=1 Xi, μ =

E[X].

– For any δ ∈ (0, 1),

Pr[X ≤ (1 − δ)μ] ≤ e−δ2μ/2 and Pr[X ≥ (1 + δ)μ] ≤ e−δ2μ/3.

– For any d ≥ 6μ, Pr[X ≥ d] ≤ 2−d.
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Lemma 6. Let π : [n] → [n] be a random permutation. For any set S,W ⊆ [n],
let u = |W |

n |S|. Then the following holds.

– for any constant δ ∈ (0, 1),

Pr[|π(S) ∩ W | ≤ (1 − δ)μ] ≤ e−δ2μ/2,

Pr[|π(S) ∩ W | ≥ (1 + δ)μ] ≤ e−δ2μ/3.

– for any d ≥ 6μ, Pr[|π(S) ∩ W | ≥ d] ≤ 2−d.

Proof. For every s ∈ S, let Xs be the indicator such that Xs = 1 is the event
that π(s) is in W . Let X =

∑
s∈S Xs. So |π(S) ∩ W | = X. Note that Pr[Xs =

1] = |W |/n. So μ = E(X) = |W |
n |S|.

For any I ⊆ S,

Pr[
∧

i∈I

(Xi = 1)] =
|W |
n

· |W | − 1
n − 1

· · · |W | − |I|
n − |I| , (3)

(if |W | < |I|, it is 0). This is because the random permutation can be viewed as
throwing elements 1, . . . , n into n boxes uniformly one by one, where every box
can have at most one element. We know that for j = 1, . . . , |I|, |W |−j

n−j ≤ |W |
n

as |W | ≤ n. So Pr[
∧

i∈I(Xi = 1)] ≤ ∏
i∈I Pr[Xi = 1]. In the same way, for any

I ⊆ [n],

Pr[
∧

i∈I

(Xi = 0)] =
n − |W |

n
· n − |W | − 1

n − 1
· · · n − |W | − |I|

n − |I| , (4)

(if n − |W | < |I|, it is 0). Thus ∀I ⊆ [n],Pr[
∧

i∈I(Xi = 0)] ≤ ∏
i∈I Pr[Xi = 0].

By Theorem 8, the conclusion follows.

We can get the following more general result by using Lemma 6.

Lemma 7. Let π : [n] → [n] be a random permutation. For any W ⊆ [n] with
|W | = γn, any constant δ ∈ (0, 1), any t, l ∈ N

+ such that tl ≤ 0.9δ
1+0.9δ γn, any

S = {S1, . . . , Sl} such that ∀i ∈ [l], Si ⊆ [n] are disjoint sets and |Si| = t, let
Xi be the indicator such that Xi = 1 is the event |π(Si) ∩ W | ≥ (1 + δ)γt. Let
X =

∑
i∈[l] Xi. Then for any d ≥ 0,

Pr[X ≥ d] ≤ e−2d+(e2−1)e−Ω(γt)l.

Proof. For any s > 0, Pr[X ≥ d] = Pr[esX ≥ esd] ≤ E[esX ]
esd by Markov’s inequal-

ity. For every i ∈ [l], ∀x1, . . . , xi−1 ∈ {0, 1}, consider p = Pr[Xi = 1|∀j <

i,Xj = xj ]. Let S̄i =
⋃i

j=1 Sj for i ∈ [l]. Note that the event ∀j < i,Xj = xj

is the union of exclusive events π(S̄i−1) = V,∀j < i,Xj = xj for V ⊆ [n] with
|V | = (j − 1)t and π(S̄i−1) = V does not contradict ∀j < i,Xj = xj . Condi-
tioned on any one of those events, saying π(S̄i−1) = V,∀j < i,Xj = xj , π is
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a random bijective mapping from [n] − S̄i to [n] − V . Note that |W∩([n]−V )|
n−(i−1)t ≤

γn
n− 0.9δ

1+0.9δ γn
≤ γn

n− 0.9δ
1+0.9δ n

≤ (1 + 0.9δ)γn, since (i − 1)t ≤ lt ≤ 0.9δ
1+0.9δ γn. So

E[π(Si) ∩ W ||π(S̄i−1) = V,∀j < i,Xj = xj ] ≤ (1 + 0.9δ)γt. By Lemma 6,
Pr[Xi = 1|π(S̄i−1) = V,∀j < i,Xj = xj ] = Pr[|π(Si)∩W | ≥ (1+δ)γt|π(S̄i−1) =
V,∀j < i,Xj = xj ] ≤ e−Ω(γt). Thus p ≤ e−Ω(γt). Next note that

E[es
∑l

k=i Xk |∀j < i,Xj = xj ]

= pes
E[es

∑l
k=i+1 Xk |∀j < i,Xj = xj ,Xi = 1]

+ (1 − p)E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 0]

≤(pes + 1 − p)max(E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 1],

E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 0])

≤ep(es−1) max(E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 1],

E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 0])

≤ee−Ω(γt)(es−1) max(E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 1],

E[es
∑l

k=i+1 Xk |∀j < i,Xj = xj ,Xi = 0]).

(5)

As this holds for every i ∈ [l] and every x1, . . . , xi−1 ∈ {0, 1}, we can iteratively
apply the inequality and get the result that there exists x′

1, . . . , x
′
l ∈ {0, 1} such

that

E[esX ] ≤ ee−Ω(γt)(es−1)
E[es

∑l
k=2 Xk |X1 = x′

1]

≤ e2e−Ω(γt)(es−1)
E[es

∑l
k=3 Xk |X1 = x′

1,X2 = x′
2]

≤ · · · ≤ e(l−1)e−Ω(γt)(es−1)
E[esXl |X1 = x′

1,X2 = x′
2, . . . , Xl−1 = x′

l−1]

≤ ee−Ω(γt)(es−1)l.
(6)

Let’s take s = 2. So Pr[X ≥ d] ≤ E[esX ]
esd ≤ e−2d+(e2−1)e−Ω(γt)l.

Let’s first show the non-adaptive privacy of this scheme.

Lemma 8. If the non-adaptive privacy error of (Share,Rec) is ε, then the non-
adaptive privacy error of (Share′,Rec′) is n̄(ε + 2−Ω(k)).

Proof. We show that there exists a distribution D such that for any string x ∈
Σm′

0 , for any sequence of distinct indices W = (w1, w2, . . . , wk′) ∈ [n′]k
′
(chosen

before observation),

SD(Share′(x)W ,D) ≤ n̄(ε + 2−Ω(k)).

For every i ∈ [nn̄], the block Share+(ŷi) has length t. Let the indices of shares
in Share+(ŷi) be Si = {(i − 1)t + 1, . . . , it}.
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For every i ∈ [n̄], let Ei be the event that for at most k of j ∈ {(i − 1)n +
1, . . . , in}, π(Sj) ⊆ W . Let E =

⋂
i∈[n̄] Ei. We choose b to be such that tn ≤

0.9α
1+0.9α |W |. So by Lemma 7, Pr[Ei] ≥ 1 − e−Ω(k)+(e2−1)e−Ω((1−α)t)n. We choose a
large enough t = O(log n) such that Pr[Ei] ≥ 1−e−Ω(k). So Pr[E] ≥ 1− n̄e−Ω(k)

by the union bound.
Let’s define the distribution D to be Share′(σ)W for some σ ∈ Σm′

0 . We claim
that Share′(x)W |E and D|E have statistical distance at most n̄ε. The reason is
as follows.

Let’s fix a permutation π for which E happens. We claim that Share′(x)W

is a deterministic function of at most k entries of each yi for i ∈ [n̄] and some
extra uniform random bits. This is because, as E happens, for those i ∈ [nn̄]
with π(Si) � W , the shares in π(Si) ∩ W are independent of the secret by the
privacy of (Share+,Rec+). Note that they are also independent of other shares
since the construction uses independent randomness for Share+(ŷi), i ∈ [nn̄]. For
those i ∈ [nn̄] with π(Si) ⊆ W , the total number of them is at most k. So the
claim holds. Hence by the privacy of (Share,Rec) with noting that yi, i ∈ [n̄] are
generated using independent randomness,

SD(Share′(x)W ,D) ≤ n̄ε. (7)

So with probability at least 1 − n̄e−Ω(k) over the fixing of π, Share′(x)W and
D have statistical distance at most n̄ε, which means that

SD(Share′(x)W ,D) ≤ n̄(ε + 2−Ω(k)). (8)

Next we show the adaptive privacy.

Lemma 9. For any alphabet Σ, any n, k ∈ N with k ≤ n, for any distribution
X = (X1, . . . , Xn) over Σn, let Y = ((Xπ−1(1) ◦π−1(1)), . . . , (Xπ−1(n) ◦π−1(n)))
where π is a random permutation over [n] → [n]. For any adaptive observation
W with |W | = k, YW is the same distribution as Y[k].

Proof. Let W = (w1, . . . , wk).
We use induction.
For the base step, for any x ∈ Σ, any i ∈ [n],

Pr[Yw1 = (x, i)] = Pr[Xi = x]/n, (9)

while
Pr[Y1 = (x, i)] = Pr[Xi = x]/n. (10)

So Yw1 and Y1 are the same distributions.
For the inductive step, assume that YW[i] and Y[i] are the same distributions.

We know that for any u ∈ (Σ × [n])i,

Pr[YW[i] = u] = Pr[Y[i] = u]. (11)

Fix a u ∈ (Σ × [n])i. For any v = (v1, v2) ∈ (Σ × [n]), where v1 ∈ Σ, v2 ∈ [n],
Pr[Ywi+1 = v|YW[i] = u] = 0 if v2 has already been observed in the previous i
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observations; otherwise Pr[Ywi+1 = v|YW[i] = u] = Pr[Xv2=v1]

n−i . Also Pr[Yi+1 =
v|Y[i] = u] = 0 if v2 has already been observed in the previous i observations;

otherwise Pr[Yi+1 = v|Y[i] = u] = Pr[Xv2=v1]

n−i .
Thus YW[i+1] and Y[i+1] are the same distributions. This finishes the proof.

Lemma 10. If (Share,Rec) has non-adaptive privacy error ε, then (Share′,Rec′)
has adaptive privacy error n̄(ε + 2−Ω(k)).

Proof. First we assume that the adaptive observer always observes k′ shares.
For every observer M which does not observe k′ shares, there exists another
observer M ′ which can observe the same shares as M and then observe some
more shares. That is to say that if the number of observed shares is less than k′,
M ′ will choose more unobserved shares (sequentially in a fixed order) to observe
until k′ shares are observed. Since we can use a deterministic function to throw
away the extra observes of M ′ to get what M should observe, by Lemma 1 part
2, if the privacy holds for M ′ then the privacy holds for M . As a result, we
always consider observers which observe k′ shares.

By Lemma 9, for any s ∈ Σm′
0 , any adaptive observation W , Share′(s)W is the

same distribution as Share′(s)W ′ where W = {w1, w2, . . . , wk′}, W ′ = [k′]. As W ′

is actually a non-adaptive observation, by Lemma8, for distinct s, s′ ∈ {0, 1}m′
,

SD(Share′(s)W ′ ,Share′(s′)W ′) ≤ n̄(ε + 2−Ω(k)). So

SD(Share′(s)W ,Share′(s′)W ) = SD(Share′(s)W ′ ,Share′(s′)W ′) ≤ n̄(ε + 2−Ω(k)).
(12)

The theorem below now follows from Construction 1, Lemmas 4, 5 and 10.

Theorem 9. For any n,m ∈ N,m ≤ n, any ε, η ∈ [0, 1] and any constant
a ≥ 1, α ∈ (0, 1], if there exists an explicit (n, k) secret sharing scheme in AC0

with share alphabet Σ, message alphabet Σ0, message length m, non-adaptive
privacy error ε and reconstruction error η, then there exists an explicit (n′ =
O(na log n), (1 − α)n′) secret sharing scheme in AC0 with share alphabet Σ ×
[n′], message alphabet Σ0, message length Ω(mna−1), adaptive privacy error
O(na−1(ε + 2−Ω(k))) and reconstruction error O(na−1η).

3.2 Binary Alphabet

In this subsection, we construct AC0 secret sharing schemes with binary alphabet
based on some existing schemes with binary alphabets, enlarging the privacy
threshold.

We use some coding techniques and secret sharing for small blocks.

Lemma 11 ([12] Sect. 4). For any n ∈ N, any constant δ0, δ1 ∈ (0, 1), let
C ⊆ F

n
2 be an asymptotically good (n, k = δ0n, d = δ1n) linear code.

1. There exists an (n, d) secret sharing scheme (Share,Rec) with alphabet {0, 1},
message length k, perfect privacy and reconstruction. Here ∀x ∈ {0, 1}k,
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Share(x) = f(x) + c with c drawn uniform randomly from C⊥ (the dual code
of C) and f is the encoding function from {0, 1}k to C. For y ∈ {0, 1}n,
Rec(y) is to find x such that there exists a c ∈ C⊥ with f(x) + c = y.

2. For any p = poly(n), there exists an explicit (n, d) secret sharing scheme
(Share,Rec) with alphabet {0, 1}p, message length k, perfect privacy and recon-
struction.

3. If the codeword length is logarithmic (say n = O(log N) for some N ∈ N),
then both schemes can be constructed explicitly in AC0 (in N).

Proof. The first assertion is proved in [12].
The second assertion follows by applying the construction of the first asser-

tion in parallel p times.
The third assertion holds because, when the codeword length is O(log N),

both encoding and decoding functions have input length O(log N). For encoding,
we can use any classic methods for generating asymptotically good binary codes.
For decoding, we can try all possible messages to uniquely find the correct one.
By Lemma 2, both functions can be computed by AC0 circuits.

Now we give the secret sharing scheme in AC0 with a constant privacy rate
while having binary alphabet.

Construction 2. For any n, k,m ∈ N with k,m ≤ n, let (Share,Rec) be an
(n, k) secret sharing scheme with alphabet {0, 1}, message length m.

Let (ShareC ,RecC) be an (nC , kC) secret sharing scheme with alphabet
{0, 1}p, p = O(log n), message length mC by Lemma 11, where mC = δ0nC ,
kC = δ1nC , nC = O(log n) for some constants δ0, δ1.

Let (Share0,Rec0) be an (n0, k0) secret sharing scheme with alphabet {0, 1},
message length m0 by Lemma 11, where m0 = δ0n0 = p + O(log n), k0 = δ1n0.

For any constant a ≥ 1, we can construct the following (n′ = O(na), k′ =
Ω(n′)) secret sharing scheme (Share′,Rec′) with alphabet {0, 1}, message length
m′ = mn̄, where n̄ = Θ(na−1) is large enough.

Function Share′ : {0, 1}m′ → {0, 1}n′
is as follows.

1. On input x ∈ {0, 1}mn̄, parse it to be (x1, x2, . . . , xn̄) ∈ ({0, 1}m)n̄.
2. Compute y = (y1, . . . , yn̄) = (Share(x1), . . . ,Share(xn̄)) ∈ ({0, 1}n)n̄. Split

each entry to be blocks each has length pmC to get ŷ = (ŷ1, . . . , ŷñ) ∈
({0, 1}pmC )ñ, where ñ = n̄
 n

pmC
�.

3. Let y∗ = (ShareC(ŷ1), . . . ,ShareC(ŷñ)). Parse it to be y∗ = (y∗
1 , . . . , y

∗
n∗) ∈

({0, 1}p)n∗
, n∗ = ñnC .

4. Generate π by Lemma 3 which is uniform random over permutations of [n∗].
If it failed, which can be detected by checking element distinctness, set π to
be such that ∀i ∈ [n∗], π(i) = i.

5. Compute

z(x) = (Share0(y∗
π−1(1) ◦ π−1(1)), . . . ,Share0(y∗

π−1(n∗) ◦ π−1(n∗)))

∈ ({0, 1}n0)n∗
.



446 K. Cheng et al.

6. Parse z(x) to be bits and output.

Function Rec′ : {0, 1}n′=n0n∗ → {0, 1}m′
is as follows.

1. Parse the input bits to be z ∈ ({0, 1}n0)n∗
and compute

(y∗
π−1(1) ◦ π−1(1), . . . , y∗

π−1(n∗) ◦ π−1(n∗)) = (Rec0(z1), . . . ,Rec0(zn∗)).

2. Compute y∗ = (y∗
1 , . . . , y

∗
n∗).

3. Compute ŷ by applying RecC on y∗ for every successive nC entries.
4. Parse ŷ to be y.
5. Compute x by applying Rec on every entry of y.

We have the following two lemmas, whose proofs are deferred to the full version.

Lemma 12. If Share and Rec can be computed by AC0 circuits, then Share′ and
Rec′ can be computed by AC0 circuits.

Lemma 13. If the reconstruction error of (Share,Rec) is η, then the reconstruc-
tion error of (Share′,Rec′) is η′ = n̄η.

Lemma 14. If the non-adaptive privacy error of (Share,Rec) is ε, then the non-
adaptive privacy error of (Share′,Rec′) is n̄(ε + 2−Ω(k/ log2 n)).

Proof. Let k′ = 0.9δ21n
′. We show that there exists a distribution D such that

for any string x ∈ {0, 1}m, for any W ⊆ [n′] with |W | ≤ k′,

SD(Share′(x)W ,D) ≤ n̄(ε + 2−Ω(k/ log2 n)). (13)

Let D be Share′(σ)W for some σ ∈ {0, 1}m′
.

Consider an arbitrary observation W ⊆ [n′], with |W | ≤ k′. Note that for at
least 1−0.9δ1 fraction of all blocks zi ∈ {0, 1}n0 , i = 1, . . . , n∗, at most δ1 fraction
of the bits in the block can be observed. Otherwise the number of observed bits
is more than 0.9δ1 × δ1n

′. Let W ∗ be the index set of those blocks which have
more than δ1 fraction of bits being observed.

For every i ∈ [n∗]\W ∗, zi is independent of y∗
π−1(i) ◦ π−1(i) by the privacy

of (Share0,Rec0). Note that zi is also independent of zi′ , i′ ∈ [n∗], i′ �= i since it
is independent of y∗

π−1(i) ◦ π−1(i) (its randomness is only from the randomness
of the Share0 function) and every Share0 function uses independent randomness.
So we only have to show that

SD(zW ∗(x), zW ∗(σ)) ≤ n̄(ε + 2−Ω(k/ log2 n)). (14)

For every i ∈ [ñ], let Si = {(i − 1)nC + 1, . . . , inC}. Let Xi be the indicator
that |π(Si) ∩ W ∗| > kC , i ∈ [ñ]. Note that E[|π(Si) ∩ W ∗|] ≤ 0.9δ1nC = 0.9kC .

For every i ∈ [n̄], let Ei be the event that
∑i� n

pmC
	

j=(i−1)� n
pmC

	+1 Xj ≤ k
pmC

.

Let E =
⋂

i∈[n̄] Ei. We take n̄ to be large enough such that nC
 n
pmC

� ≤
0.9×0.1

1+0.9×0.1 |W ∗|. For every i ∈ [n̄], by Lemma 7,

1 − Pr[Ei] ≤ e
−2k/(pmC)+(e2−1)e−Ω(0.9δ21nC )� n

pmC
	
. (15)
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We take nC = O(log n) to be large enough such that the probability is at most

e−Ω(k/(pmC)) ≤ e−Ω(k/ log2 n). (16)

Next we do a similar argument as that in the proof of Lemma8. We know
that Pr[E] ≥ 1 − n̄e−Ω(k/ log2 n). We claim that zW ∗(x)|E and zW ∗(σ)|E have
statistical distance at most n̄ε. The reason follows.

Let’s fix a permutation π for which E happens. We claim that zW ∗(x) is a
deterministic function of at most k bits of each yi for i ∈ [n̄] and some extra
uniform random bits. This is because, as E happens, for those i ∈ [ñ] with
|π(Si)∩W ∗| ≤ kC , the shares in π(Si)∩W ∗ are independent of the secret by the
privacy of (ShareC ,RecC). Note that they are also independent of other shares
since the construction uses independent randomness for ShareC(ŷi), i ∈ [ñ]. For
those i ∈ [ñ] with |π(Si) ∩ W ∗| > kC , the total number of them is at most k

pmC
.

By the construction, Share′(x)W ∗ is computed from at most k
pmC

× pmC = k

bits of each yi for i ∈ [n̄] and some extra uniform random bits. Hence by the
privacy of (Share,Rec) and noting that yi,∈ [n̄] are generated using independent
randomness,

SD(zW ∗(x), zW ∗(σ)) ≤ n̄ε. (17)

Thus with probability at least 1− n̄e−Ω(k/ log2 n) over the fixing of π, zW ∗(x)
and zW ∗(σ) have statistical distance at most n̄ε, which means that

SD(zW ∗(x), zW ∗(σ)) ≤ n̄(ε + e−Ω(k/ log2 n)). (18)

Lemma 15. For any alphabet Σ, any n ∈ N, Let X = (X1, . . . , Xn) be an arbi-
trary distribution over Σn. For any n0, k0 ∈ N with k0 ≤ n0, let (Share0,Rec0) be
an arbitrary (n0, k0)-secret sharing scheme with binary alphabet, message length
m0 = log |Σ| + O(log n), perfect privacy. Let

Y = (Share0(Xπ−1(1) ◦ π−1(1)), . . . ,Share0(Xπ−1(n) ◦ π−1(n)))

where π is a random permutation over [n] → [n]. For any t ≤ n ·k0, let W be an
any adaptive observation which observes t shares. Then there exists a determin-
istic function f : {0, 1}poly(n) → {0, 1}t such that YW has the same distribution
as f(YW ′ ◦ S), where S is uniform over {0, 1}poly(n) and W ′ = [t′n0], t′ = 
 t

k0
�.

Proof. For every i ∈ [n], Let Bi = {(i − 1)n0 + 1, . . . , in0}. Assume the adaptive
adversary is M .

Let f be defined as in Algorithm 1.
Let W = (w1, . . . , wt) ∈ [n · n0]t, Z = f(YW ′ ◦ S). Let R ∈ {0, 1}nn0 be the

random variable corresponds to r.
We use induction to show that YW has the same distribution as Z.
For the base case, the first bits of both random variables have the same

distributions by the perfect privacy of (Share0,Rec0).
For the inductive step, assume that, projected on the first d bits, the two

distributions are the same. Fix the first d observed bits for both YW and Z to
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Algorithm 1. f(·)
Input: y ∈ {0, 1}t′n0 , s ∈ {0, 1}poly(n)

Let c = 1;
∀i ∈ [n], li ∈ [n] ∪ {null} is assigned to be null;
Compute the secrets for the t′ blocks y, which are

(x1, . . . , xt′) ∈ ({0, 1}m0)t
′
;

Compute (Share0(σ), . . . , Share0(σ)) ∈ ({0, 1}n0)n and parse it to be
r ∈ {0, 1}n0n, for an arbitrary σ ∈ Σ. Here for each Share0 function, we take
some unused bits from s as the random bits used in that function.
Next f does the following computation by calling M ;
while M wants to observe the ith bit which is not observed previously do

Find j ∈ [n] such that i ∈ Bj ;
if the number of observed bits in the jth block is less than k0 then

Let M observe ri;
else

Let Ij be the indices of the observed bits in the jth block. (The indices
here are the relative indices in the jth block)
if lj = null then

lj = c;
c = c + 1;
Draw a string vj from Share0(xc)|Share0(xc)Ij

=r(j−1)n0+Ij
by using

some unused bits of s;
end

Let M observe vj
i−(j−1)n0

;

end

end

be ȳ ∈ {0, 1}d. Assume that the (d + 1)th observation is to observe the wdth bit
where wd is in Bj for some j.

If the number of observed bits in the jth block is less than k0 then
Y{w1,...,wd+1}∩Bj

has the same distribution as R{w1,...,wd+1}∩Bj
, following the

privacy of (Share0,Rec0). Note that the blocks Y{w1,...,wd+1}∩Bi
, i ∈ [n] are inde-

pendent. The blocks R{w1,...,wd+1}∩Bi
, i ∈ [n] are also independent. As f will

output Rwd+1 , the conclusion holds for d + 1.
Else, if the number of observed bits in the jth block is at least k0, it is

sufficient to show that Ywd+1 |Y{w1,...,wd}=ȳ has the same distribution as that of
Zd+1|Z{1,...,d}=ȳ. Note that there are c blocks such that W observes more than
k0 bits for each of them. Let q1, . . . , qc denote those blocks. Let I = ((q1−1)n0+
Iq1 , . . . , (qc − 1)n0 + Iqc

), which is the set of indices of all observed bits. Note
that I ⊆ {w1, . . . , wd}.

By the privacy of the secret sharing scheme, for those blocks which have
at most k0 bits being observed, they are independent of the secret and hence
independent of other blocks. So Ywd+1 |Y{w1,...,wd}=ȳ is in fact Ywd+1 |YI=y∗ where
y∗ are the corresponding bits from ȳ with a proper rearrangement according to
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I. From the definition of f we know that for i ∈ [c], the observed bits in the
qith block is exactly the same distribution as (YBlqi

)Iqi
= Share0(xlqi

)Iqi
. So for

Zd+1|Z{1,...,d}=ȳ, it is the same distribution as

T = (YBlj
)wd−(j−1)n0 |∧c

i=1((YBlqi
)Iqi

=y∗
(qi−1)n0+Iqi

)

= Share0(xlj )wd−(j−1)n0 |∧c
i=1(Share0(xlqi

)Iqi
=y∗

(qi−1)n0+Iqi
).

(19)

By Lemma 9, (YBq1
, . . . , YBqc

) has the same distribution as (YBlq1
, . . . , YBlqc

)
as they both are the same distribution as (Share0(x1), . . . ,Share0(xc)). Thus
Ywd+1 |YI=y∗ has the same distribution as T , as Ywd+1 |YI=y∗ is the distribution of
some bits in (YBq1

, . . . , YBqc
) and T is the distribution of the corresponding bits

(same indices) in (YBlq1
, . . . , YBlqc

). So we know that Ywd+1 |Y{w1,...,wd}=ȳ has the
same distribution as Zd+1|Z{1,...,d}=ȳ and this shows our conclusion.

Lemma 16. If the non-adaptive privacy error of (Share,Rec) is ε, then the adap-
tive privacy error of (Share′,Rec′) is n̄(ε + 2−Ω(k/ log2 n)).

Proof. Let W be an adaptive observation. Let W ′ = [
|W |/k0�n0]. Let |W | =
Ω(n′) be small enough such that |W ′| ≤ 0.9δ21n

′. By Lemma 15, there exists a
deterministic function f such that for any x, x′ ∈ {0, 1}m′

,

SD(Share′(x)W ,Share(x′)W ) = SD(f(Share′(x)W ′◦S), f(Share′(x′)W ′◦S)), (20)

where S is the uniform distribution as defined in Lemma15 which is independent
of Share′(x)W ′ or Share′(x′)W ′ . By Lemma 1, we know that

SD(f(Share′(x)W ′ ◦ S), f(Share′(x′)W ′ ◦ S)) ≤ SD(Share′(x)W ′ ,Share′(x′)W ′).
(21)

By Lemma 14 we know that

SD(Share′(x)W ′ ,Share′(x′)W ′) ≤ n̄(ε + 2−Ω(k/ log2 n)). (22)

Hence
SD(Share′(x)W ,Share′(x′)W ) ≤ n̄(ε + 2−Ω(k/ log2 n)). (23)

Theorem 10. For any n,m ∈ N,m ≤ n, any ε, η ∈ [0, 1] and any constant
a ≥ 1, if there exists an explicit (n, k) secret sharing scheme in AC0 with alphabet
{0, 1}, message length m, non-adaptive privacy error ε and reconstruction error
η, then there exists an explicit (n′ = O(na), k′ = Ω(n′)) secret sharing scheme
in AC0 with alphabet {0, 1}, message length Ω(mna−1), adaptive privacy error
O(na−1(ε + 2−Ω(k/ log2 n))) and reconstruction error O(na−1η).

Proof. It follows from Construction 2, Lemmas 12, 13 and 16.
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4 k-Wise Independent Generator in AC0

In this section we focus on increasing the secret length to be linear of the number
of shares while keeping the construction in AC0. The privacy rate is not as good
as the previous section. The main technique is to use the following well known
k-wise independent generator which is constructed from expander graphs.

Theorem 11 [29]. For any N,D,M ∈ N, any ε > 0, if there exists a
(≤Kmax, ( 12 + ε)D) expander with left set of vertices [N ], right set of ver-
tices [M ], left degree D, then the function g : {0, 1}M → {0, 1}N , defined by
g(x)i =

⊕
j∈[D] xΓ (i,j), i = 1, 2, . . . , N , is a Kmax-wise uniform independent

generator.

Next we directly give the main results for this section. Detailed proofs are
deferred to the full version.

Theorem 12. For any M ∈ N, N = poly(M), any alphabets Σ0, Σ, any con-
stant γ ∈ (0, 1], there exists an explicit K-wise independent generator g : ΣM

0 →
ΣN in AC0, where K = (M log |Σ0|

log |Σ| )1−γ .

Now we give the construction of secret sharing schemes in AC0 with large
message rate (saying 1 − 1/poly(n)).

Construction 3. For any n, k,m ∈ N with k ≤ n, any alphabets Σ0, Σ, let
(Share,Rec) be an (n, k) secret sharing scheme with share alphabet Σ, message
alphabet Σ0, message length m.

For any constant a > 1, γ ∈ (0, 1], we construct the following (n′ = n +
m′, k′ = min(k, l)) secret sharing scheme (Share′,Rec′) with alphabet Σ, message
length m′ = Ω(na), where l = Θ(m log |Σ0|

log |Σ| )1−γ .

The function Share′ : Σm′ → Σn′
is as follows.

1. Let gΓ : Σm
0 → Σm′

be the l-wise independent generator by Theorem12.
2. For secret x ∈ Σm′

, we draw r uniform randomly from Σm
0 let

Share′(x) = (Share(r), gΓ (r) ⊕ x).

The function Rec′ : Σn′ → Σm′
is as follows.

1. The input is y = (y1, y2) where y1 ∈ Σn, y2 ∈ Σm′
.

2. Let
Rec′(y) = gΓ (Rec(y1)) ⊕ y2.

Theorem 13. For any n,m ∈ N,m ≤ n, any ε, η ∈ [0, 1], any constant γ ∈
(0, 1], any m′ = poly(n) and any alphabets Σ0, Σ, if there exists an explicit
(n, k) secret sharing scheme in AC0 with share alphabet Σ, message alphabet Σ0,
message length m, non-adaptive privacy error ε and reconstruction error η, then
there exists an explicit (n + m′,min(k, (m log |Σ0|

log |Σ| )1−γ)) secret sharing scheme
in AC0 with alphabet Σ, message length m′, non-adaptive privacy error ε and
reconstruction error η.
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5 Final Construction

In this section we give our final AC0 construction of secret sharing schemes which
has constant message rate and constant privacy rate.

Our construction will use both random permutation and k-wise independent
generator proposed in the previous sections.

Construction 4. For any n, k,m ∈ N with k,m ≤ n, let (Share,Rec) be an
(n, k) secret sharing scheme with alphabet {0, 1}, message length m.

Let (ShareC ,RecC) be an (nC , kC) secret sharing scheme from Lemma 11 with
alphabet {0, 1}p=O(log n), message length mC , where mC = δ0nC , kC = δ1nC ,
nC = O(log n) for some constants δ0, δ1.

Let (Share∗
C ,Rec∗

C) be an (n∗
C , k∗

C) secret sharing scheme from Lemma 11 with
alphabet {0, 1}, message length large enough m∗

C , where m∗
C = δ0n

∗
C = p +

O(log n), n∗
C = δ1n

∗
C .

For any constant a > 1, γ > 0, we can construct the following (n′ =
O(na), k′ = Ω(n′) secret sharing scheme (Share′,Rec′) with alphabet {0, 1}, mes-
sage length m′ = Ω(n′).

The function Share′ : {0, 1}m′ → {0, 1}n′
is as follows.

1. Let n̄ = Θ(na−1) where the constant factor is large enough.
2. Let gΓ : {0, 1}mn̄ → {0, 1}m′

be the l-wise independent generator by Theo-
rem12, where l = Ω(mna−1)1−γ .

3. For secret x ∈ {0, 1}m′
, we draw a string r = (r1, . . . , rn̄) uniform randomly

from ({0, 1}m)n̄.
4. Let y = (ys, yg), where

ys = (ys,1, . . . , ys,n̄) = (Share(r1), . . . ,Share(rn̄)) ∈ ({0, 1}n)n̄, (24)

yg = (yg,1, . . . , yg,m′) = gΓ (r) ⊕ x ∈ {0, 1}m′
. (25)

5. Compute ŷs ∈ (({0, 1}p)mC )ns from ys by parsing ys,i to be blocks over
({0, 1}p)mC for every i ∈ [n̄], where ns = 
 n

pmC
�n̄.

6. Compute ŷg ∈ (({0, 1}p)mC )ng from yg by parsing yg to be blocks over
({0, 1}p)mC , where ng = 
 m′

pmC
�.

7. Let

y′ = (ShareC(ŷs,1), . . . ,ShareC(ŷs,ns
),ShareC(ŷg,1), . . . ,ShareC(ŷg,ng

)).

Parse y′ as (y′
1, . . . , y

′
n∗) ∈ ({0, 1}p)n∗

, where n∗ = (ns + ng)nC .
8. Generate a random permutation π : [n∗] → [n∗] and compute

z(x) = (Share∗
C(y′

π−1(1) ◦ π−1(1)), . . . ,Share∗
C(y′

π−1(n∗) ◦ π−1(n∗)))

∈ ({0, 1}n∗
C )n∗

.

9. Parse z(x) to be bits and output.

The function Rec′ : {0, 1}n′ → {0, 1}m′
is as follows.
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1. Parse the input bits to be z = (z1, . . . , zn∗) ∈ ({0, 1}n∗
C )n∗

.
2. For every i ∈ [n∗], let (y′

π−1(i) ◦ π−1(i)) = Rec∗
C(zi) to get y′.

3. Parse y′ = (y′
s, y

′
g), where y′

s = (y′
s,1, . . . , y

′
s,ns

) ∈ ({0, 1}pnC )ns and y′
g =

(y′
g,1, . . . , y

′
g,ng

) ∈ ({0, 1}pnC )ng .
4. Let

ŷs = (RecC(y′
s,1), . . . ,RecC(y′

s,ns
)), ŷg = (RecC(y′

g,1), . . . ,RecC(y′
g,ng

)).

5. Parse ŷs to get ys.
6. Parse ŷg to get yg

7. Let r = (Rec(ys,1), . . . ,Rec(ys,n̄)).
8. Output

Rec′(z) = gΓ (r) ⊕ yg.

We have the following lemmas, whose proofs are similar to previous ones and
deferred to the full version.

Lemma 17. If (Share,Rec) can be computed by AC0 circuits, then (Share′,Rec′)
can be computed by AC0 circuits.

Lemma 18. If the reconstruction error of (Share,Rec) is η, then the reconstruc-
tion error of (Share′,Rec′) is η′ = n̄η.

Lemma 19. If the non-adaptive privacy error of (Share,Rec) is ε, then the non-
adaptive privacy error of (Share′,Rec′) is n̄(ε + e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

Lemma 20. If the non-adaptive privacy error of (Share,Rec) is ε, then the adap-
tive privacy error of (Share′,Rec′) is n̄(ε + e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

Theorem 14. For any ε, η ∈ [0, 1], any n,m ∈ N,m ≤ n and any constant
a > 1, γ > 0, if there exists an explicit (n, k) secret sharing scheme in AC0

with alphabet {0, 1}, message length m, non-adaptive privacy error ε and recon-
struction error η, then there exists an explicit (n′ = O(na), Ω(n′)) secret shar-
ing scheme in AC0 with alphabet {0, 1}, message length Ω(n′), adaptive privacy
error O(na−1(ε+2−Ω(k/ log2 n))+2−Ω((mna−1)1−γ/ log2 n)) and reconstruction error
O(na−1η).

Proof. It follows from Construction 4, Lemmas 17, 18, 20.

6 Instantiation

The Minsky-Papert function [28] gives a secret sharing scheme in AC0 with
perfect privacy.

Theorem 15 [7,28]. For any n ∈ N, there exists an explicit (n, n
1
3 ) secret

sharing scheme in AC0 with alphabet {0, 1}, message length 1, perfect privacy
and reconstruction.
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Combining our techniques with Theorem 15, we have the following results.
The detailed proofs are deferred to the full version.

Theorem 16. For any n ∈ N, any constant α ∈ (0, 1], β ∈ [0, 1), there exists
an explicit (n, (1 − α)n) secret sharing scheme in AC0 with share alphabet
{0, 1}O(log n), message alphabet {0, 1}, message length m = nβ, adaptive privacy
error 2−Ω(( n

m log n )1/3) and perfect reconstruction.

Theorem 17. For any n ∈ N, for any constant γ ∈ (0, 1/4), there exists an
explicit (n,Ω(n)) secret sharing scheme in AC0 with alphabet {0, 1}, message

length m = Ω(n), adaptive privacy error 2−Ω(n
1
4 −γ) and perfect reconstruction.

7 Extensions and Other Applications

The detailed constructions and proofs in this section appear in the full version.

7.1 Robust Secret Sharing

Our secret sharing schemes can be made robust by using robust secret sharing
schemes and authentication techniques in small blocks.

We first recall the following robust secret sharing scheme.

Theorem 18 [15]. For any n ∈ N, any constant ρ < 1/2, there is an (n,Ω(n))
robust secret sharing scheme, with alphabet {0, 1}O(1), message length Ω(n), per-
fect privacy, robustness parameter d = ρn and reconstruction error 2−Ω(n).

We use concatenations of the schemes from Theorem 18 to get the following
robust secret sharing scheme in AC0 with poly-logarithmic number of shares.

Lemma 21. For any n ∈ N, any constant a ∈ N, any ε = 1/poly(n), there exists
an (n0 = O(loga n), k0 = Ω(n0)) robust secret sharing scheme in AC0 (in n),
with share alphabet {0, 1}O(1), message alphabet {0, 1}, message length Ω(n0),
perfect privacy, robustness parameter Ω(n0), reconstruction error ε.

Next, we give our construction of robust secret sharing scheme with “asymp-
totically good” parameters.

Theorem 19. For any n ∈ N, any η = 1
poly(n) , there exists an explicit (n,Ω(n))

robust secret sharing scheme in AC0 with share alphabet {0, 1}O(1), message
alphabet {0, 1}, message length m = Ω(n), non-adaptive privacy error 2−nΩ(1)

,
non-adaptive robustness Ω(n) and reconstruction error η.
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7.2 Stochastic Error Correcting Code

Using our general strategy, we can also construct stochastic error correcting
codes in AC0 which can resist additive errors [20].

One important component of our construction is the following “tiny” codes.
It is constructed by classic code concatenation techniques.

Lemma 22. For any n ∈ N, any constant a ∈ N, there exists an asymptotically
good binary (n = O(loga n),m, d) code C such that the encoding and decoding
can both be computed by AC0 circuits of size poly(n).

Here we give the construction of stochastic error correcting codes in AC0

which are “asymptotically good”.

Construction 5. For any n ∈ N, we construct the following (n,m = Ω(n), ρ =
Ω(1)) stochastic error correcting code.

Let δ0, δ1 be some proper constants in (0, 1).
Let (Enc0,Dec0) be an asymptotically good (n0,m0, d0) error correcting code

with alphabet {0, 1}p, n0 = O(log n), m0 = δ0n0, d0 = δ1n0. In fact we can
realize this code by applying an asymptotically good binary code, having the same
rate, in parallel p times.

Let (Enc1,Dec1) be an asymptotically good (n1,m1, d1) error correcting code
from Lemma22 with alphabet {0, 1}, n1 = p + O(log n), m1 = δ0n1 = O(p),
d1 = δ1n0.

Encoding function Enc : {0, 1}m=Ω(n) → {0, 1}n is a random function which
is as follows.

1. On input x ∈ {0, 1}m, split x into blocks of length pm0 such that x =
(x̄1, . . . , x̄m/(pm0)) ∈ ({0, 1}pm0)m/(pm0).

2. Let y = (y1, . . . , yn′) = (Enc0(x̄1), . . . ,Enc0(x̄m/(pm0))) ∈ ({0, 1}p)n′
, n′ =

m/(δ0p)
3. Generate a random permutation π : [n′] → [n′].
4. Randomly pick l = O(log n) different indices r1, . . . , rl ∈ [n′] and let r =

(r1, . . . , rl).
5. For every i ∈ [n′], let ỹi = (yπ−1(i), π

−1(i), π−1(i � r1), . . . , π−1(i � rl), r).
6. Output z = (Enc1(ỹ1), . . . ,Enc1(ỹn′)) ∈ ({0, 1}n1)n′

.

Decoding function Dec : {0, 1}n=n1n′ → {0, 1}m is as follows.

1. On the input z, apply Dec1 on every block of length n0 to get ỹ.
2. Take the majority of the r in every ỹi, i ∈ [n′] to get r.
3. ∀i ∈ [n′], we do the following. Check that for every j ∈ [l], the corresponding

backup of π−1(i) in the (i � rj)th block is equal to the one stored in the ith
block. Take the approximate majority of these l tests, if the output is true
then mark ỹi as good, otherwise mark it as bad.

4. Compute the entries of y from shares that are marked as good. Other entries
are set as blank.

5. Apply Dec0 on every block of y of length pn0 to get x.
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Theorem 20. For any n ∈ N and any ε = 1/poly(n), there exists an explicit
(n,m = Ω(n), ρ = Ω(1)) stochastic binary error correcting code with decoding
error ε, which can be computed by AC0 circuits.

Note that if we set both levels of codes in our construction to be from
Lemma 22 with length poly log n and l to be also poly log n, we can get quasi-
polynomially small decoding error following the same proof. The result is stated
as the follows.

Theorem 21. For any n ∈ N, any ε = 2−poly log n, there exists an explicit
(n,m = Ω(n), ρ = Ω(1)) stochastic binary error correcting code with decoding
error ε, which can be computed by AC0 circuits.

We can use duplicating techniques to make the decoding error to be even
smaller, however with a smaller message rate.

Theorem 22. For any n, r ∈ N, there exists an (n,m = Ω(n/r), ρ = Ω(1))
stochastic binary error correcting code with decoding error 2−Ω(r/ log n), which
can be computed by AC0 circuits.

7.3 Secure Broadcasting

We give a protocol that allows n parties to securely communication their secret
inputs to each other using only a small amount of common secret randomness
and communication over a public broadcast channel. The protocol should be
secure against an external adversary who can (adaptively) observe and tamper
with a constant fraction of the messages. This notion is formalized in Definition 3.

Protocol 1. For any n,m ∈ N, for any i ∈ [n], let xi ∈ {0, 1}m be the input of
party i. Let the security parameter be r ∈ N with r ≤ m.

Let (RShare0,RRec0) be an (n0, k0 = δ0n0) robust secret sharing scheme with
share alphabet {0, 1}p=O(1), secret length m0 = m = δn0 and robustness parame-
ter d0 = δ1n0, as given by Theorem18 for some constant δ, δ0, δ1 with δ0 ≥ δ1.

Let (RShare1,RRec1) be an (n1, k1 = δ0n1) robust secret sharing scheme with
share alphabet {0, 1}p=O(1), secret length m1 = pn0/r = δn1 and robustness
parameter d1 = δ1n1, by Theorem18.

Assume that all parties have a common secret key s ∈ {0, 1}O(r log(nr)).
The i-th party does the following.

1. Generate a 2−Ω(r)-almost r-wise independent random permutation π over [nr]
using s.

2. Compute the secret shares yi = RShare0(xi) ∈ ({0, 1}p)n0 . Split yi into r
blocks each of length pn0/r such that yi = (yi,1, . . . , yi,r).

3. View the communication procedure as having [nr] time slots. For j ∈ [r], on
the π((i − 1)r + j)’s time slot, send message zi,j = RShare1(yi,j).
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4. For every i ∈ [n], j ∈ [r], compute yi,j = RRec1(zi,j), where zi,j is the message
received in the π((i − 1)r + j)’s time slot.

5. For every i ∈ [n] get yi = (yi,1, . . . , yi,r).
6. For every i ∈ [n], xi = RRec0(yi).

Theorem 23. For any n,m, r ∈ N with r ≤ m, there exists an explicit
(n,m,α = Ω(1), n2−Ω(r), n2−Ω(r) + nm2−Ω(m/r)) secure broadcasting protocol
with communication complexity O(nm) and secret key length O(r log(nr)).
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