
Constrained Keys for Invertible Pseudorandom
Functions

Dan Boneh, Sam Kim(B), and David J. Wu

Stanford University, Stanford, USA
skim13@cs.stanford.edu

Abstract. A constrained pseudorandom function (PRF) is a secure
PRF for which one can generate constrained keys that can only be used
to evaluate the PRF on a subset of the domain. Constrained PRFs are
used widely, most notably in applications of indistinguishability obfus-
cation (iO). In this paper we show how to constrain an invertible PRF
(IPF), which is significantly harder. An IPF is a secure injective PRF
accompanied by an inversion algorithm. A constrained key for an IPF
can only be used to evaluate the IPF on a subset S of the domain, and
to invert the IPF on the image of S. We first define the notion of a con-
strained IPF and then give two main constructions: one for puncturing
an IPF and the other for (single-key) circuit constraints. Both construc-
tions rely on recent work on private constrained PRFs. We also show that
constrained pseudorandom permutations for many classes of constraints
are impossible under our definition.

1 Introduction

Pseudorandom functions (PRFs) [34] and pseudorandom permutations
(PRPs) [41] have found numerous applications in cryptography, such as encryp-
tion, data integrity, user authentication, key derivation, and others. Invertible
PRFs are a natural extension that borrows features from both concepts. An
invertible PRF (IPF) is an efficiently-computable injective function F : K×X →
Y equipped with an efficient inversion algorithm F−1 : K × Y → X ∪ {⊥}. The
inversion algorithm is required to satisfy the following two properties for all
k ∈ K:

– (1) F−1
(
k, F(k, x)

)
= x for all x ∈ X .

– (2) F−1(k, y) = ⊥ whenever y is not in the image of f(x) := F(k, x).

We say that an IPF F is secure if no poly-bounded adversary can distinguish
the following two experiments. In one experiment the adversary is given oracles
for the function f(x) := F(k, x) and its inverse f−1(x) := F−1(k, x), where k is
randomly chosen in K. In the other experiment, the adversary is given oracles
for a random injective function g : X → Y and its inverse g−1 : Y → X ∪ {⊥}.
These two experiments should be indistinguishable. We define this in detail in

The full version of this paper is available at https://eprint.iacr.org/2017/477.pdf.

c© International Association for Cryptologic Research 2017
Y. Kalai and L. Reyzin (Eds.): TCC 2017, Part I, LNCS 10677, pp. 237–263, 2017.
https://doi.org/10.1007/978-3-319-70500-2_9

https://eprint.iacr.org/2017/477.pdf

238 D. Boneh et al.

Sect. 3. Note that when X = Y, an IPF is the same as a strong pseudorandom
permutation [41].

IPFs come up naturally in the context of deterministic authenticated encryp-
tion (DAE) [50], as discussed below. A closely related concept called a pseudoran-
dom injection (PRI) [50] is similar to an IPF except for some syntactic differences
(an IPF is a pseudorandom injection without additional length constraints and
with an empty header).

Constrained PRFs. In this paper we define and construct constrained IPFs.
It is helpful to first review constrained PRFs [19,21,40]. Recall that a PRF
F : K × X → Y is said to be a constrained PRF if one can derive constrained
keys from the master PRF key k. A constrained key kg is associated with a
predicate g : X → {0, 1}, and this kg enables one to evaluate F (k, x) for all
x ∈ X where g(x) = 1, but at no other points of X . A constrained PRF is secure
if given constrained keys for predicates g1, . . . , gQ of the adversary’s choosing,
the adversary cannot distinguish the PRF from a random function at points not
covered by the given keys, namely at points x where g1(x) = · · · = gQ(x) = 0.
We review the precise definition in Sect. 3.1.

Constrained PRFs have found numerous applications in cryptography
[19,21,40]: they imply identity-based key exchange and broadcast encryption,
and are a crucial ingredient in many applications of indistinguishability obfus-
cation (iO) [51].

The simplest non-trivial constraint is a puncturing constraint, a constraint
that enables one to evaluate the function on its entire domain except for one
point. For x ∈ X we denote by kx a punctured key that lets one evaluate the
PRF at all points in X , except for the punctured point x. Given the key kx,
the adversary should be unable to distinguish F (k, x) from a random element
in Y. PRFs supporting puncturing constraints can be easily constructed from
the tree-based PRF of [34], as discussed in [19,21,40].

Constrained IPFs. Given the wide applicability of constrained PRFs, it is natural
to look at constraining other symmetric primitives such as PRPs and, more
generally, IPFs. A constrained key kg for an IPF enables one to evaluate the IPF
at all points x ∈ X for which g(x) = 1, and invert at all points y = F(k, x′) ∈ Y
for which g(x′) = 1. Security for a constrained IPF is defined as for a PRF: the
adversary is given a number of constrained keys and tries to distinguish the IPF
from a random injective function at points not covered by any of the given keys.
See Sect. 3.1 for more details.

We first show in Sect. 3.3 that constrained PRPs for many constraint classes
do not exist in our model. However constrained IPFs, where the range can be
larger than the domain, can exist. The challenge is to construct them. Surpris-
ingly, constraining an IPF is significantly harder than constraining a PRF, even
for simple puncturing constraints. For example, it is not difficult to see that
puncturing a Luby-Rackoff cipher by puncturing the underlying PRFs does not
work.

Constrained Keys for Invertible Pseudorandom Functions 239

In this paper, we present constrained IPFs for both puncturing constraints
and for arbitrary circuit constraints. Both constructions make use of a recent
primitive called a private constrained PRF [18] that can be constructed from
the learning with errors (LWE) problem [15,22,24]. Roughly speaking, a private
constrained PRF is a constrained PRF where a constrained key kg reveals noth-
ing about the constraint g. Before we describe our constructions, let us first look
at an application.

IPFs and deterministic encryption. While constrained IPFs are interesting in
their own right, they come up naturally in the context of deterministic encryp-
tion. IPFs are related to the concept of deterministic authenticated encryption
(DAE) introduced by Rogaway and Shrimpton [50] where encryption is deter-
ministic and does not take a nonce as input. A DAE provides the same security
guarantees as (randomized) authenticated encryption, as long as all the messages
encrypted under a single key are distinct. Rogaway and Shrimpton show that an
IPF whose range is sufficiently larger than its domain is equivalent to a secure
DAE. They further require that the length of the IPF output depend only on
the length of the input, and this holds for all our constructions. Hence, our con-
strained IPFs give the ability to constrain keys in a DAE encryption scheme: the
constrained key holder can only encrypt/decrypt messages that satisfy a certain
predicate.

1.1 Building Constrained IPFs

In Sect. 4, we present two constructions for constrained IPFs on a domain
X = {0, 1}n. Our first construction, a warm-up, only supports puncturing con-
straints. Our second construction gives a constrained IPF for arbitrary circuit
constraints, but is only secure if a single constrained key is released. Here we
give the main ideas behind the constructions. Both rely heavily on the recent
development of private constrained PRFs. In Sect. 5, we show how to instantiate
our constructions from the LWE assumption. In Sect. 7, we also show that using
iO, it is possible to construct a multi-key, circuit-constrained IPF.

A puncturable IPF. Let F1 : K1 × X → V and F2 : K2 × V → X be two secure
PRFs. Define the following IPF F on domain X using a key k = (k(1), k(2)) ∈
K1 × K2:

F
(
(k(1), k(2)), x

)
:= F−1

(
(k(1), k(2)), (y1, y2)

)
:=

⎧
⎨

⎩

y1 ← F1(k(1), x)
y2 ← x ⊕ F2(k(2), y1)
output (y1, y2)

⎫
⎬

⎭

⎧
⎪⎪⎨

⎪⎪⎩

x ← F2(k(2), y1) ⊕ y2
if F1(k(1), x) �= y1

then x ← ⊥
output x

⎫
⎪⎪⎬

⎪⎪⎭

(1.1)

It is not difficult to show that F is a secure IPF. In fact, one can view this
IPF as an instance of a DAE construction called SIV (Synthetic-IV) [50].

The question is how to securely puncture F. As a first attempt, suppose F1 is
a puncturable PRF, say constructed from the tree-based GGM construction [34].

240 D. Boneh et al.

To puncture the IPF F at a point x ∈ X , one can puncture F1 at x to obtain the
IPF punctured key kx := (k(1)

x , k(2)). This key kx prevents the evaluation F at the
point x, as required. However, this is completely insecure. To see why, observe
that given kx, the adversary can easily distinguish F(k, x) from a random pair
in V × X : given a challenge value (y1, y2) for F(k, x), the adversary can simply
test if x = F2(k(2), y1) ⊕ y2. This will be satisfied by F(k, x), but is unlikely to
be satisfied by a random pair in V × X .

To properly puncture F at x we must puncture F1 at x and puncture F2 at
y1 := F1(k(1), x). The punctured key for F is then kx := (k(1)

x , k
(2)
y1). Here, it is

vital that the punctured key k
(2)
y1 reveal nothing about the punctured point y1.

Otherwise, it is again easy to distinguish F(k, x) = (y1, y2) from a random pair
in V × X using the exposed information about y1. To ensure that y1 is hidden,
we must use a private puncturable PRF for F2. Currently the best constructions
for a private puncturable PRF rely on the LWE assumption [15,22,24]. It is not
known how to construct a private puncturable PRF from one-way functions. We
show in Theorem 4.3 that with this setup, the puncturable IPF in (1.1) is secure.

A constrained IPF for circuit constraints. Next we generalize (1.1) to support
an arbitrary circuit constraint g. As a first step we can constrain k(1) to g so
that the IPF constrained key is kg := (k(1)

g , k(2)). We can use for F1 any of the
candidate circuit-constrained PRFs [19,23].

As before, this is insecure: for security we must also constrain F2. However
we immediately run into a problem. Following the blueprint in (1.1) we must
puncture F2 at all points F1(k(1), x) where g(x) = 0. However, because the
size of this set can be super-polynomial, we would need to constrain F2 to a
set containing super-polynomially-many pseudorandom points. The difficulty is
that F2 cannot efficiently test if an input v ∈ V satisfies v = F1(k(1), x) with
g(x) = 0. Because F1 is not invertible, this cannot be done even given k(1).

We solve this problem by replacing F1(k(1), x) with a CCA-secure public-
key encryption PKE.Encrypt(pk, x; rx), where the randomness rx = F1(k(1), x)
is derived from F1 and pk is the public key. In this case, the input to F2 is
a ciphertext ct that encrypts the point x. The output of the IPF is the pair
(ct, F2(k(2), ct)⊕x). When constraining F2, we embed the secret decryption key
sk for the public-key encryption scheme in the constrained key. Then, on an input
ciphertext ct, the constraint function first decrypts ct (using sk) to obtain a value
x ∈ X , and then checks if g(x) = 1. Because knowledge of sk allows one to invert
on all points, it is critical that the constrained key hides sk. Here, we rely on
a strong simulation-based notion of constraint privacy [15,24]. In Theorem 4.7,
we show that as long as the underlying PKE scheme is CCA-secure and F2 is a
(single-key) private constrained PRF, then the resulting scheme is a (single-key)
secure circuit-constrained IPF.

By design, our circuit-constrained IPF provides two ways to invert: the
“honest” method where on input (ct, y2), the evaluator uses the PRF key k(2)

to compute a (candidate) preimage x ← F2(k(2), ct) ⊕ y2, and the “trapdoor”
method where an evaluator who holds the decryption key for the public-key

Constrained Keys for Invertible Pseudorandom Functions 241

encryption scheme simply decrypts ct to recover the (candidate) preimage x.
The inversion trapdoor plays an important role in the security analysis of our
circuit-constrained IPF because it enables the reduction algorithm to properly
simulate the inversion oracle queries in the IPF security game. We refer to the
full version of this paper [16] for the complete details.

Theorems 4.3 and 4.7 state that our puncturable IPF and circuit-constrained
IPF are secure assuming the security (and privacy) of the underlying constrained
PRFs (and in the latter case, CCA-security of the public-key encryption scheme).
While it may seem that security of the IPF should directly follow from security
of the underlying puncturable (or constrained) PRFs, several complications arise
in the security analysis because we give the adversary access to an IPF inversion
oracle in the security game. As a result, our security analysis requires a more
intricate hybrid argument where we appeal to the security of the underlying
constrained PRFs multiple times. We provide the complete proofs in the full
version [16].

A multi-key constrained IPFs from iO. In Sect. 7, we also show that an indis-
tinguishability obfuscation of the puncturable IPF from (1.1) gives a multi-
key circuit-constrained IPF. This construction parallels the Boneh-Zhandry
construction of multi-key circuit-constrained PRFs from standard puncturable
PRFs and indistinguishability obfuscation [20].

Supporting key-delegation. Several constrained PRF constructions support a
mechanism called key-delegation [19,26,27], where the holder of a constrained
PRF key can further constrain the key. For instance, the holder of a constrained
key kf for a function f can further constrain the key to a function of the form
f ∧ g where (f ∧ g)(x) = 1 if and only if f(x) = g(x) = 1. In Sect. 6, we describe
how our circuit-constrained IPF can be extended to support key-delegation.

Open problems. Our impossibility results for constrained PRPs rule out any con-
straint class that enables evaluation on a non-negligible fraction of the domain.
For example, this rules out the possibility of a puncturable PRP. Can we
build constrained PRPs for constraint families that allow evaluation on a more
restricted subset of the domain? For instance, do prefix-constrained PRPs exist?

Our circuit-constrained IPF from LWE is secure only if a single constrained
key is issued. In Sect. 6, we show how to modify our construction to support
giving out a pre-determined number of keys, provided that each successive key
adds a further constraint on the previous key (i.e., via key delegation). Is there
an IPF that supports multiple constrained keys for an arbitrary set of circuit
constraints (and does not rely on strong assumptions such as iO or multilin-
ear maps)? A positive answer would also give a circuit-constrained PRF that
supports multiple keys, which is currently an open problem.

Our circuit-constrained IPF relies on the LWE assumption. Can we build
constrained IPFs from one-way functions? For example, the tree-based PRF
of [34] gives a prefix-constrained PRF from one-way functions. Can we build a
prefix-constrained IPF from one-way functions?

242 D. Boneh et al.

1.2 Related Work

Authenticated encryption was first formalized over a sequence of works [10,11,
39,48,49]. Deterministic authenticated encryption, and the notion of a pseudo-
random injection, were introduced in [50]. These notions have been further stud-
ied in [37,38]. Our circuit-constrained IPF relies on derandomizing a public-key
encryption scheme. Similar techniques have been used in the context of con-
structing deterministic public-key encryption [6,7,12,31]. Note however that an
IPF is a secret-key primitive, so in our setting, the randomness used for encryp-
tion can be derived using a PRF on the message rather than as a publicly-
computable function on the input. This critical difference eliminates the need to
make entropic assumptions on the inputs.

Since the introduction of constrained PRFs in [19,21,40], numerous works
have studied constraining other cryptographic primitives such as verifiable ran-
dom functions (VRFs) [26,27,29] and signatures [8,21]. Other works have focused
on constructing adaptively-secure constrained PRFs [30,35,36] and constrained
PRFs for inputs of unbounded length [27,28].

2 Preliminaries

For a positive integer n, we write [n] to denote the set {1, 2, . . . , n}. For a distri-
bution D, we write x ← D to denote that x is sampled from D; for a finite set S,
we write x ←R S to denote that x is sampled uniformly from S. Throughout this
work, we write λ for the security parameter. We say a function f(λ) is negligible
in λ if f(λ) = o(1/λc) for all c ∈ N. We denote this by writing f(λ) = negl(λ).
We say that an algorithm is efficient if it runs in probabilistic polynomial time
in the length of its input. We write poly(λ) to denote a quantity that is bounded
by some polynomial in λ. We say that an event occurs with overwhelming prob-
ability if its complement occurs with negligible probability, and that it occurs
with noticeable probability if it occurs with non-negligible probability. We say
that two families of distributions D1 and D2 are computationally indistinguish-
able if no efficient algorithm can distinguish between D1 and D2, except with
negligible probability. We say that D1 and D2 are statistically indistinguishable
if the statistical distance between D1 and D2 is negligible.

Function families. For two sets X , Y, we write Funs[X ,Y] to denote the set
of functions from X to Y. We write InjFuns[X ,Y] to denote the set of injective
functions from X to Y. For an injective function f ∈ InjFuns[X ,Y], we denote by
f−1 : Y → X ∪ {⊥} the function where f−1(y) = x if y = f(x), and ⊥ if there
is no such x ∈ X . We sometimes refer to f−1 as the (generalized) inverse of f .
When the domain and range are the same, the set InjFuns[X ,X] is precisely the
set of permutations on X .

Constrained Keys for Invertible Pseudorandom Functions 243

2.1 CCA-Secure Public-Key Encryption

A PKE scheme consists of three algorithms PKE = (PKE.Setup,PKE.Encrypt,
PKE.Decrypt) over a message space M and a ciphertext space T with the fol-
lowing properties:

– PKE.Setup(1λ) → (pk, sk): On input the security parameter λ, the setup algo-
rithm generates a public key pk and a secret key sk.

– PKE.Encrypt(pk,m) → ct: On input a public key pk and a message m ∈ M,
the encryption algorithm returns a ciphertext ct ∈ T .

– PKE.Decrypt(sk, ct) → m: On input a secret key sk and a ciphertext ct ∈ T ,
the decryption algorithm outputs a message m ∈ M ∪ {⊥}.

We say that a PKE scheme is correct if for all keys (pk, sk) ← PKE.Setup(1λ),
and for all messages m ∈ M, we have that

Pr[PKE.Decrypt(sk,PKE.Encrypt(pk,m)) = m] = 1.

Definition 2.1 (CCA-Security [43,46]). Let PKE = (PKE.Setup,
PKE.Encrypt,PKE.Decrypt) be a PKE scheme with message space M and cipher-
text space T , and let A be an efficient adversary. For a security parameter λ

and a bit b ∈ {0, 1}, we define the CCA-security experiment Expt
(CCA)
A,PKE(λ, b) as

follows. The challenger first samples (pk, sk) ← PKE.Setup(1λ). The adversary
can then issue decryption oracle queries and up to one challenge oracle query.1

Depending on the bit b ∈ {0, 1}, the challenger responds to each query as follows:

– Decryption oracle. On input a ciphertext ct ∈ T , the challenger responds
with the decryption m ← PKE.Decrypt(sk, ct).

– Challenge oracle. On input two messages m0,m1 ∈ M, the challenger
responds with the ciphertext ct∗ ← PKE.Encrypt(pk,mb).

At the end of the experiment, the adversary A outputs a bit b′ ∈ {0, 1} which is
the output of the experiment. An adversary A is admissible if A does not submit
the ciphertext ct∗ it received from the challenge oracle to the decryption oracle.
We say that PKE is secure against chosen-ciphertext attacks (CCA-secure) if for
all efficient and admissible adversaries A,

∣
∣
∣Pr[Expt(CCA)A,PKE(λ, 0) = 1] − Pr[Expt(CCA)A,PKE(λ, 1) = 1]

∣
∣
∣ = negl(λ).

1 In the public-key setting, security against adversaries that make a single challenge
query implies security against adversaries that make multiple challenge queries (via
a standard hybrid argument).

244 D. Boneh et al.

Smoothness. In our security analysis, we require that our public-key encryp-
tion scheme satisfy an additional smoothness property. We say that a public-key
encryption scheme is smooth if every message can encrypt to a super-polynomial
number of potential ciphertexts. This property is satisfied by most natural
public-key encryption schemes. After all, if the adversary can find a message
m that has only polynomially-many ciphertexts, then the adversary can triv-
ially break semantic security of the scheme. Of course, it is possible to craft
public-key encryption schemes [9] where there exist (hard-to-find) messages that
encrypt to only polynomially-many ciphertexts. We give the formal definition of
smoothness in Definition 2.2.

Definition 2.2 (Smoothness [9, adapted]). A PKE scheme PKE =
(PKE.Setup,PKE.Encrypt,PKE.Decrypt) with message space M and ciphertext
space T is smooth if for all messages m ∈ M and all strings ct ∈ T ,

Pr
[
(pk, sk) ← PKE.Setup(1λ) : PKE.Encrypt(pk,m) = ct

]
= negl(λ),

where the probability is taken over the randomness in PKE.Setup and
PKE.Encrypt.

3 Invertible PRFs

In this section, we introduce the notion of an invertible pseudorandom function
(IPF). We then extend our notions to that of a constrained IPF. We begin by
recalling the definition of a pseudorandom function (PRF) [34].

Definition 3.1 (Pseudorandom Function [34]). A pseudorandom function
(PRF) with key-space K, domain X , and range Y is a function F : K × X → Y
that can be computed by a deterministic polynomial-time algorithm.APRF can also
include a setup algorithm F.Setup(1λ) that on input the security parameter λ, out-
puts a key k ∈ K. A function F is a secure PRF if for all efficient adversaries A,
∣
∣
∣Pr

[
k ← F.Setup(1λ) : AF(k,·)(1λ) = 1

]

− Pr
[
R ←R Funs[X ,Y] : AR(·)(1λ) = 1

]∣∣
∣ = negl(λ).

An invertible pseudorandom function (IPF) is an injective PRF whose inverse
function can be computed efficiently (given the secret key). This requirement
that the inverse be efficiently computable is the key distinguishing factor between
IPFs and injective PRFs. For instance, injective PRFs can be constructed by
composing a sufficiently-expanding PRF with a pairwise-independent hash func-
tion. However, it is unclear how to invert such a PRF. We now give the definition
of an IPF.

Definition 3.2 (Invertible Pseudorandom Functions). An invertible
pseudorandom function (IPF) with key-space K, domain X , and range Y consists
of two functions F : K × X → Y and F−1 : K × Y → X ∪ {⊥}. An IPF can also
include a setup algorithm F.Setup(1λ) that on input the security parameter λ,
outputs a key k ∈ K. The functions F and F−1 satisfy the following properties:

Constrained Keys for Invertible Pseudorandom Functions 245

– Both F and F−1 can be computed by deterministic polynomial-time algorithms.
– For all security parameters λ and all keys k output by F.Setup(1λ), the func-

tion F(k, ·) is an injective function from X to Y. Moreover, the function
F−1(k, ·) is the (generalized) inverse of F(k, ·).

Definition 3.3 (Pseudorandomness). An IPF F : K × X → Y is secure if
for all efficient adversaries A,
∣
∣
∣Pr
[

k ← F.Setup(1λ) : AF(k,·), F−1(k,·)(1λ)
]

− Pr
[

R ←R InjFuns[X , Y] : AR(·), R−1(·)(1λ)
]∣
∣
∣ = negl(λ).

Remark 3.4 (Strong vs. Weak Pseudorandomness). The pseudorandomness
requirement for an IPF (Definition 3.3) requires that the outputs of an IPF
be indistinguishable from random against adversaries that can query the IPF in
both the forward direction as well as the backward direction. We can also con-
sider a weaker notion of pseudorandomness where the adversary is given access
to an evaluation oracle F(k, ·), but not an inversion oracle F−1(k, ·). Motivated
by the applications we have in mind, in this work, we focus exclusively on build-
ing IPFs satisfying the strong notion of pseudorandomness from Definition 3.3,
where the adversary can evaluate the IPF in both directions.

3.1 Constrained PRFs and IPFs

We next review the notion of a constrained PRF [19,21,40] and then extend
these definitions to constrained IPFs.

Definition 3.5 (Constrained PRF [19,21,40]). A PRF F : K×X → Y is said
to be constrained with respect to a predicate family F = {f : X → {0, 1}} if there
are two additional algorithms (F.Constrain,F.Eval) with the following properties:

– F.Constrain(k, f) → kf : On input a PRF key k ∈ K and a function f ∈ F ,
the constraining algorithm outputs a constrained key kf .

– F.Eval(kf , x) → y: On input a constrained key kf and a point x ∈ X , the
evaluation algorithm outputs a value y ∈ Y.

We say that a constrained PRF is correct for a function family F if for all
k ← F.Setup(1λ), every function f ∈ F , and every input x ∈ X where f(x) = 1,
we have that

F.Eval(F.Constrain(k, f), x) = F(k, x).

Definition 3.6 (Constrained PRF Security Experiment). Let F : K ×
X → Y be a constrained PRF with respect to a function family F , and
let A be an efficient adversary. In the constrained PRF security experiment
Expt

(PRF)
A,F (λ, b) (parameterized by a security parameter λ and a bit b ∈ {0, 1}),

the challenger begins by sampling a key k ← F.Setup(1λ) and a random func-
tion R ←R Funs[X ,Y]. The adversary is allowed to make constrain, evaluation,
and challenge oracle queries. Depending on the value of the bit b ∈ {0, 1}, the
challenger responds to each oracle query as follows:

246 D. Boneh et al.

– Constrain oracle. On input a function f ∈ F , the challenger responds with
a constrained key kf ← F.Constrain(k, f).

– Evaluation oracle. On input a point x ∈ X , the challenger returns y =
F(k, x).

– Challenge oracle. On input a point x ∈ X , the challenger returns y =
F(k, x) to A if b = 0 and y = R(x) if b = 1.

Finally, at the end of the experiment, the adversary A outputs a bit b′ ∈ {0, 1}
which is also the output of the experiment.

Definition 3.7 (Constrained PRF Security). Let F : K×X → Y be a con-
strained PRF for a function family F . We say that an adversary A is admissible
for the constrained PRF security experiment (Definition 3.6) if the following
conditions hold:

– For all constrain queries f ∈ F and challenge queries x∗ ∈ X the adversary
makes, f(x∗) = 0.

– For all evaluation queries x ∈ X and challenge queries x∗ ∈ X the adversary
makes, x �= x∗.

We say that F is a secure constrained PRF if for all efficient and admissible
adversaries A,

∣
∣
∣Pr[Expt(PRF)A,F (λ, 0) = 1] − Pr[Expt(PRF)A,F (λ, 1) = 1]

∣
∣
∣ = negl(λ).

Without loss of generality, we restrict the adversary to make at most one chal-
lenge query in the constrained PRF security experiment.2

Remark 3.8 (Selective vs. Adaptive Security). The constrained PRF security game
(Definition 3.6) allows the adversary to adaptively choose the challenge point after
making constrain and evaluation queries. We can also define a selective notion of
security where the adversary must commit to its challenge query at the beginning
of the security game (before it starts making queries). Using a standard technique
called complexity leveraging [13], selective security implies adaptive security at the
expense of a super-polynomial loss in the security reduction. For instance, this is
the technique used in [19] in the context of constrained PRFs.

Remark 3.9 (Single-Key Security). Brakerski and Vaikuntanathan [23] consid-
ered another relaxation of Definition 3.7 where in the constrained PRF security
game (Definition 3.6), the adversary is restricted to making a single query to the
constrain oracle. In the single-key setting, we can consider the notion of selective-
function security, where the adversary must commit to its constrain oracle query
at the beginning of the security experiment. Thus, in this setting, there are two
different notions of selectivity: the usual notion where the adversary commits

2 As noted in [19], a standard hybrid argument shows that security against adversaries
making a single challenge query implies security against adversaries making multiple
challenge queries.

Constrained Keys for Invertible Pseudorandom Functions 247

to the challenge point (Remark 3.8) and selective-function security where the
adversary commits to the function. Many of the lattice-based (single-key) con-
strained PRF constructions [15,22–24] are selectively secure in the choice of the
constraint function, but adaptively secure in the choice of the challenge point.

Definition 3.10 (Constrained IPF). An IPF (F,F−1) with key-space K,
domain X , and range Y is said to be constrained with respect to a function fam-
ily F = {f : X → {0, 1}} if there are three additional algorithms (F.Constrain,
F.Eval,F.Eval−1) with the following properties:

– F.Constrain(k, f) → kf : On input a PRF key k ∈ K and a function f ∈ F ,
the constraining algorithm outputs a constrained key kf .

– F.Eval(kf , x) → y: On input a constrained key kf and a value x ∈ X , the
evaluation algorithm outputs a value y ∈ Y.

– F.Eval−1(kf , y) → x: On input a constrained key kf and a value y ∈ Y, the
evaluation algorithm outputs a value x ∈ X ∪ {⊥}.

We say that a constrained IPF is correct for a function family F if for all
keys k ← F.Setup(1λ), every function f ∈ F , and kf ← F.Constrain(k, f), the
following two properties hold:

– For all inputs x ∈ X where f(x) = 1, F.Eval(kf , x) = F(k, x).
– For all inputs y ∈ Y where there exists x ∈ X such that F(k, x) = y and

f(x) = 1, then F.Eval−1(kf , y) = F−1(k, y).

Definition 3.11 (Constrained IPF Security Experiment). Let (F,F−1)
be an IPF with key-space K, domain X , range Y, and constrained with respect to
a function family F . Let A be an efficient adversary. The constrained IPF secu-
rity experiment Expt(IPF)A,F (λ, b) is defined exactly as the constrained PRF security

experiment Expt
(PRF)
A,F (λ, b) (except with the IPF in place of the PRF and the

random function R is sampled from InjFuns[X ,Y]), and in addition to the con-
strain, evaluation, and challenge oracles, the adversary is also given access to
an inversion oracle:

– Inversion oracle. On input a point y ∈ Y, the challenger returns F−1(k, y).

At the end of the experiment, the adversary A outputs a bit b′ ∈ {0, 1}, which is
the output of the experiment.

Definition 3.12 (Constrained IPF Security). Let (F,F−1) be an IPF with
key-space K, domain X , range Y, and constrained with respect to a function
family F . We say that an adversary A is admissible for the constrained IPF
security experiment (Definition 3.11) if the following conditions hold:

– For all constrain queries f ∈ F and challenge queries x∗ ∈ X the adversary
makes, f(x∗) = 0.

– For all evaluation queries x ∈ X and challenge queries x∗ ∈ X the adversary
makes, x �= x∗.

248 D. Boneh et al.

– For all inversion queries y ∈ Y the adversary makes, y /∈ Y∗, where Y∗

is the set of responses to the adversary’s challenge oracle queries from the
challenger.

We say that F is a secure constrained IPF if for all efficient and admissible
adversaries A,

∣
∣
∣Pr[Expt(IPF)A,F (λ, 0) = 1] − Pr[Expt(IPF)A,F (λ, 1) = 1]

∣
∣
∣ = negl(λ).

As in Definition 3.7, we restrict the adversary to making at most one challenge
query in the constrained IPF security experiment.

Remark 3.13 (Selective vs. Adaptive Security for IPFs). As with constrained
PRFs, we can define a notion of selective security for IPFs, where the adversary
commits to its challenge query at the beginning of the constrained IPF security
experiment (Remark 3.8). Similarly, we can consider a single-key variant of the
security game, where the adversary makes a single constrain oracle query. In this
case, we can also define the corresponding notion of selective-function security
(Remark 3.9).

Puncturable PRFs and IPFs. An important subclass of constrained PRFs is
the class of punctured PRFs [19,21,40]. A punctured PRF over a domain
X is a PRF constrained with respect to the family of point functions: F =
{fx∗ : X → {0, 1} | x∗ ∈ X}, where fx∗(x) = 1 for all x �= x∗ and fx∗(x∗) = 0.
For notational convenience, when working with a puncturable PRF F : K×X →
Y, we replace the F.Constrain algorithm with the F.Puncture algorithm that takes
as input a PRF key k and a point x∗ ∈ X and outputs a punctured key kx∗ (a
key constrained to the point function fx∗). We extend these notions accordingly
to puncturable IPFs.

3.2 Private Constrained PRFs

One of the key primitives we will need to build constrained IPFs is a private
constrained PRF [18]. A private constrained PRF is a constrained PRF with
the additional property that the constrained keys hide the underlying constrain-
ing function. Boneh et al. [18] showed how to construct private constrained
PRFs for all circuits using indistinguishability obfuscation. Recently, a number
of works have shown how to construct private constrained PRFs for puncturing
constraints [15], NC1 constraints [24], and general circuit constraints [22] from
standard lattice assumptions. We now review the simulation-based notion of
privacy considered in [15,24].

Definition 3.14 (Single-Key Constraint Privacy [15,24]). Let F : K×X →
Y be a constrained PRF with respect to a function family F . We say that F is
a single-key, selectively-private constrained PRF for F if for all efficient adver-
saries A = (A1,A2), there exists a stateful simulator S = (S1,S2) such that the
following two distributions are computationally indistinguishable:

Constrained Keys for Invertible Pseudorandom Functions 249

Experiment RealA,F(λ):

– (f, stA) ← A(1λ)
– k ← F.Setup(1λ)
– kf ← F.Constrain(k, f)
– b ← AF(k,·)(kf , stA)
– Output b

Experiment IdealA,S,F(λ):

– (f, stA) ← A(1λ)
– (kf , stS) ← S1(1λ)
– b ← AOEval(·)(kf , stA), where the ideal

evaluation oracle OEval(·) takes as input
a point x ∈ X , computes (y, stS) ←
S2(x, f(x), stS), and returns y

– Output b

Observe that the simulator (S1, S2) in the ideal experiment is not given the
function f as input. Nevertheless, the simulator can simulate kf as in the real
experiment. This implies that the adversary learns nothing about f from kf

beyond the value of f at points x ∈ X where the adversary asks for F(k, x).
Leaking this minimal information about f is unavoidable.

3.3 Special Cases: PRPs and Constrained PRPs

Invertible pseudorandom functions can be viewed as a generalization of pseudo-
random permutations (PRPs) where we allow the range of the function to be
larger than its domain. A PRP is an IPF where the domain and range are identi-
cal. Our definitions for constrained IPFs can be similarly adapted to the setting
of constrained PRPs. In this section, we make several observations on the (non)-
existence of constrained PRPs, as well as discuss some possible relaxations of the
security requirements to circumvent the impossibility results. We first show that
constrained PRPs (for any family of constraints) on polynomial-size domains do
not exist. Next, we show that even over large domains, security for many natural
classes of constraints, including puncturing, is impossible to achieve. Our argu-
ment here can be extended to derive a lower bound on the size of the range of
any IPF that supports puncturing constraints (or more generally, any constraint
that enables evaluation a non-negligible fraction of the domain).

Remark 3.15 (Small-Domain Constrained PRPs are Insecure). No constrained
PRP over a polynomial-size domain can be secure under the standard pseudo-
randomness definition of Definition 3.12. This follows from the fact that a PRP is
easily distinguishable from a PRF when the domain is small—given even a single
input-output pair (x∗, y∗) for the PRP, the adversary already learns something
about the values of the PRP at any point x �= x∗ (namely, the value of the PRP
at x cannot be y∗). Thus, the adversary can distinguish the real output of the
PRP at x �= x∗ (which cannot be y∗) from a uniformly random value (which can
be y∗ with noticeable probability when the domain is small).

Theorem 3.16 (Limitations on Constrained PRPs). Let F : K × X → X
be a PRP constrained with respect to a predicate family F . For each predicate

250 D. Boneh et al.

f ∈ F , let Sf = {x ∈ X : f(x) = 1} denote the set of allowable points for f . If
there exists f ∈ F where the quantity |Sf | / |X | is non-negligible, then F cannot
be secure in the sense of Definition 3.12.

Proof. Suppose there exists f ∈ F where |Sf | / |X | is non-negligible. We con-
struct the following adversary for the constrained security game:

1. First, A makes a constrain query for f and a challenge query on an arbitrary
x∗ ∈ X where f(x∗) = 0. It receives from the challenger a punctured key kf

and a challenge value y∗.
2. Then, A computes x ← F.Eval−1(kf , y∗), and outputs 1 if either of the fol-

lowing conditions hold:
– if f(x) = 0, or
– if F.Eval(kf , x) �= y∗.

Otherwise, A outputs 0.

To complete the analysis, we compute the probability that A outputs 1:

– Suppose y∗ = F(k, x∗). Consider the case where f(x) = 1. Note in particular
that this means x �= x∗. By correctness of F, we have that F.Eval(kf , x) =
F(k, x). Moreover, since F(k, ·) is a permutation, it follows that F(k, x) �=
F(k, x∗) = y∗. Thus, in this case, either f(x) = 0 or F.Eval(kf , x) �= y∗, so we
conclude that A outputs 1 with probability 1.

– Suppose y∗ is uniformly random over X . Let x̂ = F−1(k, y∗). Suppose that
f(x̂) = 1. Then, by correctness of F, we have that

x = F.Eval−1(kf , y∗) = F−1(k, y∗) = x̂.

Moreover, since f(x̂) = 1, we have

F.Eval(kf , x) = F.Eval(kf , x̂) = F(k, x̂) = y∗.

Thus, whenever f(x̂) = 1, adversary A outputs 1 with probability 0. Since y∗

is uniformly random over X and F(k, ·) is a permutation,

Pr[A outputs 1] ≤ Pr[f(x̂) = 0] = 1 − |Sf | / |X | .

We conclude that A breaks the constrained security of F with advantage
|Sf | / |X |, which is non-negligible by assumption. ��

Corollary 3.17 (Puncturable PRPs are Insecure). Let F : K × X → X
be a puncturable PRP. Then, F is insecure in the sense of Definition 3.12.

Proof. The set of allowable points Sf for a puncturing constraint f is always
|X | − 1, so the ratio |Sf | / |X | is always non-negligible. The claim then follows
from Theorem 3.16. ��

Constrained Keys for Invertible Pseudorandom Functions 251

Remark 3.18 (Constrained PRPs for Very Restricted Constraint Classes).
Theorem 3.16 rules out any constrained PRP that supports issuing constrained
keys that can be used to evaluate on a non-negligible fraction of the domain. It
does leave open the possibility of building constrained PRPs where each con-
strained key can only be used to evaluate on a negligible fraction of the domain.
A natural class of constraints that satisfies this property is the class of prefix-
constrained PRPs (for a prefix of super-logarithmic size). We leave it as an open
problem to construct a prefix-constrained PRP, or more generally, a constrained
PRP where all of the constrained keys can only be used to evaluate on a negli-
gible fraction of the domain.

Remark 3.19 (Constrained IPFs Must be Expanding). The attack from the proof
of Theorem 3.16 also extends to the setting where F : K×X → Y is a constrained
IPF with a small range. Specifically, if |Y| ≤ |X |·poly(λ), and F supports issuing
a constrained key for a function f : X → {0, 1} where |Sf | / |X | is non-negligible,
then F cannot be secure in the sense of Definition 3.12. In this setting, we would
modify the distinguisher in the proof of Theorem3.16 to additionally output 1
if x = ⊥. With this modification, the distinguishing advantage of the attack
only decreases by a polynomial factor |X | / |Y| = 1/poly(λ). Therefore, any
constrained IPF that admits a constraint that can be used to evaluate the IPF
on a non-negligible fraction of the domain must necessarily have a range that
is larger than the domain by at least a super-polynomial factor. Concretely, a
puncturable IPF must have a range that is super-polynomially larger than the
domain.

Remark 3.20 (Weaker Security Relations). The lower bound in Theorem3.16
only applies when we require that the IPF value at a constrained point appear
pseudorandom given the constrained key. One way to circumvent the lower bound
is to consider a weaker security notion where we just require the IPF value at
a constrained point to be unpredictable rather than pseudorandom (given the
constrained key). In other words, no efficient adversary should be able to predict
F(k, x) given a constrained key kf that does not allow evaluation at x. While the
weaker security properties are potentially satisfiable, they may not be sufficient
for specific applications.

4 Constructing Constrained IPFs

We now turn to constructing constrained IPFs and give two main constructions
in this section. Our main constructions use private constrained (non-invertible)
PRFs as the primary tool. As a warm-up, we first construct a puncturable IPF
from a private puncturable PRF in Sect. 4.1. We then show how the basic IPF
construction can be extended to obtain a (single-key) circuit-constrained IPF in
Sect. 4.2. In Sect. 7, we also show that an indistinguishability obfuscation of the
basic puncturable IPF gives a multi-key circuit-constrained IPF.

252 D. Boneh et al.

4.1 Warm-Up: Puncturable IPF from Private Puncturable PRFs

We begin by showing how to construct a puncturable IPF on a domain X from
a private puncturable PRF on X . We describe the construction and then show
in Theorems 4.2 and 4.3 that it is a secure puncturable IPF.

Construction 4.1. Fix a domain X = {0, 1}n where n = n(λ). Let F1 : K1 ×
X → V be an injective puncturable PRF with key-space K1 and range V. Let
F2 : K2 × V → X be a private puncturable PRF with key-space K2. The punc-
turable IPF F : K × X → Y with key-space K = K1 × K2, domain X , and range
Y = V × X is defined as follows:

– The IPF key is a pair of keys k = (k(1), k(2)) ∈ K1 × K2 for the puncturable
PRFs F1 and F2.

– On input k = (k(1), k(2)) ∈ K1 × K2 = K, and x ∈ X the IPF is defined as
the pair

F
(
(k(1), k(2)), x

)
:=

(
F1(k(1), x), x ⊕ F2(k(2),F1(k(1), x)

)
.

– On input k = (k(1), k(2)) ∈ K1 × K2 = K, and y = (y1, y2) ∈ V × X = Y, the
inversion algorithm F−1(k, y) first computes x ← F2(k(2), y1)⊕y2 and outputs

F−1(k, (y1, y2)) :=

{
x if y1 = F1(k(1), x)
⊥ otherwise.

Next, we define the setup and constraining algorithms for (F,F−1).

– F.Setup(1λ): On input the security parameter λ, the setup algorithm samples
two puncturable PRF keys k(1) ← F1.Setup(1λ) and k(2) ← F2.Setup(1λ). The
setup algorithm outputs the IPF key k = (k(1), k(2)).

– F.Puncture(k, x∗): On input the IPF key k = (k(1), k(2)) and a point x∗ ∈ X
to be punctured, the puncturing algorithm first computes v∗ ← F1(k(1), x∗).
It then generates two punctured keys k

(1)
x∗ ← F1.Puncture(k(1), x∗) and k

(2)
v∗ ←

F2.Puncture(k(2), v∗) and returns kx∗ =
(
k
(1)
x∗ , k

(2)
v∗

)
.

– F.Eval(kx∗ , x): On input the punctured key kx∗ = (k(1)
x∗ , k

(2)
v∗) and a point x ∈

X , the evaluation algorithm first computes y1 ← F1.Eval(k
(1)
x∗ , x) and returns

y = (y1,F2.Eval(k
(2)
v∗ , y1) ⊕ x).

– F.Eval−1(kx∗ , y): On input the punctured key kx∗ = (k(1)
x∗ , k

(2)
v∗), and y =

(y1, y2) ∈ V × X = Y, the inversion algorithm begins by computing the quan-
tity x ← F2.Eval(k

(2)
v∗ , y1) ⊕ y2. It returns x if F1.Eval(k

(1)
x∗ , x) = y1 and ⊥

otherwise.

We now state our correctness and security theorems. We provide the formal
proofs in the full version [16].

Theorem 4.2. Suppose F1 is an injective puncturable PRF and F2 is a punc-
turable PRF. Then, the IPF (F,F−1) from Construction 4.1 is correct.

Constrained Keys for Invertible Pseudorandom Functions 253

Theorem 4.3. Suppose F1 is a selectively-secure puncturable PRF, F2 is a
selectively-secure, private puncturable PRF, and |X | / |V| = negl(λ). Then
(F,F−1) from Construction 4.1 is a selectively-secure puncturable IPF.

Remark 4.4 (Adaptive Security). Theorem 4.3 shows that if the underlying punc-
turable PRFs in Construction 4.1 are selectively secure, then the resulting IPF
is selectively secure. We note that if we instantiate the underlying PRFs with
an adaptively-secure (private) puncturable PRF (for instance, the construction
due to Canetti and Chen [24]), then the resulting IPF can also be shown to
be adaptively secure (following a similar argument as that used in the proof of
Theorem 4.3).

4.2 Circuit-Constrained IPF from Private Circuit-Constrained
PRFs

In this section, we show how to extend our puncturable IPF construction from
Sect. 4.1 to obtain a (single-key) constrained IPF for arbitrary circuit constraints.
Our security analysis for our circuit-constrained IPF construction relies critically
on the assumption that one of the underlying PRFs is a circuit-constrained PRF
satisfying a strong simulation-based notion of privacy (Definition 3.14). Canetti
and Chen [24] previously showed that even a 2-key private constrained PRF sat-
isfying this simulation-based notion of privacy implies virtual black-box (VBB)
obfuscation for the same underlying circuit class. Since VBB obfuscation for all
circuits is impossible in the standard model [5], our construction is instantiat-
able only in the single-key setting, and thus, we present our construction in the
single-key setting.

Construction 4.5. Fix a domain X = {0, 1}n where n = n(λ). Our circuit-
constrained IPF construction for NC1 (resp., P/poly) relies on several primitives:

– Let PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt) be a PKE scheme with
message space X , ciphertext space T , and whose decryption function can be
computed in NC1 (resp., P/poly). Let PK and SK denote the space of public
keys and the space of secret keys, respectively, for PKE. Let V denote the space
from which the randomness for encryption is sampled.

– Let F1 : K1 × X → V be a circuit-constrained PRF for NC1 (resp., P/poly).
– Let F2 : K2 × T → X be a private circuit-constrained PRF for NC1 (resp.,

P/poly).3

3 To simplify the presentation, we implicitly assume that the PRFs F1 and F2 sup-
port general circuit constraints (i.e., NC1 constraints or P/poly constraints). How-
ever, we can also instantiate our construction using private constrained PRFs for
weaker constraint classes, provided that the constraint class is expressive enough to
include the decryption algorithm for a CCA-secure public-key encryption scheme
(see Remark 4.8).

254 D. Boneh et al.

The constrained IPF F : K×X → Y with key-space K = K1×K2×PK×SK,
domain X , and range Y ⊆ T × X is defined as follows:

– The IPF key consists of two PRF keys (k(1), k(2)) ∈ K1 × K2 for F1 and F2,
respectively, and a public/secret key-pair (pk, sk) ∈ PK×SK for the public-key
encryption scheme PKE.

– On input a key k = (k(1), k(2), pk, sk) ∈ K, and x ∈ X , the IPF F(k, x) com-
putes randomness rx ← F1(k(1), x), a ciphertext ct ← PKE.Encrypt(pk, x; rx),
and outputs

F(k, x) :=
(
ct, F2(k(2), ct) ⊕ x

)
.

Note that the public key pk can also be included as part of the public parame-
ters for the IPF.

– On input a key k = (k(1), k(2), pk, sk) ∈ K, and (y1, y2) ∈ Y, the inver-
sion function F−1(k, (y1, y2)) first computes x ← F2(k(2), y1) ⊕ y2 and rx ←
F1(k(1), x). Finally, it outputs

F−1(k, (y1, y2)) :=

{
x if y1 = PKE.Encrypt(pk, x; rx)
⊥ otherwise.

– The range of the IPF Y is defined to be the space T ′ × X where T ′ =
{PKE.Encrypt(pk, x; r)}x∈X ,r∈V is the subset of ciphertexts that correspond
to a valid encryption of some message under the public key pk.

Next, we define the setup and constraining algorithms for (F,F−1).

– F.Setup(1λ): On input the security parameter λ, the setup algorithm samples
two PRF keys k(1) ← F1.Setup(1λ), k(2) ← F2.Setup(1λ), and a public/secret
key-pair for the PKE scheme: (pk, sk) ← PKE.Setup(1λ). It outputs the IPF
key k = (k(1), k(2), pk, sk).

– F.Constrain(k, f): On input the IPF key k = (k(1), k(2), pk, sk) and a constraint
function f ∈ F , the algorithm first constrains k

(1)
f ← F1.Constrain(k(1), f).

Then, it defines the function Fsk,f : T → {0, 1} as follows:

Fsk,f (ct) :=

{
1 if PKE.Decrypt(sk, ct) �= ⊥ and f(PKE.Decrypt(sk, ct)) = 1
0 otherwise.

(4.1)
The constrain algorithm constrains the key k(2) to Fsk,f and obtains k

(2)
F ←

F2.Constrain(k(2), Fsk,f). It then defines and returns the constrained key kf =
(k(1)

f , k
(2)
F , pk). Note that if PKE.Decrypt(sk, ·) can be computed in NC1 (resp.,

P/poly), then the function Fsk,f can also be computed in NC1 (resp., P/poly).
– F.Eval(kf , x): On input the constrained key kf = (k(1)

f , k
(2)
F , pk), and

a point x ∈ X , the algorithm first computes rx ← F1.Eval(k
(1)
f , x).

Then, it encrypts ct ← PKE.Encrypt(pk, x; rx) and returns the tuple y =(
ct, F2.Eval(k

(2)
F , ct) ⊕ x

)
.

Constrained Keys for Invertible Pseudorandom Functions 255

– F.Eval−1(kf , y): On input the constrained key kf = (k(1)
f , k

(2)
F , pk), and a point

y = (y1, y2) ∈ Y, the algorithm first computes x ← F2.Eval(k
(2)
F , y1) ⊕ y2.

Then, it computes rx ← F1.Eval(k
(1)
f , x) and ct ← PKE.Encrypt(pk, x; rx). If

y1 = ct, then the algorithm returns x. Otherwise, it returns ⊥.

We now state our correctness and security theorems. We provide the formal
proofs in the full version [16].

Theorem 4.6. Suppose PKE is a public-key encryption scheme, and F1, F2 are
circuit-constrained PRFs for NC1 (resp., P/poly). Then, the IPF (F,F−1) from
Construction 4.5 is a circuit-constrained IPF for NC1 (resp., P/poly).

Theorem 4.7. Suppose PKE is a smooth, CCA-secure public-key encryption
scheme, F1 is a single-key selective-function-secure circuit-constrained PRF for
NC1 (resp., P/poly), and F2 is a single-key, selective-function-secure private
circuit-constrained PRF for NC1 (resp., P/poly). Then, (F,F−1) from Construc-
tion 4.5 is a single-key, selective-function-secure circuit-constrained IPF for NC1

(resp., P/poly).

Remark 4.8 (Weaker Constraint Classes). While Construction 4.5 gives a
circuit-constrained IPF from private circuit-constrained PRFs, the same con-
struction also applies for building constrained PRFs that support a weaker class
of constraints. Specifically, given a private constrained PRF for some constraint
family F , if F is expressive enough to support the decryption operation of a
CCA-secure PKE scheme (composed with the constraining function), then the
constrained PRF for F can be leveraged to construct an IPF for the family F
(via Construction 4.5).

Remark 4.9 (Computational Notion of Smoothness). As stated, Theorem 4.7
imposes an additional smoothness requirement (Definition 2.2) on the under-
lying public-key encryption scheme. While most semantically-secure public-key
encryption schemes naturally satisfy this property, a weaker notion of “com-
putational smoothness” also suffices for Theorem 4.7. In particular, we say a
public-key encryption scheme PKE = (PKE.Setup,PKE.Encrypt,PKE.Decrypt)
with message space M and ciphertext space T satisfies computational smooth-
ness if for all messages m ∈ M output by an efficient adversary (on input
the security parameter λ and the public key pk), and all strings ct ∈ T ,
Pr[PKE.Encrypt(pk,m) = ct] = negl(λ). Clearly, if PKE is semantically secure,
then PKE satisfies computational smoothness. It is straightforward to modify the
proof of Theorem 4.7 to rely on the computational version of smoothness. In this
case, we can use any CCA-secure public-key encryption scheme to instantiate
Construction 4.5.

5 Concrete Instantiations of Constrained IPFs

In this section, we describe how to concretely instantiate Constructions 4.1
and 4.5 using existing lattice-based private constrained PRFs [15,22,24] to

256 D. Boneh et al.

obtain puncturable IPFs and circuit-constrained IPFs (for both NC1 and P/poly),
respectively, from standard lattice assumptions.

Puncturable IPFs from lattices. To apply Construction 4.1, we require an injec-
tive puncturable PRF and a private puncturable PRF. As shown in [51], (sta-
tistically) injective puncturable PRFs4 can be built from any one-way function.
Next, the recent works of [15,22,24] show how to construct private puncturable
PRFs from standard lattice assumptions. Thus, applying Construction 4.1, we
obtain puncturable IPFs from standard lattice assumptions. In fact, the con-
struction of Canetti and Chen [24] gives an adaptively-secure private puncturable
PRF from the (polynomial) hardness of the learning with errors (LWE) prob-
lem [47], and so, combining their construction with Theorem4.3, we obtain an
adaptively-secure puncturable IPF from the (polynomial) hardness of LWE with
subexponential error rate.

Circuit-constrained IPFs from lattices. Starting from (single-key) private circuit-
constrained PRFs for NC1 [24] and P/poly [22], we can leverage Construction 4.5
to obtain (single-key) circuit-constrained IPFs for NC1 and P/poly, respectively.
We give two candidate instantiations based on standard lattice assumptions:

– To construct a circuit-constrained IPF for NC1-constraints, we require a pri-
vate circuit-constrained PRF for NC1 and a CCA-secure public-key encryption
scheme with an NC1 decryption circuit. We can instantiate the private circuit-
constrained PRF for NC1 using the construction of Canetti and Chen [24]. The
CCA-secure encryption scheme with NC1 decryption can be instantiated using
existing lattice-based CCA-secure PKE schemes [42,44,45] or by applying the
Boneh et al. [14] transformation to a suitable identity-based encryption (IBE)
scheme [1,2,25,33] and a message authentication code (MAC) with verifica-
tion in NC1, which can be built from lattice-based PRFs [3,4,17]. Putting
these pieces together, we obtain a (single-key) circuit-constrained IPF for
NC1 constraints from standard lattice assumptions.

– To construct a circuit-constrained IPF forP/poly, we primarily require a private
constrainedPRF forP/poly.We instantiate theprivate circuit-constrainedPRF
using the recent construction of Brakerski et al. [22], and the CCA-secure public
key encryption as above. This yields a secure (single-key) circuit-constrained
IPF for general predicates from standard lattice assumptions.

Remark 5.1 (Relaxed Notions of Correctness). Several lattice-based constrained
PRF constructions [15,22,23] satisfy a weaker “computational” notion of cor-
rectness which roughly states that an efficient adversary with a constrained key
kf cannot find an input x where F.Eval(kf , x) �= F(k, x), where k is the PRF key.
If we instantiate Constructions 4.1 and 4.5 with a constrained PRF that satisfies

4 A statistically injective puncturable PRF is a puncturable PRF F where F(k, ·) is
injective with overwhelming probability over the choice of coins used for sampling
the key k ← F.Setup(1λ).

Constrained Keys for Invertible Pseudorandom Functions 257

a computational notion of correctness, then the resulting constrained IPF also
achieves computational correctness. It is straightforward to modify the correct-
ness analysis (Theorems 4.2 and 4.6) to work under a computational notion of
correctness. The security analysis remains unchanged since none of the proofs
rely on perfect correctness of the underlying constrained PRFs.

6 An Extension: Supporting Delegation

In a delegatable constrained IPF, the holder of a constrained IPF key kf for a
function f can further constrain the key to some function g (i.e., construct a key
kf∧g that allows IPF evaluation only on points x where f(x) = g(x) = 1). Many
constrained PRF constructions either support or can be modified to support
some flavor of key delegation [19,26,27]. In this section, we describe (informally)
how to extend our constrained IPF construction from Sect. 4.2 to support key
delegation.

Delegatable constrained PRFs. A constrained PRF that supports one level of
delegation can be generically constructed from any constrained PRF by defining
the PRF output to be the xor of the outputs of two constrained PRFs. For
instance, we can define a PRF F as follows:

F((k1, k2), x) := F1(k(1), x) ⊕ F2(k(2), x),

where F1 and F2 are constrained PRFs. The master secret key is k(1) and
k(2), and the constrained key for a function f is (k(1)

f , k(2)) where k(1) ←
F1.Constrain(k(1), f). The holder of the constrained key (k(1)

f , k(2)) can fur-

ther constrain to a function of the form f ∧ g by computing (k(1)
f , k

(2)
g) where

k
(2)
g ← F2.Constrain(k(2), g). Security of this construction follows by a simple

hybrid argument. This general technique can be extended to support any a pri-
ori polynomially-bounded delegation depth.

Delegatable constrained IPFs. We can define a similar notion of key delegation
for constrained IPFs. However, the above method of xoring together the outputs
of several constrained IPFs does not directly give a delegatable constrained IPF.
In fact, xoring together the outputs of several IPFs may not even give an injective
function, let alone an efficiently invertible one. Thus, to support delegation for
a constrained IPF, we need a different construction. One method is to use a
variant of the xoring trick in conjunction with Construction 4.5. We describe a
construction for achieving one level of delegation here. Our construction relies
on a CCA-secure public-key encryption scheme PKE, three constrained PRFs
F1, F2, F3, and a constrained IPF IPF. The master secret key consists of keys
k(1), k(2), k(3) for F1, F2, and F3, respectively, a key k(IPF) for IPF, and the

258 D. Boneh et al.

public/secret key-pair pk, sk for the PKE scheme. Our delegatable IPF works as
follows:

F
(
(k(1), k(2), k(3), k(IPF), pk, sk), x

)
:= F−1((k(1), k(2), k(3), k(IPF), pk, sk), (ct, z)

)
:=

⎧
⎪⎪⎨

⎪⎪⎩

r ← F1(k
(1), x) ⊕ F3(k

(3), x)
ct ← PKE.Encrypt(pk, x; r)

z ← F2(k
(2), ct) ⊕ IPF(k(IPF), x)

output (ct, z)

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ← IPF−1(k(IPF), z ⊕ F2(k
(2), ct))

r ← F1(k
(1), x) ⊕ F3(k

(3), x)
if ct 	= PKE.Encrypt(pk, x; r)
then x ← ⊥

output x

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

To constrain a key (k(1), k(2), k(3), k(IPF), pk, sk) to a function f , we first con-
strain the PRF keys k(1), k(2) exactly as described in Construction 4.5. In
particular, the constrain algorithm computes k

(1)
f ← F1.Constrain(k(1), f) and

k
(2)
F ← F2.Constrain(k(2), Fsk,f), where Fsk,f is defined as in Eq. (4.1). The con-

strained key is the tuple kf = (k(1)
f , k

(2)
F , k(3), k(IPF), pk). To further constrain

(that is, delegate) to a function g, we constrain F3 and IPF to g. In other words,
we compute k

(3)
g ← F3.Constrain(k(3), g) and k

(IPF)
g ← IPF.Constrain(k(IPF), g).

The constrained key kf∧g for the function f ∧ g is defined to be kf∧g :=
(k(1)

f , k
(2)
F , k

(3)
g , k

(IPF)
g , pk). Security of this construction follows by a similar argu-

ment as that used in the proof of Theorem 4.7 (namely, by appealing to security
of F1 and privacy as well as security of F2), in addition to security of F3 and the
underlying IPF. Our construction can be viewed as taking a standard constrained
IPF (that does not support key delegation), and constructing a constrained IPF
that supports one level of delegation. Iterating this construction multiple times
yields an IPF that can support any a priori bounded number of delegations.

7 Multi-key Constrained IPF from Obfuscation

In this section, we construct a multi-key circuit-constrained IPF from
(polynomially-hard) indistinguishability obfuscation and one-way functions. Our
construction of a circuit-constrained IPF from iO (and one-way functions) mirrors
the Boneh-Zhandry construction [20] of a circuit-constrained PRF from iO (and
one-way functions). More precisely, Boneh and Zhandry show that obfuscating a
puncturable PRF effectively gives a circuit-constrained PRF. Similarly, our con-
struction works by obfuscating our punctured IPF construction (Construction 4.1)
using iO. In our construction, each constrained IPF key contains two obfuscated
programs: one for evaluating the IPF, and one for inverting the IPF. The constraint
function f is embedded within the obfuscated evaluation and inversion programs.
We now describe our scheme more formally. First, we review the standard defini-
tion of indistinguishability obfuscation [5,32].

Definition 7.1 (Indistinguishability Obfuscation [5,32]). An indistin-
guishability obfuscator iO for a circuit class C is a uniform and efficient algo-
rithm satisfying the following requirements:

– Correctness. For all security parameter λ ∈ N, all circuits C ∈ C, and all
inputs x, we have that

Pr[C ′ ← iO(C) : C ′(x) = C(x)] = 1.

Constrained Keys for Invertible Pseudorandom Functions 259

– Indistinguishability. For all security parameter λ ∈ N, and any two cir-
cuits C0, C1 ∈ Cλ, if C0(x) = C1(x) for all inputs x, then for all efficient
adversaries A, we have that

|Pr[A(iO(C0)) = 1] − Pr[A(iO(C1)) = 1]| = negl(λ).

Construction 7.2. Fix a domain X = {0, 1}n where n = n(λ). Let F1 : K1 ×
X → V be a puncturable PRF with key-space K1 and range V. Let F2 : K2 ×V →
X be a puncturable PRF with key-space K2. The constrained IPF F : K×X → Y
with key-space K = K1 × K2, domain X , and range Y = V × X is defined as
follows:

– The IPF key is a pair of keys k = (k(1), k(2)) ∈ K1 × K2 = K. On input a key
(k(1), k(2)) and an input x ∈ X , the value of the IPF is defined to be

F(k, x) :=
(
F1(k(1), x), F2(k(2),F1(k(1), x)) ⊕ x

)
.

– On input k = (k(1), k(2)) ∈ K1 × K2 = K, and y = (y1, y2) ∈ V × X = Y, the
inversion algorithm F−1(k, y) first computes x ← F2(k(2), y1)⊕y2 and outputs

F−1(k, (y1, y2)) :=

{
x if y1 = F1(k(1), x)
⊥ otherwise.

Next, we define the setup and constraining algorithms for the IPF (F,F−1).

– F.Setup(1λ): On input the security parameter λ, the setup algorithm samples
two puncturable PRF keys k(1) ← F1.Setup(1λ) and k(2) ← F2.Setup(1λ), and
outputs k = (k(1), k(2)).

– F.Constrain(k, f): On input the IPF key k = (k(1), k(2)) and a constraint
function f ∈ F , the constrain algorithm outputs two obfuscated programs
P0 = iO(P Eval[f, k(1), k(2)]) and P1 = iO(P Inv[f, k(1), k(2)]) where the pro-
grams P Eval[f, k(1), k(2)] and P Inv[f, k(1), k(2)] are defined in Figs. 1 and 2.
Note that the programs P Eval and P Inv are padded to the maximum size of any
program that appears in the proof of Theorem7.4.

– F.Eval(kf , x): On input the constrained key kf = (P1, P2), and a point x ∈ X ,
the evaluation algorithm outputs P1(x).

– F.Eval−1(kf , y): On input the constrained key kf = (P1, P2), and a point
y ∈ Y, the inversion algorithm outputs P2(y).

We now state our correctness and security theorems. We provide the formal
proofs in the full version [16].

Theorem 7.3. Suppose F1 and F2 are puncturable PRFs, and iO is an indistin-
guishability obfuscator. Then, the IPF (F,F−1) from Construction 7.2 is correct.

Theorem 7.4. Suppose F1 and F2 are selectively-secure puncturable PRFs, iO
is an indistinguishability obfuscator, and |X | / |V| = negl(λ). Then (F,F−1) from
Construction 7.2 is a selectively-secure circuit-constrained IPF.

260 D. Boneh et al.

Constants: a function f ∈ F , and two keys k(1) and k(2) for F1 and F2,
respectively.

On input x ∈ X :

1. If f(x) = 0, output ⊥.
2. Otherwise, output F(k, x) = F1(k(1), x), F2(k(2),F1(k(1), x)) ⊕ x

)
.

Fig. 1. The program P Eval[f, k(1), k(2)]

Constants: a function f ∈ F , and two keys k(1) and k(2) for F1 and F2,
respectively.

On input y = (y1, y2) ∈ V × X

1. Compute x ← F2(k(2), y1) ⊕ y2.
2. If f(x) = 0 or y1 �= F1(k(1), x), output ⊥.
3. Otherwise, output x.

Fig. 2. The program P Inv[f, k(1), k(2)]

Acknowledgments. We thank the anonymous TCC reviewers for helpful comments
on this work. This work was funded by NSF, the DARPA/ARL SAFEWARE project,
a grant from ONR, and the Simons Foundation. Opinions, findings and conclusions
or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of DARPA.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimen-
sion and shorter-ciphertext hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-14623-7 6

3. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudoran-
dom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS,
vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44371-2 20

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-642-14623-7_6
https://doi.org/10.1007/978-3-662-44371-2_20
https://doi.org/10.1007/978-3-662-44371-2_20

Constrained Keys for Invertible Pseudorandom Functions 261

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lat-
tices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 42

5. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P.,
Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44647-8 1

6. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 30

7. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
definitional equivalences and constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 20

8. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54631-0 30

9. Bellare, M., Hofheinz, D., Kiltz, E.: Subtleties in the definition of IND-CCA: when
and how should challenge decryption be disallowed? J. Cryptol. 28(1), 29–48 (2015)

10. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

11. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 24

12. Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic
encryption, and efficient constructions without random oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 19

13. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

14. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)

15. Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from standard
lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 15

16. Boneh, D., Kim, S., Wu, D.J.: Constrained keys for invertible pseudorandom func-
tions. Cryptology ePrint Archive, Report 2017/477 (2017). http://eprint.iacr.org/
2017/477

17. Boneh, D., Lewi, K., Montgomery, H.W., Raghunathan, A.: Key homomorphic
PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013.
LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40041-4 23

https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-540-74143-5_30
https://doi.org/10.1007/978-3-540-85174-5_20
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/978-3-642-54631-0_30
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-44448-3_24
https://doi.org/10.1007/978-3-540-85174-5_19
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-319-56620-7_15
https://doi.org/10.1007/978-3-319-56620-7_15
http://eprint.iacr.org/2017/477
http://eprint.iacr.org/2017/477
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23

262 D. Boneh et al.

18. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately.
In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg
(2017). https://doi.org/10.1007/978-3-662-54388-7 17

19. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applica-
tions. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–
300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 15

20. Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In: Garay, J.A., Gennaro, R. (eds.)
CRYPTO 2014. LNCS, vol. 8616, pp. 480–499. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-44371-2 27

21. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom func-
tions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 29

22. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs
(and more) from LWE. In: TCC (2017)

23. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions - or: how to secretly embed a circuit in your PRF. In:
Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 1

24. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC1 from LWE.
In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp.
446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 16

25. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–
552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 27

26. Chandran, N., Raghuraman, S., Vinayagamurthy, D.: Constrained pseudorandom
functions: verifiable and delegatable. IACR Cryptology ePrint Archive 2014 (2014)

27. Datta, P., Dutta, R., Mukhopadhyay, S.: Constrained pseudorandom functions for
unconstrained inputs revisited: achieving verifiability and key delegation. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 463–493. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54388-7 16

28. Deshpande, A., Koppula, V., Waters, B.: Constrained pseudorandom functions for
unconstrained inputs. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9666, pp. 124–153. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49896-5 5

29. Fuchsbauer, G.: Constrained verifiable random functions. IACR Cryptology ePrint
Archive 2014 (2014)

30. Fuchsbauer, G., Konstantinov, M., Pietrzak, K., Rao, V.: Adaptive security of
constrained PRFs. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS,
vol. 8874, pp. 82–101. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45608-8 5

31. Fuller, B., O’Neill, A., Reyzin, L.: A unified approach to deterministic encryption:
new constructions and a connection to computational entropy. In: Cramer, R. (ed.)
TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28914-9 33

32. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. In: FOCS
(2013)

33. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC (2008)

https://doi.org/10.1007/978-3-662-54388-7_17
https://doi.org/10.1007/978-3-642-42045-0_15
https://doi.org/10.1007/978-3-662-44371-2_27
https://doi.org/10.1007/978-3-642-54631-0_29
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-319-56620-7_16
https://doi.org/10.1007/978-3-642-13190-5_27
https://doi.org/10.1007/978-3-662-54388-7_16
https://doi.org/10.1007/978-3-662-49896-5_5
https://doi.org/10.1007/978-3-662-49896-5_5
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-662-45608-8_5
https://doi.org/10.1007/978-3-642-28914-9_33
https://doi.org/10.1007/978-3-642-28914-9_33

Constrained Keys for Invertible Pseudorandom Functions 263

34. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. In:
FOCS (1984)

35. Hofheinz, D.: Fully secure constrained pseudorandom functions using random ora-
cles. IACR Cryptology ePrint Archive 2014 (2014)

36. Hohenberger, S., Koppula, V., Waters, B.: Adaptively secure puncturable pseudo-
random functions in the standard model. In: Iwata, T., Cheon, J.H. (eds.) ASI-
ACRYPT 2015. LNCS, vol. 9452, pp. 79–102. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48797-6 4

37. Iwata, T., Yasuda, K.: BTM: a single-key, inverse-cipher-free mode for determin-
istic authenticated encryption. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R.
(eds.) SAC 2009. LNCS, vol. 5867, pp. 313–330. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-05445-7 20

38. Iwata, T., Yasuda, K.: HBS: a single-key mode of operation for determin-
istic authenticated encryption. In: Dunkelman, O. (ed.) FSE 2009. LNCS,
vol. 5665, pp. 394–415. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-03317-9 24

39. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of
operation. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44706-7 20

40. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable
pseudorandom functions and applications. In: ACM CCS (2013)

41. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM J. Comput. 17(2), 373–386 (1988)

42. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster,
smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS,
vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-29011-4 41

43. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: STOC (1990)

44. Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). IACR
Cryptology ePrint Archive 2009 (2009)

45. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC
(2008)

46. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS,
vol. 576, pp. 433–444. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-46766-1 35

47. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC (2005)

48. Rogaway, P.: Authenticated-encryption with associated-data. In: ACM CCS (2002)
49. Rogaway, P., Bellare, M., Black, J.: OCB: a block-cipher mode of operation for

efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. (TISSEC) 6(3),
365–403 (2003)

50. Rogaway, P., Shrimpton, T.: Deterministic authenticated encryption: a provable-
security treatment of the key-wrap problem. In: EUROCRYPT (2006)

51. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryp-
tion, and more. In: STOC (2014)

https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-662-48797-6_4
https://doi.org/10.1007/978-3-642-05445-7_20
https://doi.org/10.1007/978-3-642-03317-9_24
https://doi.org/10.1007/978-3-642-03317-9_24
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35

	Constrained Keys for Invertible Pseudorandom Functions
	1 Introduction
	1.1 Building Constrained IPFs
	1.2 Related Work

	2 Preliminaries
	2.1 CCA-Secure Public-Key Encryption

	3 Invertible PRFs
	3.1 Constrained PRFs and IPFs
	3.2 Private Constrained PRFs
	3.3 Special Cases: PRPs and Constrained PRPs

	4 Constructing Constrained IPFs
	4.1 Warm-Up: Puncturable IPF from Private Puncturable PRFs
	4.2 Circuit-Constrained IPF from Private Circuit-Constrained PRFs

	5 Concrete Instantiations of Constrained IPFs
	6 An Extension: Supporting Delegation
	7 Multi-key Constrained IPF from Obfuscation
	References

