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Abstract. In this paper, we study the round complexity of concurrently
secure multi-party computation (MPC) with super-polynomial simula-
tion (SPS) in the plain model. In the plain model, there are known
explicit attacks that show that concurrently secure MPC with polyno-
mial simulation is impossible to achieve; SPS security is the most widely
studied model for concurrently secure MPC in the plain model. We obtain
the following results:

— Three-round concurrent MPC with SPS security against Byzantine
adversaries, assuming sub-exponentially secure DDH and LWE.

— Two-round concurrent MPC with SPS security against Byzantine
adversaries for input-less randomized functionalities, assuming sub-
exponentially secure indistinguishability obfuscation and DDH. In
particular, this class includes sampling functionalities that allow par-
ties to jointly sample a secure common reference string for crypto-
graphic applications.

Prior to our work, to the best of our knowledge, concurrent MPC with
SPS security required roughly 20 rounds, although we are not aware of
any work that even gave an approximation of the constant round com-
plexity sufficient for the multi-party setting. We also improve over the
previous best round complexity for the two-party setting, where 5 rounds
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were needed (Garg, Kiyoshima, and Pandey, Eurocrypt 2017).

To obtain our results, we compile protocols that already achieve secu-
rity against “semi-malicious” adversaries, to protocols secure against
fully malicious adversaries, additionally assuming sub-exponential DDH.
Our protocols develop new techniques to use two-round zero-knowledge
with super-polynomial strong simulation, defined by Pass (Eurocrypt
2003) and very recently realized by Khurana and Sahai (FOCS 2017).
These remain zero-knowledge against adversaries running in time larger
than the running time of the simulator.

1 Introduction

The round complexity of secure multi-party computation (MPC) [19,39,40] has
been a problem of fundamental interest in cryptography. The last few years have
seen major advances in improving the round complexity of secure computation
with dishonest majority [1,6,7,9,10,16,20,22,24,27,32,34,38], culminating even-
tually in four round protocols for secure multi-party computation from general
assumptions such as DDH and LWE [1,7,16].

Intriguingly, however, when we only require security against (semi-malicious)
adversaries that follow protocol specifications, recent research has also con-
structed MPC protocols that require even less that four rounds of simultaneous
message exchange in the plain model. For instance, [11] give a two-round proto-
col based on indistinguishability obfuscation, while [7] very recently gave a three
round protocol from the hardness of the learning with errors assumption.

However, these protocols do not offer any privacy guarantees at all against
Byzantine adversaries that may deviate from protocol specifications. Can we
achieve meaningful security against Byzantine adversaries in two or three
rounds? This question is even more interesting in the setting where parties
participate in multiple executions of the MPC protocol concurrently. Indeed,
as our world becomes increasingly interconnected, it is hard to imagine that
future cryptographic protocols will be carried out in a standalone setting, where
participants interact in only a single instance of the protocol. Thus, we ask:

“Can we achieve concurrently secure MPC' in two or three rounds?”

Super-polynomial security. Indeed, even defining security against concurrent
adversaries in the plain model requires care. Barak, Prabhakaran and Sahai [4]
give an explicit “chosen protocol attack” that rules out concurrently secure MPC
with polynomial simulation in any number of rounds in the plain model. In fact,
even in the stand-alone setting, three round secure computation with polynomial
simulation and black-box reductions turns out to be impossible to achieve [16].

However, it has been known for a long time that for MPC, a powerful secu-
rity notion in the plain model is security with super-polynomial time simula-
tion (SPS) [3,5,8,13,15,25,30,33,36]. SPS security circumvents the impossibil-
ity results above including the chosen protocol attack in the concurrent setting,
and is the most widely studied security model for concurrent MPC in the plain
model.
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To understand the intuition behind SPS security, it is instructive to view SPS
security through the lens of the security loss inherent in all security reductions.
In ordinary polynomial-time simulation, the security reduction has a polyno-
mial security loss with respect to the ideal world. That is, an adversary in the
real world has as much power as another adversary that runs in polynomially
more time in the ideal world. In SPS security, the security reduction has a fixed
super-polynomial security loss, for example 2", where n is the security parame-
ter, with respect to the ideal world. Just as in other applications in cryptography
using super-polynomial assumptions, this situation still guarantees security as
long as the ideal model is itself super-polynomially secure. For instance, if the
ideal model hides honest party inputs information-theoretically, then security is
maintained even with SPS. For example, this is true for applications like online
auctions, where no information is leaked in the ideal world about honest party
inputs beyond what can be easily computed from the output. But SPS also
guarantees security for ideal worlds with cryptographic outputs, like blind sig-
natures, as long as the security of the cryptographic output is guaranteed against
super-polynomial adversaries. Indeed, SPS security was explicitly considered for
blind signatures in [14,17] with practically relevant security parameters com-
puted in [14]. Additional discussion on the meaningfulness of SPS security can
be found in the original works of [33,36] that introduced SPS security in the
protocol context.

Prior to our work, the best round complexity even for concurrent two-
party computation with SPS security was 5 rounds [15] from standard sub-
exponential assumptions. For concurrent MPC with SPS security from standard
sub-exponential assumptions, the previous best round complexity was perhaps
approximately 20 rounds in the simultaneous message exchange model [13,26],
although to the best of our knowledge, no previous work even gave an approx-
imation of the constant round complexity that is sufficient for the multi-party
setting.

1.1 Our Results

We obtain several results on concurrently secure MPC in 2 or 3 rounds:

1. We obtain the following results for multi-party secure computation with SPS
in three rounds in the simultaneous message model, against rushing adver-
saries.

— A compiler that converts a large class of three round protocols secure
against semi-malicious adversaries, into protocols secure against malicious
adversaries, additionally assuming the sub-exponential hardness of DDH
or QR or N** residuosity.

— A compiler that converts a large class of three round protocols secure
against semi-malicious adversaries, into protocols secure against mali-
cious concurrent adversaries, additionally assuming the sub-exponential
hardness of DDH or QR or N* residuosity.
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On instantiating these compilers with the three-round semi-malicious protocol
in the recent work of Brakerski et al. [7], we obtain the following main result.

Informal Theorem 1. Assuming sub-exponentially secure LWE and DDH,
there exists a three-round protocol in the simultaneous message exchange model
with rushing adversaries, that achieves sub-exponential concurrent SPS security
for secure multi-party computation for any efficiently computable function, in
which all parties can receive output.

The same result holds if the sub-exponential DDH assumption above is
replaced with the sub-exponential QR or N residuosity assumptions.

2. We also obtain the following results for multi-party secure computation with
SPS in two rounds in the simultaneous message model, against rushing adver-
saries.

— A compiler that converts a large class of two round protocols secure
against semi-malicious adversaries, into protocols secure against mali-
cious adversaries computing input-less randomized functionalities, assum-
ing assuming sub-exponential hardness of DDH and indistinguishability
obfuscation.

— A compiler that converts a large class of two round protocols secure
against semi-malicious adversaries, into protocols secure against concur-
rent malicious adversaries computing input-less randomized functionali-
ties, assuming assuming sub-exponential hardness of DDH and indistin-
guishability obfuscation.

On instantiating these compilers with the two-round semi-malicious protocol
in [11], we obtain the following main result.

Informal Theorem 2. Assuming sub-exponentially secure indistinguishability
obfuscation and DDH, there exists a two-round protocol in the simultaneous mes-
sage exchange model with rushing adversaries, that achieves sub-exponential con-
current SPS security for secure multi-party computation for any efficiently com-
putable randomized input-less function, in which all parties can receive output.

In particular, our protocols can be used to generate samples from any effi-
ciently sampleable distribution. For example, they can be used to concurrently
securely sample common reference strings from arbitrary distributions for cryp-
tographic applications, such that the randomness used for sampling remains hid-
den as long as at least one of the participants is honest. Applications include gen-
erating a common reference string sufficient for building universal samplers [23].
Before our work, only the special case of multi-party coin-flipping with SPS was
known to be achievable in two rounds [25].

2 Technical Overview

We will now give an overview of the techniques used in our work.
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2.1 Three Round MPC Without Setup

A well established approach to constructing secure computation protocols
against malicious adversaries in the standalone setting is to use the GMW
compiler [19]: “compile” a semi-honest protocol with zero-knowledge arguments
to enforce correct behavior. Normally, such compilers involve an initial ‘coin-
tossing’ phase, which determines the randomness that will be used by all parties
in the rest of the protocol. Unfortunately, in two or three rounds, there is no
scope at all to carry out an initial coin-tossing.

However, as observed by [2,7,31], certain two and three round protocols
satisfy semi-malicious security: that is, the protocol remains secure even when
the adversary is allowed to chose malicious randomness, as long as the adversary
behaves according to protocol specifications. When compiling semi-malicious
protocols, the coin-tossing phase is no longer necessary: at a very high level, it
seems like it should suffice to have all parties give proofs of correct behavior.
Several difficulties arise when trying to implement such compilers in extremely
few rounds. Specifically, in many parts of our protocols, we will have only two
rounds to complete the proof of correct behavior. However, attempts to use two-
round zero-knowledge with super-polynomial simulation [33] run into a few key
difficulties, that we now discuss.

A key concern in MPC is that malicious parties may be arbitrarily mauling
the messages sent by other parties. In order to prevent this, we will use two-round
non-malleable commitments, that were recently constructed in [21,25,28]. In
particular, we will rely on a construction of two-round concurrent non-malleable
commitments with simultaneous messages, that were constructed by [25] assum-
ing sub-exponential DDH.

The very first difficulty arises as soon as we try to compose non-malleable
commitments with SPS-ZK.

Difficulty of using two-round SPS-ZK in few rounds with Simultaneous
Messages. Standard constructions of two-round SPS zero-knowledge can be
described as follows: the verifier generates a challenge that is hard to invert by
adversaries running in time 7', then the prover proves (via WI) that either the
statement being proven is in the language, or that he knows the inverse of the
challenge used by the verifier. This WI argument is such that the witness used
by the prover can be extracted (via brute-force) in time 7" <« T'. Naturally, this
restricts the argument to be zero-knowledge against verifiers that run in time
Tp<T' < T.

Thus, if a prover generates an accepting proof for a false statement, the
WI argument can be broken in time 7" to invert the challenge, leading to a
contradiction. On the other hand, there exists a simulator that runs in time
Tsim > T to invert the receiver’s challenge and simulate the proof (alternatively,
such a simulator can non-uniformly obtain the inverse of the receiver’s challenge).
Thus, we have Ts;m > Ty.

Let us now consider an SPS-ZK protocol, run simultaneously with a non-
malleable commitment, as illustrated in Fig. 1. The two-round concurrent non-
malleable commitment scheme from [25] requires the committer and receiver to



748 S. Badrinarayanan et al.

SPS-ZKchallenge: NMCchallenge NMC(M;7)
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Fig. 1. Composing SPS-ZK with Non-malleable commitments

send simultaneous messages in the first round of the execution, followed by a
single message from the committer in the second round.

Let us also imagine that multiple parties running such a protocol are send-
ing non-malleable commitments to their inputs, together with messages of the
underlying semi-malicious protocol, and SPS-ZK proofs of correct behavior.

In order to begin a reduction between the real and ideal worlds, we would
have to begin by simulating the proofs sent by honest parties, and then argue that
adversarial parties cannot maul honest parties’ inputs. However, while arguing
non-malleability, we cannot simulate proofs non-uniformly, since that would end
up also non-uniformly fixing the messages of the non-malleable commitments.
Thus, we would want non-malleability of NMCom to hold even while we are
sending simulated proofs in time Tg;y,.

On the other hand, when we switch a real SPS ZK proof to being simulated,
we must argue that the values within the non-malleable commitments provided
by the adversary did not suddenly change. To achieve this, it must be true that
the quality of the SPS ZK simulation is sufficiently high to guarantee that the
messages inside the non-malleable commitments did not change. Specifically, we
must be able to break the non-malleable commitments and extract from them
in time that is less than T}. Putting together all these constraints, we have that
non-malleable commitments should be breakable in time that is less than the
time against which they remain non-malleable: this is a direct contradiction.

In order to solve this problem, we must rely on ZK argument systems where
the quality of the SPS ZK simulation exceeds the running time of the SPS sim-
ulator, namely where Ts;m < Ty Zero-knowledge with strong simulation ([33]),
is roughly a primitive that satisfies exactly this constraint. We call such a ZK
protocol an SPSS-ZK argument. Such a primitive was recently realized by [25],
by constructing a new form of two-round extractable commitments. Note that
if one uses SPSS-ZK instead of SPS-ZK, the contradiction described above no
longer holds. This is a key insight that allows us to have significantly simpler
arguments of SPS security, especially in the concurrent security setting.

However, as we already mentioned, in arguing security against malicious
adversaries, we must be particularly wary of malleability attacks. In particu-
lar, we would like to ensure that while the simulator provides simulated proofs,
the adversary continues to behave honestly — thereby allowing such a simu-
lator to correctly extract the adversary’s input and force the right output.
This is the notion of simulation soundness [37]. However, it is unknown how
to build a two-round concurrently simulation-sound SPSS ZK argument. We
address this by providing a mechanism to emulates two-round and three-round
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simulation-soundness via strong simulation, in a simultaneous message setting.
This mechanism allows us to compile a semi-malicious protocol with a type of
non-malleable proofs of honest behavior.

Roughly speaking, the idea behind our strategy for enforcing simulation
soundness is to have each party commit not only to its input, but also all
the randomness that it will use in the underlying semi-malicious secure pro-
tocol. Then, the high quality of the SPSS ZK simulation will ensure that even
the joint distribution of the input, the randomness, and the protocol transcript
cannot change when we move to SPS simulation. Since honest behavior can be
checked by computing the correct messages using the input and randomness, the
quality of the SPSS ZK simulation guarantees that adversarial behavior must
remain correct. Counter-intuitively, we enforce a situation where we cannot rule
out that the adversary isn’t “cheating” on his ZK arguments, but nevertheless
the adversary’s behavior in the underlying semi-malicious MPC protocol cannot
have deviated from honest behavior.

We note that our simulation strategy is uniform and straight-line. The only
non-trivial use of rewinding in our protocol is in arguing non-malleability, and
this is abstracted away into the underlying non-malleable commitment scheme
that we invoke. This leads to a significantly simpler proof of concurrent security.

Several additional subtleties arise in the proofs of security. Please refer to
Sect. 4 for additional details on our protocol and complete proofs.

Barriers to Two Round Secure Computation of General Function-
alities. We also note that barriers exist to constructing two-round two-party
SPS-secure computation of general functionalities with super-polynomial simu-
lation, where both parties receive the output. Let us focus on protocols for the
secure computation of a specific functionality F(z,y) = (x +y), which computes
the sum of the inputs of both parties, when interpreted as natural numbers.
However, our arguments also extend to all functionalities that are sensitive to
the private inputs of individual parties. We will also restrict ourselves to two-
round protocols where both parties send an encoding of their message in the
first round while the next round is used to compute the output. It is not dif-
ficult to see that any protocol for two-round two-party secure computation of
general functionalities, must satisfy this property, as long as security must hold
against non-uniform adversaries. If the first message wasn’t committing, then a
non-uniform adversary could obtain a first message that is consistent with two
inputs, and then by aborting in the second round, it could obtain two outputs
of the function with two different inputs, violating security.

Let IT denote a two-round secure computation protocol between two parties A
and B, where both parties receive the output. We will also consider a “mauling”
rushing adversary that corrupts B, let us denote this corrupted party by B. At
the beginning of the protocol A sends an honest encoding of its input X. After
obtaining the first round message from party A, suppose that B “mauls” the
encoding sent by A and generates another encoding of the same input X. Because
the encodings must necessarily hide the inputs of parties, the honest PPT party
A cannot detect if such a mauling occurred, and sends the second message of
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the protocol. At this point, B generates its second round message on its own,
but does not send this message. Instead, B computes the output of the protocol
(which is guaranteed by correctness). The adversary B learns 2X, and blatantly
breaks security of the SPS-secure protocol. Similarly, a rushing adversary could
choose to corrupt party A and launch the same attack. Getting over this barrier
would clearly require constructing non-interactive non-malleable commitments.

2.2 Two Round MPC Without Setup for Input-Less Randomized
Functionalities

We begin by noting that the discussion above on the hardness of two-round MPC
with super-polynomial simulation does not rule out functionalities that are not
sensitive to the private inputs of parties. In particular, let us consider input-less
randomized functionalities. Even though the functionality is input-less, still each
party must contribute to selecting the secret randomness on which the function
is to be evaluated. At first glance, it may appear that we still have the same
problem: in only two rounds, perhaps this “implied input” can be compromised.
However, note that for input-less functionalities, if the adversary aborts, then
even if the adversary learns the “implied inputs” of the honest parties, this does
not violate security because the honest parties will not accept the output of the
protocol. Thus, the honest parties’ contributions to the randomness is discarded
since the protocol execution is aborted. As such, we only need to guarantee
security of the honest party inputs if the protocol terminates correctly — that
is, if the adversary is able to send second-round messages that do not cause the
protocol to abort.

More technically, the only actual requirement is that a super-polynomial
simulator must be able to correctly and indistinguishably, force the output of
the computation to an externally generated value. The security of each honest
party’s contribution to the randomness is implied by this forcing.

We show that this is indeed possible using only two rounds of interaction in
the simultaneous message model, under suitable cryptographic assumptions. We
describe a compiler that compiles a large class of two-round secure computation
protocols for input-less randomized functionalities from semi-malicious to full
malicious (and even concurrent) security. We consider functionalities where each
party contributes some randomness, and the joint randomness of all parties is
used to sample an output from some efficiently sampleable distribution.

Our protocol follows a similar template to the protocol described for the 3-
round case: parties first commit to all the input and randomness that they will
use throughout the execution via a non-malleable commitment. Simultaneously,
parties run an underlying two-round semi-malicious protocol and by the end
of the second round, provide SPSS-ZK proofs that they correctly computed all
messages. We stress again that it is only if the adversary successfully completes
both rounds of the protocol without causing an abort, that we actually need to
care about hiding the shares of randomness contributed by honest parties — in
order to argue overall security.
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At the same time, in order to enforce correctness, the simulator would still
need to extract the randomness used by the adversary at the end of the first
round of the computation. Unlike our three round protocol, here, the simulator
will try to extract randomness at the end of the first round anyway. This is
because the simulator can afford to be optimistic: Either its extraction is correct,
and it can make use of this in forcing the output. Or its extraction is incorrect,
but in this case we will guarantee that the adversary will cause the protocol to
abort in the second round because of the SPSS ZK argument that the adversary
must give proving that it behaved honestly in the first round.

We need to take additional care when defining the simulation strategy when
the simulator extracts incorrect randomness: this causes other subtleties in our
proof of security. The complete constructions and proofs of standalone as well
as concurrent security, can be found in Sect. 5.

3 Preliminaries

Here, we recall some preliminaries that will be useful in the rest of the paper. We
will typically use n to denote the security parameter. We will say that T7(n) >
Ts(n) if T1(n) > Ta(n) - n° for all constants c.

We define a T-time machine as a non-uniform Turing Machine that runs in
time at most T'. All honest parties in definitions below are by default uniform
interactive Turing Machines, unless otherwise specified.

3.1 ZK with Superpolynomial Simulation

We will use two message ZK arguments with strong superpolynomial simulation
(SPS) and with super-polynomial strong simulation (SPSS) [34].

Definition 1 (Two Message (Tsim, Ty, 6:k)-ZK Arguments With Super-
polynomial Simulation). [34] We say that an interactive proof (or argument)
(P, V) for the language L € NP, with the witness relation Ry, is (Tsim, Tok, 02k )-
simulatable if for every Ty-time machine V* exists a probabilistic simulator
S with running time bounded by Tsim such that the following two ensembles
are Ty, 6,k )-computationally indistinguishable (when the distinguishing gap is a
function inn = |z|):

~{{(P(y), V*(2))(2))}ze{0,1}*, wer for arbitrary y € Ry (x)
- {S(x7z)}ze{0,1}*,xEL

That is, for every probabilistic algorithm D running in time polynomial in the
length of its first input, every polynomial p, all sufficiently long x € L, all y €
Rp(z) and all auziliary inputs z € {0,1}" it holds that

Pr[D(z, 2, ((P(y), V" (2))(x)) = 1] = Pr[D(z, 2, 5(z, 2)) = 1] < 6x(})



752 S. Badrinarayanan et al.

Definition 2. We say that a two-message (Tsim, Ty, 02k )-SPS ZK argument sat-
isfies non-uniform simulation (for delayed statements) if we can write the sim-
ulator § = (81, 82) where S1(V*(z)), which outputs o, runs in Tsim-time, but
where Sa(z, z,0), which outputs the simulated view of the verifier V*, runs in
only polynomaial time.

3.2 ZK with Super-Polynomial Strong Simulation

We now define zero-knowledge with strong simulation. We use the definition
in [25].

Definition 3 ((T17, Tsim, Tok, TL, 6.k)-SPSS Zero Knowledge Arguments).
We call an interactive protocol between a PPT prover P with input (x,w) € Ry,
for some language L, and PPT verifier V with input z, denoted by (P,V)(x,w),
a super-polynomial strong simulation (SPSS) zero-knowledge argument if it sat-
isfies the following properties and Ty < Tsjm < Ty < T,:

- Completeness. For every (z,w) € Ry, Pr[V outputs 1I|{P,V)(z,w)] > 1 —
negl(\), where the probability is over the random coins of P and V.

— Trr-Adaptive-Soundness. For any language L that can be decided in time
at most T, every x, every z € {0,1}", and every poly-non-uniform prover P*
running in time at most Ty that chooses x adaptively after observing verifier
message, Pr[(P*(z),V)(x) =1 A x ¢ L] < negl(\), where the probability is
over the random coins of V.

— Tsim, Tk, 0.k-Zero Knowledge. There exists a (uniform) simulatorS that runs
in time Tsim, such that for every x, every non-uniform Ty -verifier V* with advice
z, and every Ty-distinguisher D: |Pr[D(z, z,viewy«[(P, V*(2))(z,w)]) = 1]
—Pr[D(z,2,8Y (2,2)) = 1]| < 6x(N)

3.3 Non-Malleability w.r.t. Commitment

Throughout this paper, we will use A to denote the security parameter, and
negl(A) to denote any function that is asymptotically smaller than m for any
polynomial poly(-). We will use PPT to describe a probabilistic polynomial time
machine. We will also use the words “rounds” and “messages” interchangeably.

We follow the definition of non-malleable commitments introduced by Pass
and Rosen [35] and further refined by Lin et al. [29] and Goyal [20] (which in turn
build on the original definition of [12]). In the real interaction, there is a man-in-
the-middle adversary MIM interacting with a committer C (where C commits to
value v) in the left session, and interacting with receiver R in the right session.
Prior to the interaction, the value v is given to C' as local input. MIM receives
an auxiliary input z, which might contain a-priori information about v. Then
the commit phase is executed. Let MIM ¢ gy (val, z) denote a random variable

that describes the value val committed by the MIM in the right session, jointly
with the view of the MIM in the full experiment. In the simulated experiment,
a PPT simulator S directly interacts with the MIM. Let Sim<c’3>(1)‘, z) denote
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the random variable describing the value val committed to by S and the output
view of §. If the tags in the left and right interaction are equal, the value val
committed in the right interaction, is defined to be L in both experiments.

Concurrent non-malleable commitment schemes consider a setting where the
MIM interacts with committers in polynomially many (a-priori unbounded) left
sessions, and interacts with receiver(s) in upto £(n) right sessions. If any of
the tags (in any right session) are equal to any of the tags in any left ses-
sion, we set the value committed by the MIM to L for that session. The we let
MIM ¢, gy(val, )™ denote the joint distribution of all the values committed
by the MIM in all right sessions, together with the view of the MIM in the full
experiment, and Sim ¢ g) (1’\, z)™a denotes the joint distribution of all the val-
ues committed by the simulator S (with access to the MIM) in all right sessions
together with the view.

Definition 4 (Non-malleable Commitments w.r.t. Commitment). A
commitment scheme (C, R) is said to be non-malleable if for every PPT MIM,
there exists a PPT simulator S such that the following ensembles are computa-
tionally indistinguishable:

{M|M<CvR> (val, Z)}nEN,'UE{O,l}’\,zE{O,l}* and {Sim<C,R> (1)\7 Z)}neNme{OJ}*,ze{o,l}*

Definition 5 (¢(n)-Concurrent Non-malleable Commitments w.r.t.
Commitment). A commitment scheme (C,R) is said to be £(n)-concurrent
non-malleable if for every PPT MIM, there exists a PPT simulator S such that
the following ensembles are computationally indistinguishable:

{MIM ¢, Ry (val, Z)many}neN,ve{0,1}k,ze{0,1}* and {Sim(c, g) a, Z)many}neN,ve{o,l}*,ze{o,l}*

We say that a commitment scheme is fully concurrent, with respect to com-
mitment, if it is concurrent for any a-priori unbounded polynomial £(n).

3.4 Secure Multiparty Computation

As in [18], we follow the real-ideal paradigm for defining secure multi-party com-
putation. The only difference is that our simulator can run in super-polynomial
time. A formal definition can be found in the full version.

Semi-malicious adversary: An adversary is said to be semi-malicious if it follows
the protocol correctly, but with potentially maliciously chosen randomness. We
refer the reader to the full version for more details.

Concurrent security: The definition of concurrent secure multi-party computa-
tion considers an extension of the real-ideal model where the adversary partici-
pates simultaneously in many executions, corrupting subsets of parties in each
execution. We refer the reader to [8,13] for a detailed definition of concurrent
security.
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4 Three Round Malicious Secure MPC

Let f be any functionality. Consider n parties Py, ..., P, with inputs xq,...,x,
respectively who wish to compute f on their joint inputs by running a secure
multiparty computation (MPC) protocol. Let 7™ be any 3 round protocol that
runs without any setup for the above task and is secure against adversaries that
can be completely malicious in the first round, semi-malicious in the next two
rounds and can corrupt upto (n — 1) parties. In this section, we show how to
generically transform 7% into a 3 round protocol 7 without setup with super-
polynomial simulation and secure against malicious adversaries that can corrupt
upto (n — 1) parties. Formally, we prove the following theorem:

Theorem 1. Assuming sub-exponentially secure:

~ A, where A € {DDH, Quadratic Residuosity, N*" Residuosity} AND

- 8 round MPC protocol for any functionality f that is secure against malicious
adversaries in the first round and semi-malicious adversaries in the next two
rounds,

the protocol presented in Fig. 2 is a 8 round MPC protocol for any functionality
f, in the plain model with super-polynomial simulation.

We can instantiate the underlying MPC protocol with the construction of
Brakerski et al. [7], which satisfies our requirements. That is:

Imported Lemma 1 ([7]): There exists a 3 round MPC protocol for any func-
tionality f based on the LWE assumption that is secure against malicious adver-
saries in the first round and semi-malicious adversaries in the next 2 rounds.

Additionally, Dodis et al. [11] give a 2 round construction based on indis-
tinguishability obfuscation that is secure against semi-malicious adversaries. Of
course, this can be interpreted as a 3 round construction where the first round
has no message and is trivially secure against malicious adversaries in the first
round.

Formally, we obtain the following corollary on instantiating the MPC protocol
with the sub-exponentially secure variants of the above:

Corollary 1. Assuming sub-exponentially secure:

~ A, where A € {DDH, Quadratic Residuosity, N** Residuosity} AND
- B, where B € {LWE, Indistinguishability Obfuscation}

the protocol presented in Fig. 2 is a 3 round MPC protocol for any functionality
f, in the plain model with super-polynomial simulation.

Note that though the two underlying MPC protocols can be based on the
security of polynomially hard LWE and polynomially hard iO respectively, we
require sub-exponentially secure variants of the MPC protocol and hence we use
sub-exponentially secure LWE and iO in our constructions.
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Remark 1 (On the Semi-Malicious security of [11]). We note that the protocol
in [11] works in two rounds: In the first round, each party provides a suitably
“spooky” homomorphic encryption of its input, under public keys chosen by each
party independently. After the first round, each party carries out a deterministic
homomorphic evaluation procedure that results in an encryption of f(x), where
x is a vector that combines inputs of all parties. In the second round, each party
computes a partial decryption of this ciphertext. The result is guaranteed to be
the sum of these partial decryptions in a suitable cyclic group.

Furthermore, their protocol satisfies the invariant that given the (possibly
maliciously chosen) randomness of the corrupted parties for the first round, and
given the vector of ciphertexts that are fixed after the first round, it is possible
to efficiently compute, at the end of the first round, the decryption shares for
all corrupted parties. Thus, if there is one honest party and the other parties
are corrupted, given the final output value f(x), the first round ciphertexts
and the randomness of the corrupted semi-malicious parties, it is possible to
compute the unique decryption share of the honest party that would force the
desired output value. This property shows that their protocol satisfies semi-
malicious security, since the first round message of the simulated honest party
can simply be the honest first round message corresponding to the input 0, and
the second round message can be computed from f(x), the first round ciphertexts
and the randomness of the corrupted semi-malicious parties. The work of [31]
further showed how to transform such a 2-round semi-malicious MPC protocol
that handles exactly all-but-one corruptions into a 2-round semi-malicious MPC
protocol that handles any number of corruptions.

4.1 High-Level Overview

Before describing our protocol formally, to help the exposition, we first give a
brief overview of the construction in this subsection.

Consider n parties Pq,...,P, with inputs xq,...,x, respectively who wish
to run a secure MPC to compute a function f on their joint inputs. Initially,
each party P; picks some randomness r; that it will use to run the semi-malicious
protocol M.

In the first round, each party P; sends the first round message of the protocol
7M. Then, with every other party P;, P; initiates two executions of the SPSS.ZK
argument system playing the verifier’s role. Additionally, P; and P; also initiate
two executions of a non-malleable commitment scheme - each acting as the
committer in one of them. P; commits to the pair (x;, r;) - that is, the input and
randomness used in the protocol m°M. Recall that the first round messages of
M are already secure against malicious adversaries, so intuitively, the protocol
doesn’t require any proofs in the first round.

In the second round, each party P; sends the second round message of the
protocol M using input x; and randomness r;. Then, P; finishes executing
the non-malleable commitments (playing the committer’s role) with every other
party P;, committing to (x;,r;). Finally, with every other party P;, P; completes
the execution of the SPSS.ZK argument by sending its second message - P; proves
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that the two messages sent so far using the protocol 7™ were correctly generated
using the pair (x;,r;) committed to using the non-malleable commitment.

In the third round, each party P; first verifies all the proofs it received in
the last round and sends a global abort (asking all the parties to abort) if any
proof does not verify. Then, P; sends the third round message of the protocol
M using input x; and randomness r;. Finally, as before, with every other party
P;, P; completes the execution of the SPSS.ZK argument by sending its second
message - P; proves that the two messages sent so far using the protocol 75M were
correctly generated using the pair (x;,r;) committed to using the non-malleable
commitment.

Each party P; now computes its final output as follows. P; first verifies all
the proofs it received in the previous round and sends a global abort (asking
all the parties to abort) if any proof does not verify. Then, P; computes the
output using the output computation algorithm of the semi-malicious protocol
7M. This completes the protocol description.

Security Proof: We now briefly describe how the security proof works. Let’s
consider an adversary A who corrupts a set of parties. Recall that the goal is to
move from the real world to the ideal world such that the outputs of the honest
parties along with the view of the adversary is indistinguishable. We do this via
a sequence of computationally indistinguishable hybrids.

The first hybrid Hyb,, refers to the real world. In Hyb,, the simulator extracts
the adversary’s input and randomness (used in protocol 75M) by a brute force
break of the non-malleable commitment. The simulator aborts if the extracted
values don’t reconstruct the protocol messages for the underlying semi-malicious
protocol correctly. These two hybrids are indistinguishable because from the
soundness of the proof system, except with negligible probability, the values
extracted by the simulator correctly reconstruct to protocol messages.

Then, in Hyb;, we switch the SPSS.ZK arguments used by all honest par-
ties in rounds 2 and 3 to simulated ones. This hybrid is computationally indis-
tinguishable from the previous hybrid by the security of the SPSS.ZK system.
Notice that when we switch from real to simulated arguments, we can no longer
rely on the adversary’s zero knowledge arguments to argue the correctness of the
values extracted by breaking the non-malleable commitment. That is, the adver-
sary’s arguments may not be simulation sound. However, recall that to check the
validity of the extracted values, we only rely on the correct reconstruction of the
semi-malicious protocol messages, and hence this is not a problem. Also, the run-
ning time of the simulator in these two hybrids is the time taken to break the
non-malleable commitment T(B:gl:n - which must be lesser than the time against
which the zero knowledge property holds - Tzk.

In Hyb,, we switch all the non-malleable commitments sent by honest par-
ties to be commitments of 0 instead of the actual input and randomness. Recall
that since the arguments of the honest parties are simulated, this doesn’t vio-
late correctness. Also, this hybrid is computationally indistinguishable from
the previous hybrid by the security of the non-malleable commitment scheme.
One issue that arises here is whether the simulator continues to extract the
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adversary’s inputs correctly. Recall that to extract, the simulator has to break
the non-malleable commitment for which it has to run in time TEB:(')':H. However,
then the reduction to the security of the non-malleable commitment only makes
sense if the simulator runs in time lesser than that needed to break the non-
malleable commitment. We overcome this issue by a sequence of sub-hybrids
where we first switch the simulator to not extract the adversary’s inputs, then
switch the non-malleable commitments and then finally go back to the simulator
extracting the adversary’s inputs. We elaborate on this in the formal proof.

Then, in Hyb; we run the simulator of 7°M using the extracted values to gen-
erate the protocol messages. This hybrid is indistinguishable from the previous
one by the security of 7M. Once again, in order to ensure correctness of the
extracted values, we require the running time of the simulator - which is TE™ to
be lesser than the time against which the semi-malicious protocol 7 is secure.
This is because, then, the simulator can continue to extract the adversary’s mes-
sage and randomness used for the protocol 7°M by breaking the semi-malicious
protocol. This hybrid (Hybs) now corresponds to the ideal world. Notice that
our simulation is in fact straight-line. There are other minor technicalities that
arise and we elaborate on this in the formal proof.

4.2 Construction

We first list some notation and the primitives used before describing the con-
struction.

Notation:

— X denotes the security parameter.

— SPSS.ZK = (ZKy, ZK3, ZK3) is a two message zero knowledge argument with
super polynomial strong simulation (SPSS-ZK). The zero knowledge prop-
erty holds against all adversaries running in time Tzk. Let Sim?X denote the
simulator that produces simulated ZK proofs and let T%Q“ denote its running
time. [25] give a construction of an SPSS.ZK scheme satisfying these proper-
ties that can be based on one of the following sub-exponential assumptions:
(1) DDH; (2) Quadratic Residuosity; (3) N** Residuosity.

— NMCom = (NMCom®, NMCom$, NMCom}) is a two message concurrent non-
malleable commitment scheme with respect to commitment in the simultane-
ous message model. Here, NMCom??, NMCom? denote the first message of the
receiver and sender respectively while NMCom‘Q9 denotes the second message
of the sender. It is secure against all adversaries running in time T%ffm, but
can be broken by adversaries running in time TE{)‘:“. Let Ext.Com denote a
brute force algorithm running in time ng':n that can break the commitment

scheme. [25] give a construction of an NMCom scheme satisfying these prop-

erties that can be based on one of the following sub-exponential assumptions:

(1) DDH; (2) Quadratic Residuosity; (3) N** Residuosity.

The NMCom we use is tagged. In the authenticated channels setting, the tag

of each user performing a non-malleable commitment can just be its iden-

tity. In the general setting, in the first round, each party can choose a strong
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digital signature verification key VK and signing key, and then sign all its
messages using this signature scheme for every message sent in the protocol.
This VK is then used as the tag for all non-malleable commitments. This
ensures that every adversarial party must choose a tag that is different than
any tags chosen by honest parties, otherwise the adversary will not be able
to sign any of its messages by the existential unforgeability property of the
signature scheme. This is precisely the property that is assumed when apply-
ing NMCom. For ease of notation, we suppress writing the tags explicitly in
our protocols below.

M is a sub-exponentially secure 3 round MPC protocol that is secure against
malicious adversaries in the first round and semi-malicious adversaries in the
next two rounds. This protocol is secure against all adversaries running in
time Tsm. Let (MSGy, MSGy, MSG3) denote the algorithms used by any party
to compute the messages in each of the three rounds and OUT denotes the
algorithm to compute the final output. Further, let’s assume that this protocol
M runs over a broadcast channel. Let S = (S;, S, S3) denote the straight
line simulator for this protocol - that is, S; is the simulator’s algorithm to
compute the i*” round messages. Also, we make the following assumptions
about the protocol structure, that is satisfied by the instantiations:

1. & and S run without any input other than the protocol transcript so
far - in particular, they don’t need the input, randomness and output
of the malicious parties. For &7, this must necessarily be true since the
first round of M is secure against malicious adversaries. We make the
assumption only on Sy.!

2. The algorithm MSGs doesn’t require any new input or randomness that
was not already used in the algorithms MSGy, MSG,. Looking ahead, this
is used in our security proof when we want to invoke the simulator of
this protocol 7°M, we need to be sure that we have fed the correct input
and randomness to the simulator. This is true for all instantiantions we
consider, where the semi-malicious simulator requires only the secret keys
of corrupted parties (that are fixed in the second round) apart from the
protocol transcript.

In order to realize our protocol, we require that poly(\) < TSI < Tgec < TBrk <
Tzk, Tsm-

The construction of the protocol is described in Fig. 2. We assume broadcast
channels. In our construction, we use proofs for a some NP languages that we

elaborate on below.

NP language L is characterized by the following relation R.
Statement : st = (cy, &1, €2, Msgy, Msgy, 7)

Witness : w = (inp, r,rc)

R(st,w) = 1 if and only if :

- ¢ = NI\/ICom]Cf(inp, r;r.) AND

! This assumption can be removed by running the commitment extractor on the first
round messages itself. This idea is used in Sect. 5.
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— Ccy = NMCom‘g(inp, r,c1;rc) AND
— msg; = MSG;(inp;r) AND
— msgy, = MSGa(inp, 7;r)

That is, the messages (c1,¢1,c2) form a non-malleable commitment of (inp,r)
such that msg, is the second round message using input inp, randomness r by
running the protocol 7M., where the protocol transcript so far is 7.

NP language L, is characterized by the following relation R;.
Statement : st = (cy, €1, C2, msgs, T)

Witness : w = (inp, r,rc)

R(st,w) =1 if and only if :

— & = NMComj (inp, r;r.) AND
— c2 = NMComj, (inp, r,c;rc) AND
~ msgs = MSGs(inp, 7;r)

That is, the messages (c1,¢1,¢2) form a non-malleable commitment of (inp,r)
such that msgs is the third round message using input inp, randomness r by
running the protocol 7M. where the protocol transcript so far is 7.

In the protocol, let’s assume that every party has an associated identity id.
For any session sid, each parties generates its non-malleable commitment using
the tag (id||sid).

The correctness of the protocol follows from the correctness of the protocol
M the non-malleable commitment scheme NMCom and the zero knowledge
proof system SPSS.ZK.

4.3 Security Proof

In this section, we formally prove Theorem 1.

Consider an adversary A who corrupts ¢ parties where ¢ < n. For each party
P;, let’s say that the size of input and randomness used in the protocol 7m>M
is p(A) for some polynomial p. That is, |(x;,r;)| = p(A). The strategy of the
simulator Sim against a malicious adversary A is described in Fig. 3.

Here, in the simulation, we crucially use the two assumptions about the
protocol structure. The first one is easy to notice since the simulator Sim has to
run the semi-malicious to produce the first and second messages before it has
extracted the adversary’s input and randomness. For the second assumption,
observe that in order to run the simulator algorithm Ss3, Sim has to feed it the
entire input and randomness of the adversary and so these have to be bound to
by the end of the second round.

We now show that the simulation strategy described in Fig.3 is successful
against all malicious PPT adversaries. That is, the view of the adversary along
with the output of the honest parties is computationally indistinguishable in
the real and ideal worlds. We will show this via a series of computationally
indistinguishable hybrids where the first hybrid Hyb; corresponds to the real
world and the last hybrid Hybg corresponds to the ideal world.
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Inputs: Each party P; has input x; and uses randomness r; to compute the message
in each round of the protocol 7", We now describe the messages sent by party P;.
We will use superscripts to denote the intended recipient of the message if it is not
meant to be used by all parties.

1. Round 1:
P; does the following:
— Compute msg, ; = MSG1(x;;r;).
— For each j € [n] with j # 4, compute:

. é{l + NMCom3 (x;, r;; rél) using a random string rél and c{l —
NMCom®(1%).

o (ver] ,,zkst] ) < ZKy1(1*) and (ver} ;, zkst] ;) + ZK1(1%).

— Send (msglyi,éjl"i,c{yi,ver{'j,veré,i) for all j.
2. Round 2: '
Let 71 denote the protocol transcript after round 1. P; does the following:
— Compute msg, ; < MSGa (s, T1; i )-
— For each j € [n] with j # 4, compute:

. ng <+ NMCom3 (x;, i, ¢} ;3 rél) using the same random string rgz

° prove;i — ZKg(verij,stg’i,w;i) for the statement stg’i =
(C7i,j7éjl,i7cg,1}7 msgy i
msg, ;,71) € L using witness W%,L = (X, 14, rgz)

— Send (mng’i,cgﬂ.7 prove), ;) for all j.
3. Round 3: '
Let 72 denote the protocol transcript after round 2. P; does the following:
— Compute msg; ; + MSGs(xs, T2; 1:).
— For each j € [n] with j # 4, do:

e Abort if ZK3(zkst{7i7st§,j) # 1 where sth; =
(c{yi,é’i’j,cg,j, msg, ;,Msg, ;,71). In particular, send a global abort
signal to all parties so that everyone aborts.

. proveg’i — ZKg(ver;j,stgi,wéii) for the statement stgi =
(ciyj,é{!i,cg,i, msg; ;, T2) € L1 using witness wf” = (X, s, rgz)

— Send (msg; ;, provegyi) for all j.
4. Output Computation:
Let 73 denote the protocol transcript after round 3. P; does the following:
— For each j € [n] with j # 4, do:

e Abort if ZKg(zkstg’i,stQj) # 1 where stfs,’j = (c{’i,é’i,j,céj,msg3,j,7'2).
In particular, send a global abort signal to all parties so that everyone
aborts.

— Compute output y; < OUT(x;, T3;1;).

Fig. 2. 3 round MPC Protocol 7 for functionality f.

1. Hyb;: In this hybrid, consider a simulator Simpyy, that plays the role of the
honest parties. Simpyp runs in polynomial time.

2. Hyb,: In this hybrid, the simulator Simpyp, also runs the “Input Extraction”
phase and the “Special Abort” phase in step3 and 5 in Fig. 3. Simpy runs in

H Brk
time TECY,.
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1. Round 1: For each honest party P;, Sim does the following:
— Compute msg, ; + S1(1%,4). For each j € [n] with j # i, compute:
o &, + NMCom: (0"™), ] ; + NMCom{¥(1%).
. (ver{’i,zkstii) +— ZKy(1*) and (verg’i,zksté,i) — ZKq(17).
— Send (msglﬂi,é{yi,c{ﬂ,ver{’i,veré,i) for all j € [n].
2. Round 2: Let 71 denote the protocol transcript after round 1. For each honest
party P;,
— Compute msg, ; <= Sa(71,1). For each j € [n] with j # 4, compute:
° c%l + NMComj5 (0°™, ¢} ;; ng) using a random string rgl
. prove;',i — SimZK(veri’j,Stgyi) for sté’i = (c’i,j,é{,i,céyi, msg, ;, Msg, ;, 1)
€ L. Observe that this takes time TSP,
— Send (msgw,cé,i, proveé’i) for all j € [n].
3. Input Extraction: Sim does the following:
— For each honest party P; and for each j € [n] with j # ¢, do:
e Abort if ZKg(zkst{,i,sté,j) # 1 where 71 is the protocol transcript after
round 1 such that st ; = (c{"i,&ﬁ’j,cé’j, msg, ;, Mg, ;, T1)
1 rl

e Compute (xj,r;) = Ext.Com(cq ;, éij, céjj). That is, this is the input and

vARE]
randomness of party P; seen by party P;. This step takes time TEk |
— For each malicious party P;, do:
e Output “Special Abort” if the set of values {(x},r})} computed in the
last step, for all ¢ corresponding to honest parties P; is not equal. Set
(xj,r;) = (x,r}). Output “Special Abort” if msg, ; # MSGi(x;,r;) and
msg, ; # MSGa(x;,rj,71).
e Send all extracted x; to the trusted functionality and receive output y.
e Let R denote the set of all {x;,r;}.
4. Round 3: Let 7 denote the protocol transcript after round 2. For each honest
party P;, compute and send msg;,; < S3(y, R, 72,1) together with proveéﬂ- for
j € [n],j # i where proveg,i — SimZK(veréﬂj,stfﬁ;’i) for the statement stgﬂ: =
(cﬁyj,éjl"i,c;i, msgs ;, 72) € L1. Observe that this takes time TSm,
5. Special Abort Phase: Sim does the following:
— Output “Special Abort” if for each malicious party P;, msgs;, #
MSGg(X]’, ri, Tz).
6. Output Computation: Sim does the following;:
— For each honest party P; and for each j € [n] with j # 4, abort if
ZKg(zkst;i,sté,j) # 1 where st§7j = (c{yi,é’i,j,cé,j, msgs ;, T2).
— Else instruct the ideal functionality to deliver output to the honest parties.

Fig. 3. Simulation strategy in the 3 round protocol

3. Hybs: This hybrid is identical to the previous hybrid except that in Rounds
2 and 3, Simpy, now computes simulated SPSSZK proofs as done in Round

2 in Fig. 3. Once again, Simnyp runs in time nglfn.

4. Hyb,: This hybrid is identical to the previous hybrid except that Simpyp now

computes all the (é{,i? c%l) as non-malleable commitments of 0P(*) as done in

Brk

Round 2 in Fig. 3. Once again, Simpy, runs in time Tl .
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5. Hybs: This hybrid is identical to the previous hybrid except that in Round 3,
Simpy, now computes the messages of the protocol M using the simulator
algorithms & = (81,82, S3) as done by Sim in the ideal world. Simuy, also
instructs the ideal functionality to deliver outputs to the honest parties as
done by Sim. This hybrid is now same as the ideal world. Once again, Simpyp

runs in time ngﬁn.

We now show that every pair of successive hybrids is computationally indis-
tinguishable.

Lemma 1. Assuming soundness of the SPSS.ZK argument system, binding of
the non-malleable commitment scheme and correctness of the protocol M, Hyb,
is computationally indistinguishable from Hyb,.

Proof. The only difference between the two hybrids is that in Hyb,, Simpyp may
output “Special Abort” which doesn’t happen in Hyb,. More specifically, in Hyb,,
“Special Abort” occurs if event E described below is true.

Event E: Is true if : For any malicious party P;

— All the SPSS.ZK proofs sent by P; in round 2 and 3 verify correctly.
(AND)
— Either of the following occur:
e The set of values {(x},r?)} that are committed to using the non-malleable
commitment is not same for every ¢ where P; is honest. (OR)
® msgy ; 7£ MSGl(Xj, I’j) (OR)
e msg, ; # MSGg (xj,rj,71) where 71 is the protocol transcript after round
1. (OR)
e msg; ; # MSG3(xj, 1y, T2) where 7 is the protocol transcript after round 2.

That is, in simpler terms, the event E occurs if for any malicious party, it
gives valid ZK proofs in round 2 and 3 but its protocol transcript is not consistent
with the values it committed to.

Therefore, in order to prove the indistinguishability of the two hybrids, it is
enough to prove the lemma below.

Sub-Lemma 1. Pr[Event E is true in Hyb,] = negl()).

Proof. We now prove the sub-lemma. Suppose the event E does occur. From the
binding property of the commitment scheme and the correctness of the protocol
7M. observe that if any of the above conditions are true, it means there exists
i, j such that the statement st} ; = (c] ;,cb ;, msgy ;, msg, ;,71) ¢ L, where P; is
honest and P is malicious. However, the proof for the statement verified correctly
which means that the adversary has produced a valid proof for a false statement.
This violates the soundness property of the SPSSZK argument system which is
a contradiction.

Lemma 2. Assuming the zero knowledge property of the SPSS.ZK argument
system, Hyby is computationally indistinguishable from Hyb,.
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Proof. The only difference between the two hybrids is that in Hyb,, Simyy, com-
putes the proofs in Rounds 2 and 3 honestly, by running the algorithm ZKj, of
the SPSS.ZK argument system, whereas in Hyb,, a simulated proof is used. If the
adversary A can distinguish between the two hybrids, we can use A to design an
algorithm Azk that breaks the zero knowledge property of the argument system.

Suppose the adversary can distinguish between the two hybrids with non-
negligible probability p. Then, by a simple hybrid argument, there exists hybrids
Hyb, , and Hyb2 x+1 that the adversary can distinguish with non-negligible
probablhty p’ < p such that: the only difference between the two hybrids is
in the proof sent by an honest party P; to a (malicious) party P; in one of the
rounds. Let’s say it is the proof in round 2.

Azk performs the role of Simpyp in its interaction with A4 and performs all
the steps exactly as in Hyb, ; except the proof in Round 2 sent by P; to P;. It
interacts with a challenger C of the SPSS.ZK argument system and sends the
first round message ver] ; it received from the adversary. Azx receives from C
a proof that is either honestly computed or simulated. Azk sets this received
proof as its message provef’2 in Round 2 of its interaction with A. In the first
case, this exactly corresponds to Hyb, ; while the latter exactly corresponds to
Hyb, ;. , 1. Therefore, if A can distinguish between the two hybrids, Azk can use
the same distinguishing guess to distinguish the proofs: i.e., decide whether the
proofs received from C were honest or simulated. Now, notice that Azk runs only
in time T2 (during the input extraction phase), while the SPSS.ZK system is
secure against adversaries running in time Tzk. Since TEK < Tz, this is a
contradiction and hence proves the lemma.

In particular, this also means the following: Pr[Event E is true in Hybs] = negl(}).

Lemma 3. Assuming the non-malleability property of the non-malleable com-
mitment scheme NMCom, Hyb, is computationally indistinguishable from Hyb,.

Proof. We will prove this using a series of computationally indistinguishable
intermediate hybrids as follows.

— Hybg ;: This is same as Hyb; except that the simulator Simyyp, does not run the
input extraction phase apart from verifying the SPSS.ZK proofs. Also, Simpyp
does not run the special abort phase. In particular, the Ext.Com algorithm is
not run and there is no “Special Abort”. In this hybrid, Simpys runs in time
T%‘lz‘ which is lesser than TE{)‘%.

— Hybs 5: This hybrid is identical to the previous hybrid except that in Round
2, Simpyp now computes all the messages (é{’i, cél) as non-malleable commit-
ments of 0°P*) as done by Sim in the ideal world. In this hybrid too, Simpyb
runs in time TS'rn

— Hybs 3: This is same as Hybs except that the simulator does run the input
extraction phase and the special abort phase. It is easy to see that Hybs 5 is

the same as Hyb,. In this hybrid, Simuy, runs in time TErk

Com Which is greater
than TS
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We now prove the indistinguishability of these intermediate hybrids and this
completes the proof of the lemma.

Sub-Lemma 2. Hyb; is statistically indistinguishable from Hybs ;.

Proof. The only difference between the two hybrids is that in Hyb, the simulator
might output “Special Abort” which doesn’t happen in Hybs ;. As shown in the
proof of Lemma 2, the probability that Event E occurs in Hyb'3 is negligible. This
means that the probability that the simulator outputs “Special Abort” in Hyb,
is negligible and this completes the proof.

Sub-Lemma 3. Assuming the non-malleability property of the non-malleable
commitment scheme NMCom, Hybs ; is computationally indistinguishable from
Hybs 5.

Proof. The only difference between the two hybrids is that in Hyb 4, for every
honest party P;, Simpy, computes the commitment messages (é{’i, C%’i) as a com-
mitment of (x;,r;), whereas in Hyb; ,, they are computed as a commitment of
(0P(N). If the adversary A can distinguish between the two hybrids, we can use
A to design an algorithm Aynwuc that breaks the security of the non-malleable
commitment scheme NMCom. We defer the details about the reduction to the
full version.

Sub-Lemma 4. Hybs , is statistically indistinguishable from Hybsg 5.

Proof. The only difference between the two hybrids is that in Hyb; 5, the simu-
lator might output “Special Abort” which doesn’t happen in Hyb; 5. As shown
in the proof of Sub-Lemma 3, the probability that Event E occurs in Hybg 5 is
negligible. This means that the probability that the simulator outputs “Special
Abort” in Hybjg 5 is negligible and this completes the proof.

Lemma 4. Assuming the security of the protocol 7™M, Hyb, is computationally
indistinguishable from Hybsy.

Proof. The only difference between the two hybrids is that in Hyb,, Simpy, com-
putes the messages of protocol 7™ correctly using the honest parties’ inputs,
whereas in Hybs, they are computed by running the simulator S for protocol
M If the adversary A can distinguish between the two hybrids, we can use A
to design an algorithm Asy that breaks the security of protocol 7M. We defer
the details about the reduction to the full version.

5 Two Round Malicious Secure MPC for Input-Less
Functionalities

Let f be any input-less functionality randomized functionalities. Consider n
parties Py, ..., P, who wish to compute f by running a secure multiparty com-
putation(MPC) protocol. Let 75 be any 2 round MPC protocol for f in the



Round Optimal Concurrent MPC via Strong Simulation 765

plain model, that is secure against semi-malicious adversaries corrupting upto
(n—1) parties (such a protocol for general functionalities was described in [7]). In
this section, we show how to generically transform 75™ into a 2 round protocol
71 without setup with super-polynomial simulation and secure against malicious
adversaries that can corrupt upto (n—1) parties. Formally, we prove the following
theorem:

Theorem 2. Assuming sub-exponentially secure:

~ A, where A € {DDH, Quadratic Residuosity, N*" Residuosity} AND
- 2 round MPC protocol for any functionality f that is secure against semi-
malicious adversaries,

the protocol presented in Fig. 4 is a 2 round MPC protocol for any input-less
randomized functionality f, in the plain model with super-polynomial simulation.

We can instantiate the underlying MPC protocol with the 2 round construc-
tion of [11] to get the following corollary:

Corollary 2. Assuming sub-exponentially secure:

~ A, where A € {DDH, Quadratic Residuosity, N** Residuosity} AND
— Indistinguishability Obfuscation,

the protocol presented in Fig. 4 is a 2 round MPC protocol for any input-less
randomized functionality f in the plain model with super-polynomial simulation.

5.1 High-Level Overview

Before describing our protocol formally, to help the exposition, we first give a
brief overview of the construction in this subsection.

Consider n parties Py, ..., P, with no inputs who wish to run a secure MPC
to compute an input-less randomized function f. Initially, each party P; picks
some randomness r; that it will use to run the semi-malicious protocol =M for
the same functionality f.

In the first round, each party P; sends the first round message of the protocol
7M. Then, with every other party P;, P; initiates an execution of the SPSS.ZK
argument system playing the verifier’s role. Additionally, P; and P; also initiate
two executions of a non-malleable commitment scheme - each acting as the
committer in one of them. P; commits to the randomness r; used in the protocol
M,

In the second round, each party P; sends the second round message of the
protocol 7°M using randomness r;. Then, P; finishes executing the non-malleable
commitments (playing the committer’s role) with every other party P;, commit-
ting to rr;. Finally, with every other party P;, P; completes the execution of
the SPSS.ZK argument by sending its second message - P; proves that the two
messages sent so far using the protocol 7°M were correctly generated using the
randomness r; committed to using the non-malleable commitment.
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Each party P; now computes its final output as follows. P; first verifies all
the proofs it received in the last round and sends a global abort (asking all the
parties to abort) if any proof does not verify. Then, P; computes the output
using the output computation algorithm of the semi-malicious protocol 7M.
This completes the protocol description.

Security Proof: We now briefly describe how the security proof works. Let’s
consider an adversary A who corrupts a set of parties. Recall that the goal is to
move from the real world to the ideal world such that the outputs of the honest
parties along with the view of the adversary is indistinguishable. We do this via
a sequence of computationally indistinguishable hybrids.

In the first hybrid Hyb,, we start with the real world.

Then, in Hyb,, we switch the SPSS.ZK proofs used by all honest parties in
round 2 to simulated proofs. This hybrid is computationally indistinguishable
from the previous hybrid by the security of the SPSS.ZK system.

In Hybs, we switch all the non-malleable commitments sent by honest par-
ties to be commitments of 0 rather than the randomness. Recall that since the
proofs were simulated, this doesn’t violate correctness. Also, this hybrid is com-
putationally indistinguishable from the previous hybrid by the security of the
non-malleable commitment scheme.

Then, in Hyb,, the simulator extracts the adversary’s randomness (used in
protocol M) by a brute force break of the non-malleable commitment. The
simulator aborts if the extracted values don’t reconstruct the protocol messages
correctly. These two hybrids are indistinguishable because from the soundness
of the proof system, the extraction works correctly except with negligible prob-
ability. One technicality here is that since we are giving simulated proofs at
this point, we cannot rely on soundness anymore. To get around this, from the
very first hybrid, we maintain the invariant that in every hybrid, the value com-
mitted by the adversary using the non-malleable commitments can be used to
reconstruct the messages used in the semi-malicious protocol. Therefore, at this
point, as in Sect. 4, we need the time taken to break the non-malleable commit-
ment scheme ng‘ﬁn to be lesser than the time against which the zero knowledge
property holds - Tzk. We elaborate on this in the formal proof.

Then, in Hybs we run the simulator of 7°M using the extracted values to gen-
erate the protocol messages. This hybrid is indistinguishable from the previous
one by the security of 7M. Once again, in order to ensure correctness of the

extracted values, we require the running time of the simulator - which is ngl;n to
be lesser than the time against which the semi-malicious protocol M is secure.

This is because, then, the simulator can continue to extract the adversary’s mes-
sage and randomness used for the protocol 7M™ by breaking the semi-malicious
protocol.

Finally, Hyb; corresponds to the ideal world. Notice that our simulation is in
fact straight-line. There are some slight technicalities that arise and we elaborate
on this in the formal proof. We now refer the reader to the formal protocol
construction.
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5.2 Construction

As in Sect. 4, we first list some notation and the primitives used before describing
the construction.

Notation:

— X denotes the security parameter.

— SPSS.ZK = (ZK1, ZK3, ZK3) is a two message zero knowledge argument with
super polynomial strong simulation (SPSS-ZK). The zero knowledge prop-
erty holds against all adversaries running in time Tzk. Let Sim?K denote the
simulator that produces simulated ZK proofs and let T%Q" denote its running
time. [25] give a construction of an SPSS.ZK scheme satisfying these proper-
ties that can be based on one of the following sub-exponential assumptions:
(1) DDH; (2) Quadratic Residuosity; (3) N** Residuosity.

~ NMCom = (NMCom, NMCom3, NMCom3) is a two message concurrent non-
malleable commitment scheme with respect to commitment in the simultane-
ous message model. Here, NMCom®, NMCom$ denote the first message of the
receiver and sender respectively while NI\/IComg denotes the second message
of the sender. It is secure against all adversaries running in time T2, but
can be broken by adversaries running in time TE® . Let Ext.Com denote a
brute force algorithm running in time ng':n that can break the commitment

scheme just using the first round messages. [25] give a construction of an

NMCom scheme satisfying these properties that can be based on one of the

following sub-exponential assumptions: (1) DDH; (2) Quadratic Residuosity;

(3) N** Residuosity.

M is a sub-exponentially secure 2 round MPC protocol that is secure against

semi-malicious adversaries. This protocol is secure against all adversaries run-

ning in time Tom. Let (MSGy, MSG,) denote the algorithms used by any party
to compute the messages in each of the two rounds and OUT denotes the algo-
rithm to compute the final output. Further, let’s assume that this protocol
7°M runs over a broadcast channel. Let S = (S, Ss) denote the simulator for

the protocol 7°M - that is, S; is the simulator’s algorithm to compute the i*"

round messages. Also, we make the following assumptions about the protocol

structure that is satisfied by the instantiations:

1. Since the protocol is for input-less functionalities, we assume that Sy is
identical to the algorithm MSG; used by honest parties to generate their
first message.

2. The algorithm MSGy doesn’t use any new randomness that was not
already used in the algorithm MSG;. This is similar to the assumption

used in Sect. 4.

In order to realize our protocol, we require that poly(\) < TSI < Tgec < TBrk <
Tzk, Tsm-

The construction of the protocol is described in Fig. 4. We assume broadcast
channels. In our construction, we use proofs for a some NP languages that we

elaborate on below.
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NP language L is characterized by the following relation R.
Statement : st = (cy, &1, Co, msgy, msg,, T)

Witness : w = (r,rc)

R(st,w) =1 if and only if :

~ ¢ = NMCom3(r;r.) AND

ca = NMComj (r,cq;r.) AND
msg; = MSG;(L;r) AND

— msgy, = MSGa(L, ;1)

That is, the messages (c1,¢1,¢2) form a non-malleable commitment of (inp,r)
such that msg, is the second round message using input inp, randomness r by
running the protocol M, where the protocol transcript so far is 7.

In the protocol, let’s assume that every party has an associated identity id.
For any session sid, each parties generates its non-malleable commitment using
the tag (id||sid).

The correctness of the protocol follows from the correctness of the protocol
M the non-malleable commitment scheme NMCom and the zero knowledge
proof system SPSS.ZK.

5.3 Security Proof
In this section, we formally prove Theorem 2.

Consider an adversary A who corrupts ¢ parties where ¢ < n. For each party P;,
let’s say that the size of randomness used in the protocol ™M is p()\) for some
polynomial p. That is, |r;| = p(A\). The strategy of the simulator Sim against a
malicious adversary A is described in Fig. 5.

Here, notice that since there is no input, the simulator gets the output from
the ideal functionality - y right at the beginning. It still has to instruct the
functionality to deliver output to the honest party.

We now show that the simulation strategy described in Fig.5 is successful
against all malicious PPT adversaries. That is, the view of the adversary along
with the output of the honest parties is computationally indistinguishable in
the real and ideal worlds. We will show this via a series of computationally
indistinguishable hybrids where the first hybrid Hyb; corresponds to the real
world and the last hybrid Hybg corresponds to the ideal world.

We prove indistinguishability of these hybrids via similar reductions as those
in Sect. 4. Please refer to the full version for these reductions.

1. Hyb;: In this hybrid, consider a simulator Simpyy, that plays the role of the
honest parties. Simpyp runs in polynomial time.

2. Hyby: This hybrid is identical to the previous hybrid except that in Round 2,
Simpyy, now computes simulated SPSSZK proofs as done in Round 2 in Fig. 5.
Here, Simpyp runs in time TSI

3. Hybs: This hybrid is identical to the previous hybrid except that Simpy, now
computes all the (é{,i? c§7) as non-malleable commitments of 0P(*) as done in

im

Round 2 in Fig. 5. Once again, Simpy, runs in time T%K .
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Inputs: Each party P; uses randomness r; to compute the message in each round
of the protocol 7°M. To make the exposition easier, we think of each party’s input as
being L. We now describe the messages sent by party P;. We will use superscripts
to denote the intended recipient of the message if it isn’t meant to be used by all
parties.

1. Round 1:
P; does the following:
— Compute msg, ; +~ MSG1(L;r;).
— For each j € [n] with j # 4, compute:
° 6{1 < NMCom3 (r;; "Zz) using a random string rgZ c{l + NMComf¥(1%).
° (ver{,i,zkst{,i) — ZKi (1Y),
— Send (msglyi,é{,i,c{"i,ver{‘_i) for all 5.
2. Round 2: ' '
Let 71 denote the protocol transcript after round 1. P; does the following:
— Compute msg, ; < MSGa (L, 71;1;).
— For each j € [n] with j # 4, compute:
e ¢}, + NMComj (i, ci ;; ril) using the same random string r? .

. proveé’i — ZKg(veriﬁstgwwéﬂ-) for the statement stgﬂ-
(Cllijéjl,ivcé,iv msgy ;s
msg, ;, 71) € L using witness wél = (rs, rgz)

— Send (msgzyi,cg,i, proveg’i) for all j.
3. Output Computation:
Let 72 denote the protocol transcript after round 2. P; does the following:
— For each j € [n] with j # ¢, do:

e Abort if  ZKs(zkst] ,,stb ;) £ 1 where sth; =
(c{',i,éﬁ,j,c;j, msg, ;, Msg, ;,71). In particular, send a global abort
signal to all parties so that everyone aborts.

— Compute output y; < OUT(L, 72;r;).

Fig. 4. 2 Round MPC protocol 71 for input-less randomized functionality f.

4. Hyby,: In this hybrid, the simulator Simpy, also runs the “Randomness Extrac-
tion” phase and the “Special Abort” phase in steps 2 and 4 in Fig.5. Now,
Simyyp runs in time ng':n.

5. Hybs: In this hybrid, if the value of the variable correct = 1, Simpy, now
computes the second round message of the protocol 7°M using the simulator
algorithms Sy as done by Sim in the ideal world. Simpyp also instructs the
ideal functionality to deliver outputs to the honest parties as done by Sim.
This hybrid is now same as the ideal world. Once again, Simpyp runs in time

TBrk

Com*

6 Three Round Concurrently Secure MPC

Let f be any functionality. Consider n parties Py, ..., P, with inputs xq,...,x,
respectively who wish to compute f on their joint inputs by running a concur-
rently secure multiparty computation(MPC) protocol. Let 7% be any 3 round
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1. Round 1: For each honest party P;, Sim does the following:
— Compute msg, ; <= MSGy(L;r;) using some random string r;. Recall that this
is identical to running the simulator S1(1%,4). For each j € [n] with j # 4,
compute & ; < NMCom3 (0P™V), c]; « NMCom{'(1*) and (ver] L zkst] ;)
ZKy(17).
— Send (msglyi,é{',i,c{ﬂ;,ver{'ﬂ-) for all j € [n].
2. Randomness Extraction: Sim does the following:
— For each honest party P; and for each j € [n] with j # ¢, do:
e Compute (r}) = Ext.Com(cjl"i,éﬁ’j). That is, this is the randomness of
party P; seen by party P;. This step takes time TErk |
— Initialize a variable correct = 1. Then, for each malicious party P;, do:
e Set correct = 0 if the set of values {r;'-}7 for all ¢ corresponding to honest
parties P; is not equal. Set r; = rjl- and let R denote the set of all {r;}.
e Set correct = 0 if msg, ; # MSG1 (L, r;).
3. Round 2: Let 7 denote the protocol transcript after round 1. Sim does the
following:
— For each honest party P;:
e If correct = 1, compute msg, ; < S2(71, R, 7).
e Else, compute msg, ; MSGaz (L, 71;r;) where r; was used in round 1.
— For each honest party Pi and for each j € [n] with j # 4, compute
® ) NMCom3 (OP(A) ci g f:z) using a random string rl
. prove2 ; < Sim®(ver! ],sté ;) for sth ;= (ct ],cl il s msg1 i MSgy 4, T1)
€ L. Observe that this takes time TS'm
— Send (msg2,1,c;’27 prove), ;) for all j € [n].
4. Special Abort Phase: For each malicious party P;:
— Output “Special Abort” if correct = 0.
— Also, output “Special Abort” if msg, ; # MSG2(L,r;, 71).
5. Output Computation: Sim does the following:
— For each honest party P; and for each j € [n] with j # i, abort if
ZKs(zkst] ;, sth ;) # 1 where st} ; = (c{yi,éﬁ’j,céﬂj, msg, ;, Msgy ;, 1)
— Else, instruct the ideal functionality to deliver output to the honest parties.

Fig. 5. Simulation strategy in the 2 round protocol

protocol that runs without any setup for the above task and is secure against
adversaries that can be completely malicious in the first round, semi-malicious
in the next two rounds and can corrupt upto (n — 1) parties. In this section,
we show how to generically transform 75 into a 3 round concurrently secure
protocol 70" without setup with super-polynomial simulation that is secure
against malicious adversaries which can corrupt upto (n — 1) parties. Formally,
we prove the following theorem:

Theorem 3. Assuming sub-exponentially secure:

- A, where A € {DDH, Quadratic Residuosity, N*" Residuosity} AND

— 8 round MPC protocol for any functionality f that is stand-alone secure
against malicious adversaries in the first round and semi-malicious adver-
saries in the next two rounds,
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the protocol presented in Fig. 2 is a 8 round concurrently secure MPC' proto-
col without any setup with super-polynomial simulation for any functionality f,
secure against malicious adversaries.

We can instantiate the underlying MPC protocol with the constructions of
[7,11] to get the following corollary:

Corollary 3. Assuming sub-exponentially secure:

~ A, where A € {DDH, Quadratic Residuosity, N** Residuosity} AND
— B, where B € {LWE, Indistinguishability Obfuscation}

the protocol presented in Fig. 2 is a 3 round concurrently secure MPC proto-
col without any setup with super-polynomial simulation for any functionality f,
secure against malicious adversaries.

We essentially prove that the same protocol from Sect.4 is also concur-
rently secure. The proof is fairly simple and not too different from the proof
of stand-alone security, because the simulation strategy as well as all reductions
are straight-line. The only use of rewinding occurs (implicitly) within the proof
of non-malleability, which we carefully combine with identities to ensure that
the protocol remains concurrently secure. For the sake of completeness, we write
out the protocol and the proof in their entirety in the full version.

7 Two Round Concurrently Secure MPC for Input-Less
Functionalities

Let f be any input-less functionality randomized functionalities. Consider n
parties Pq,...,P, who wish to compute f by running a concurrently secure
multiparty computation(MPC) protocol. Let 75 be any 2 round protocol that
runs without any setup for the above task and is secure against semi-malicious
adversaries that can corrupt upto (n — 1) parties. In this section, we show how
to generically transform 75 into a 2 round concurrently secure protocol o
without setup with super-polynomial simulation and secure against malicious
adversaries that can corrupt upto (n—1) parties. Formally, we prove the following
theorem:

Theorem 4. Assuming sub-exponentially secure:

~ A, where A € {DDH, Quadratic Residuosity, N** Residuosity} AND
- 2 round MPC protocol for any functionality f that is stand-alone secure
against semi-malicious adversaries,

the protocol presented in Fig. 4 is a 2 round concurrently secure MPC' protocol
without any setup with super-polynomial simulation for any input-less random-
ized functionality f, secure against malicious adversaries.

We can instantiate the underlying MPC protocol with the 2 round construc-
tion of [11] to get the following corollary:
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Corollary 4. Assuming sub-exponentially secure:

~ A, where A € {DDH, Quadratic Residuosity, N*"* Residuosity} AND
— Indistinguishability Obfuscation,

the protocol presented in Fig. 4 is a 2 round concurrently secure MPC' protocol
without any setup with super-polynomial simulation for any input-less random-
ized functionality f.

We essentially prove that the same protocol from Sect.5 is also concur-
rently secure. The proof is fairly simple and not too different from the proof
of stand-alone security, because the simulation strategy as well as all reductions
are straight-line. The only use of rewinding occurs (implicitly) within the proof
of non-malleability, which we carefully combine with identities to ensure that
the protocol remains concurrently secure. For the sake of completeness, we write
out the protocol and the proof in their entirety in the full version.
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