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Abstract. Zero knowledge proof systems have been widely studied in
cryptography. In the statistical setting, two classes of proof systems stud-
ied are Statistical Zero Knowledge (SZK) and Non-Interactive Statistical
Zero Knowledge (NISZK), where the difference is that in NISZK only very
limited communication is allowed between the verifier and the prover. It is
an open problem whether these two classes are in fact equal. In this paper,
we rule out efficient black box reductions between SZK and NISZK.

We achieve this by studying algorithms which can reverse the entropy
of a function. The problem of estimating the entropy of a circuit is com-
plete for NISZK. Hence, reversing the entropy of a function is equivalent
to a black box reduction of NISZK to its complement, which is known to
be equivalent to a black box reduction of SZK to NISZK [Goldreich et
al. CRYPTO 1999]. We show that any such black box algorithm incurs
an exponential loss of parameters, and hence cannot be implemented effi-
ciently.

Keywords: Entropy reversal · Statistical zero-knowledge proofs ·
Black-box reductions

1 Introduction

The notion of Zero-Knowledge Proof Systems was introduced in the seminal
paper of Goldwasser et al. [11]. Informally, an interactive proof system is a
protocol that involves a computational unbounded prover P and a polynomial
time verifier V . The prover attempts to convince the verifier that an assertion
is a YES instance x of some promise problem.

A promise problem Π consists of two disjoint sets ΠY and ΠN , e.g., yes
instances and no instances. A zero-knowledge proof system for the problem Π
requires the following three conditions:

– Completeness: If x ∈ ΠY , then Pr[(P, V )(x) accepts] ≥ 2/3.
– Soundness: If x ∈ ΠN , then for every adversary P ∗, Pr[(P ∗, V )(x) accepts] ≤

1/3.
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– Zero-knowledge: There is a polynomial time simulator S such that S(x) and
(P, V )(x) are “indistinguishable”, for every x ∈ ΠY .

Different zero knowledge proof systems differ in the allowed communication
protocol, and in the notion of indistinguishability applied to the simulator. In this
paper, we restrict our attention to statistical proof systems (SZK and NISZK),
where the corresponding notion is that of statistical indistinguishability.

Statistical zero knowledge (SZK). The complexity class SZK consists of the prob-
lems that have a statistical zero-knowledge proof, where any efficient interactive
communication is allowed between the verifier and the prover. Surprisingly, there
are complete problems for SZK which have nothing to do with interaction. This
was first discovered by Sahai and Vadhan [17].

A distribution D over {0, 1}m is said to be efficiently sampleable if there
exists a polynomial size boolean circuit C : {0, 1}n → {0, 1}m, such that the
distribution D can be obtained by applying C to uniformly sampled input bits.
By an abuse of notation, we identify C with this distribution. Given two distri-
butions C1, C2 over {0, 1}m, we denote by dist(C1, C2) their statistical distance.
The following problem, called Statistical Difference, was shown by Sahai and
Vadhan [17] to be complete for SZK.

Definition 1 (Statistical Difference [17]). The promise problem Statistical
Difference, denoted by SD = (SDY ,SDN ), consists of

– SDY = {(C1, C2) : dist(C1, C2) ≤ 1/3}
– SDN = {(C1, C2) : dist(C1, C2) ≥ 2/3}
Here C1, C2 denote polynomial size circuits with the same output length.

Theorem 1 [17]. SD is SZK-complete.

In a follow up work, Goldreich and Vadhan [10] gave another SZK-complete
problem, called Entropy Difference. Below, H(C) denotes the Shannon entropy
of the distribution induced by C.

Definition 2 (Entropy Difference [10]). The promise problem Entropy Dif-
ference, denoted by ED = (EDY ,EDN ), consists of

– EDY = {(C1, C2) : H(C1) ≥ H(C2) + 1}
– EDN = {(C1, C2) : H(C2) ≥ H(C1) + 1}
Here C1, C2 denote polynomial size circuits with the same output length.

Theorem 2 [10]. The problem ED is SZK-complete.

This in particular gives a slick proof to the fact that SZK is closed under
complement, which might be hard to guess from the original definition. Given
an input (C1, C2) to ED, one can simply reverse their order.
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Non-interactive statistical zero knowledge (NISZK). ThenotionofNon-Interactive
Zero-Knowledge Proof Systems, or NISZK was introduced by Blum et al. [2], allows
for very restricted communication between the verifier and the prover. Both parties
share a common uniformly random string (a random challenge), and the prover
sends a single message to the verifier based on this random challenge.

Since the model has been introduced, several problems have been shown to
be in NISZK. Originally these were problems arising in number theory, such as
Quadratic Nonresiduosity and its variants [1,2,4,6,7]. More recently, this was
extended to several natural problems in lattices [16].

The problem of finding complete problems for NISZK arose naturally. De
Santis et al. [5], introduced a problem called Image Density, and proved that is
complete for NISZK. Subsequently, Goldreich et al. [9] studied the following two
problems and showed that they too are complete for NISZK.

Definition 3 (Statistical Difference from Uniform [9]). The promise prob-
lem Statistical Difference from Uniform, denoted by SDU = (SDUY ,SDUN ),
consists of

– SDUY = {C : dist(C,U) ≤ 1/n}
– SDUN = {C : dist(C,U) ≥ 1 − 1/n}
Here C denotes a polynomial size circuit which outputs n bits, and U denotes
the uniform distribution on {0, 1}n.

Definition 4 (Entropy Approximation [9]). The promise problem Entropy
Approximation, denoted by EA = (EAY ,EAN ), consists of

– EAY = {(C, k) : H(C) ≥ k + 1}
– EAN = {(C, k) : H(C) ≤ k − 1}
Here C denotes a polynomial size circuit and k ≥ 1 is an integer parameter.

Theorem 3 [9]. SDU and EA are NISZK-complete.

The main open problem that motivated the current paper is what is the
relationship between NISZK and SZK. Goldreich et al. [9] made a significant
progress towards resolving this problem.

Theorem 4 [9]. The following statements are equivalent:

(1). SZK = NISZK.
(2). NISZK is closed under complement.
(3). NISZK is closed under NC1 truth-table reductions.
(4). ED, or SD Karp-reduces to EA, or SDU respectively.
(5). EA or SDU Karp-reduces to its complement.

The main goal of the current paper is to show that these statements are all
false, at least in a limited model of computation. Concretely, our goal is to rule
out black box reductions between NISZK and its complement. When we consider
black box reductions, the notion of efficient computation disappears, and we
replace the study of circuits with the study of arbitrary functions (which can be
seen as oracle functions).
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1.1 Black-Box Reductions

We describe the notion of black box reductions of functions in this section.
Let Fn,m denote the family of functions f : {0, 1}n → {0, 1}m. A promise

problem Π over Fn,m consists of a family of yes instances ΠY and a family of
no instances ΠN , where ΠY ,ΠN ⊂ Fn,m and ΠY ∩ ΠN = ∅.

Definition 5 (Black-Box Reduction). LetΠ =(ΠY ,ΠN ) andΠ ′ =(Π ′
Y ,Π ′

N )
be promise problems over functions Fn,m and Fn′,m′ , respectively. a black-box
reduction from Π to Π ′ is an algorithm A(·) : {0, 1}n′ → {0, 1}m′

with oracle
access to a function f ∈ Fn,m, such that the following holds:

– If f ∈ ΠY then Af ∈ Π ′
Y .

– If f ∈ ΠN then Af ∈ Π ′
N .

Given an input w ∈ {0, 1}n′
, the algorithm makes a number of queries to f

(the query locations may depend on w and be adaptive), and outputs a value
z ∈ {0, 1}m′

. We define Af (w) = z. The query complexity of A, denoted QC(A),
is the maximal number of queries to f performed over an input.

Our definition of black-box reduction does not relate to decidability, and
instead relates to functionality. This type of black-box reduction is well studied in
cryptography. Many reductions in the literature are in fact black-box reductions.
Examples include the the flatting lemma of [9], the polarization lemma of [17],
the reduction from Statistical Difference to its complement [17], constructions
of pseudorandom generators from one-way functions [12,13], constructions of
pseudorandom functions from pseudorandom generators [8], and many more.

1.2 Our Results

We define the function version of the Entropy Approximation (EA) problem.

Definition 6 (Function Entropy Approximation). The promise problem
Function Entropy Approximation, denoted by FEA=(FEAY ,FEAN ), consists of

– FEAY = {(f, k) : H(f) ≥ k + 1}
– FEAN = {(f, k) : H(f) ≤ k − 1}
Here n,m, k ≥ 1 and f ∈ Fn,m. Note that the interesting regime of parameters
(where the problem is not trivial) is when 1 ≤ k ≤ n − 1.

A black box reduction from NISZK to its complement needs to map FEA to
its complement. In particular, an efficient reduction would stay efficient even if
we fix n,m, k to favourable values (we will later set m = 3n, k = n−3). We call
such a reduction an Entropy Reverser.
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Definition 7 (Entropy Reverser). Let n,m, k, n′,m′, k′ ≥ 1. An (n,m, k;
n′,m′, k′) entropy reverser is a black box reduction A from Fn,m to Fn′,m′ such
that

– If H(f) ≥ k + 1 then H(Af ) ≤ k′ − 1.
– If H(f) ≤ k − 1 then H(Af ) ≥ k′ + 1.

Our main result is that entropy reversers require either exponential out-
put length n′,m′ or exponential query complexity. In particular, when they are
applied to a function f computed by a polynomial size circuit, their output Af

is computed by an exponential size circuit. We state and prove our result for a
concrete setting of parameters m = 3n, k = n − 3. We note that our work can
be extended to a much wider set of parameters. However, we did not see any
applications of pursuing this.

Theorem 5 (Main theorem). Let A be an (n,m, k;n′,m′, k′) Entropy
Reverser for m = 3n, k = n − 3. Then QC(A) ≥ 2n/5/poly(n′,m′).

1.3 Related Works

Relations between zero knowledge proofs have been previously studied [14,18],
where certain black box reductions were ruled out. However, previous works
only ruled out restricted forms of black box reductions, where the only access
to a function f is via independent and uniform samples. In particular, these
reductions are non adaptive. We note that this is a much weaker notion of
black box reductions, and indeed some of the black box reductions we already
mentioned (e.g. the reduction from Statistical Difference to its complement [17])
require the ability to correlate inputs. As far as we know, ours is the first work in
this context which rules out general black box reductions without any restriction
on the access pattern or adaptivity.

1.4 Proof Overview

Let n ≥ 1 and fix m = 3n, k = n − 3.
The first step in our proof is to apply a black box reduction of Goldreich

et al. [9], which converts high/low entropy distributions to distributions which
are close to uniform, or supported on a small set, respectively (Lemma 1). This
allows us to assume stronger properties of the functions generated by the sup-
posed Entropy Reverser. Concretely, that we are given a black box reduction A
from Fn,m to Fn′,m′ such that:

– If H(f) ≥ k + 1 then Af is distributed close to uniform (concretely,
dist(Af ,U) ≤ 0.1).

– If H(f) ≤ k − 1 then the distribution of Af is supported on a small set
(concretely, of size ≤ 0.1 · 2m′

).

As this black box reduction is efficient, it incurs a blowup of only poly(n′,m′)
in the query complexity. See Sect. 3.1 for the details. From now on, we focus on
this stronger notion of an Entropy Reverser, and show that for it it holds that
QC(A) ≥ Ω(2n/5).
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Next, we consider several distributions over functions Fn,m. Fix b = 256. We
denote by B = (B1, . . . , Bs) a partition of the input space {0, 1}n into s blocks,
each of size b. For 0 ≤ j ≤ s we define a distribution Dj over Fn,m as follows:

– Sample a random partition B = (B1, . . . , Bs) of {0, 1}n.
– Sample y1, . . . , yj ∈ {0, 1}m uniformly and independently.
– If x ∈ Bi, i ≤ j then set fj(x) = yi.
– If x ∈ Bi, i > j then sample fj(x) ∈ {0, 1}m uniformly and independently.

It is not hard to show that as j increases, the entropy of fj ∼ Dj decreases.
Concretley, we show (Claim 3.2) that with very high probability it holds that

H(fs/4) = n − 2, H(fs/2) = n − 4.

Thus, by the assumptions of our Entropy Reverser (as we set k = n−3), it should
hold that Afs/4 is supported on a small set, while Afs/2 is distributed close to
uniform. We show that this requires exponential query complexity. From now
onwards, let q = QC(A) denote this query complexity.

Let z ∈ {0, 1}m′
be chosen uniformly, and let pj for 0 ≤ j ≤ s denote the

probability that z belongs to the support of Afj :

pj = Pr[∃w ∈ {0, 1}n′
, z = Afj (w)].

By our assumptions, ps/2 ≥ 0.9 while ps/4 ≤ 0.1. Our goal is to apply a hybrid
argument and show that if q is small then pj−1 ≈ pj for all s/4 ≤ j ≤ s/2.

We can couple the choice of fj−1, fj , so that we jointly sample B, y1, . . . , yj ,
and the only difference between fj−1 and fj is that they differ on the block
Bj (fj−1 maps each point in Bj to a uniformly chosen point in {0, 1}m′

, while
fj maps all the points in Bj to a single point). As the partition to blocks is
random, the probability that a specific query belongs to the block Bj is 1/s. As
the algorithm makes q queries, this should “intuitively” give the bound

pj − pj−1 ≤ q

s
.

(we say “intuitively” as the black box reduction is an adaptive algorithm, while
the above analysis works straightforwardly only for non-adaptive algorithms).
However, such a bound is useless for us, as we need to apply it Ω(s) times.
Thus, we need a more refined analysis.

In order to do so, let f ∈ {fj−1, fj}. We say that an input w to Af respects
the block structure of B if any block Bi in B is queried at most once by Af (w).
Intuitively, such an input should not be able to “distinguish” between fj−1 and
fj . On the other hand, the probability over a random partition that any two
fixed points belong to Bj is ≈1/s2, and hence as there are q queries, this should
“intuitively” give an improved bound of

pj − pj−1 ≤ q2

s2
.
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If such a bound is indeed true, then applying it (s/2)− (s/4) = s/4 times would
give that |ps/4 − ps/2| ≤ O(q2/s), which would imply that q2 ≥ Ω(s) = Ω(2n),
and hence we obtain an exponential lower bound on q.

Formalizing this intuition turns out to be quite delicate, as the algorithm Af

is an adaptive algorithm, and hence various choices are dependent on each other.
Our main technical Lemma (Lemma 3) show that, if we restrict our attention
to inputs which respect the block structure and define

p′
j = Pr[∃w ∈ {0, 1}n′

, z = Afj (w), w respects the block structure of B]

then p′
j is a good proxy for pj (Lemma 2), for which a better bound can be

obtained:

p′
j − p′

j−1 ≤ O

(
q5/3

s4/3

)
.

While this bound is worse than the “intuitive” bound of q2/s2, it still suffices
for our purposes, as when we apply it Θ(s) times we obtain that p′

s/2 − p′
s/4 ≤

O(q5/3/s1/3) and hence we still get an exponential lower bound on q, namely
q ≥ Ω(2n/5).

Paper organization. We give some preliminary definitions in Sect. 2. In Sect. 3
we formalize the above proof overview, and give the proof of our main theo-
rem, Theorem 5, assuming our main technical lemma, Lemma 3. The proof of
Lemma 3 is given in Sect. 4. We conclude with some open problems in Sect. 5.

2 Preliminaries

Let Fn,m denote the family of functions f : {0, 1}n → {0, 1}m. A black box
reduction from Fn,m to Fn′,m′ with is an algorithm which, given query access
to f ∈ Fn,m, computes a function Af ∈ Fn′,m′ as follows. Given an input
w ∈ {0, 1}n′

, the algorithm makes a number of queries to f (the query locations
can depend on w and be adaptive), and outputs a value z ∈ {0, 1}m′

. We define
Af (w) = z. The query complexity of A is the maximum number of queries to f
performed over an input, which we denote by QC(A).

Let X be a random variable taking values in {0, 1}m. We recall some basic
definitions. The support of X is supp(X) = {x : Pr[X = x] > 0}. The Shannon
entropy of X is

H(X) =
∑

x

Pr[X = x] · log2(1/Pr[X = x]).

The statistical distance of two random variables X,Y is

dist(X,Y ) = 1
2

∑
x

|Pr[X = x] − Pr[Y = x]|.

We denote by Um the uniform distribution over {0, 1}m.
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We will identify f ∈ Fn,m with the random variable of its output distribution
in {0, 1}m, given a uniformly sampled input in {0, 1}n. As such, we extend the
definition of support, Shannon entropy and statistical distance to functions. In
the special case where f is computable by a circuit C : {0, 1}n → {0, 1}m of size
poly(m), we say that this distribution is an efficiently sampleable distribution.

3 Proof of Main Theorem: Theorem 5

3.1 A Useful Reduction

As a first step towards proving Theorem 5, we make use of a black box reduction
of Goldreich et al. [9]. It allows us to strengthen the assumptions in Theorem 5.

Lemma 1 [9]. Let n′,m′, k′ ≥ 1. There exists a black box reduction A1 from
Fn′,m′ to Fn′′,m′′ , where n′′,m′′,QC(A1) ≤ poly(n′,m′), such that the following
holds for any f ∈ Fn′,m′ :

– If H(f) ≥ k′ + 1 then dist(Af
1 ,Um′′) ≤ 0.1.

– If H(f) ≤ k′ − 1 then |supp(Af
1 )| ≤ 0.1 · 2m′′

.

Let A5 denote the black box reduction from Fn,m to Fn′,m′ assumed in
Theorem 5. Let A1 denote the black box from Fn′,m′ to Fn′′,m′′ given in
Lemma 1. Let A be their composition. Namely, A is a black box reduction from
Fn,m to Fn′′,m′′ , obtained by first applying A5 and then A1. That is,

Af = A
Af

5
1 .

Observe that QC(A) ≤ QC(A5)QC(A1) ≤ QC(A5)poly(n′,m′), that n′′,m′′ ≤
poly(n′,m′), and that A satisfies the following:

– If H(f) ≥ k + 1 then |supp(Af )| ≤ 0.1 · 2m′′
.

– If H(f) ≤ k − 1 then dist(Af ,Um′′) ≤ 0.1.

We will prove a lower bound on the query complexity of A, which would then
imply a lower bound on the query complexity of A5.

3.2 Preparations

In order to prove Theorem 5, we will exhibit two distributions over functions,
one of high entropy functions, the other of low entropy functions, and show that
black box reductions with low query complexity cannot “reverse” the entropy
relation between them.
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Definition 8 (Sample distribution). Let n,m ≥ 1 and let b ≥ 2 be a para-
meter (block size) to be determined later, and set s = 2n/b. We denote by
B = (B1, . . . , Bs) a partition of {0, 1}n into s blocks of equal size 2n/s = b.
For any 0 ≤ j ≤ s we define a distribution over partitions B and functions
fj ∈ Fn,m as follows:

– Sample a random partition B = (B1, . . . , Bs) of {0, 1}n.
– Sample y1, . . . , yj ∈ {0, 1}m uniformly and independently.
– If x ∈ Bi, i ≤ j then set fj(x) = yi.
– If x ∈ Bi, i > j then sample fj(x) ∈ {0, 1}m uniformly and independently.

We denote the joint distribution of (B, fj) as Dj . With an abuse of notation,
when we write fj ∼ Dj , we simply omit the block structure from the sample.
Note that f0 ∼ D0 is uniformly distributed over Fn,m. The following simple claim
argues that as we increase j, the entropy of fj ∼ Dj decreases. It is specialized
to our desired application.

Claim. Let m = 3n. Sample fj ∼ Dj . Then with probability 1 − 2−n over the
choice of fj , it holds that

H(fj) = n − (j/s) log b.

In particular, if we set b = 256 then

H(fs/4) = n − 2, H(fs/2) = n − 4.

Proof. Let 0 ≤ j ≤ s and sample fj ∼ Dj . Let y1, . . . , yj be the single value that
fj obtains on blocks B1, . . . , Bj . Consider y1, . . . , yj , (fj(x) : x ∈ Bi, i > j). Lets
denote by E0 the event that no two values in this list collide. The probability that
any two of these values are equal is 2−m. As there are ≤ 2n values, the probability
that any two intersect is bounded by 22n−m ≤ 2−n. Thus Pr[E0] ≥ 1 − 2−n.

Lets assume that E0 holds. Then, the distribution of fj is as follows: there are
j values (namely, y1, . . . , yj) that each is obtained with probability 1/s = b/2n.
All other 2n − bj values are each obtained with probability 2−n. Thus

H(fj |E0) = j · (b/2n) · log(2n/b) + (2n − bj) · 2−n · log(2n) = n − (j/s) log b.

We treat Ds/4 as a distribution over (mostly) high entropy functions, and
Ds/2 as a distribution over (mostly) lower entropy functions.

3.3 Block Compatible Inputs

Given w ∈ {0, 1}n′′
and f ∈ Fn,m, we denote by Query(Af (w)) ⊂ {0, 1}n the

set of inputs of f queried by Af on input w. To recall, the functions that we
focus attention on are defined together with a block structure B = (B1, . . . , Bs).
Below, we specialize our attention to inputs and their corresponding outputs,
for which at most one value in each block is queried.
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Definition 9 (Block compatible inputs). Let B = (B1, . . . , Bs) be a par-
tition of {0, 1}n, f : {0, 1}n → {0, 1}m. We say that w ∈ {0, 1}n′′

is a block
compatible input with respect to (f,B) if, when computing Af (w), each block of
B is queried at most once. We denote by I(f,B) the set of all block compatible
inputs:

I(f,B) = {w ∈ {0, 1}n′′
: |Query(Af (w)) ∩ Bi| ≤ 1 ∀i = 1, . . . , s}

Definition 10 (Block compatible outputs). Let B be a partition of {0, 1}n,
f : {0, 1}n → {0, 1}m. We say that z ∈ {0, 1}m′′

is a block compatible output
with respect to (f,B) if Af (w) = z for a block compatible input w. We denote
by O(f,B) the set of all block compatible inputs:

O(f,B) = {z ∈ {0, 1}m′′
: ∃w ∈ I(f,B), Af (w) = z}.

Observe that the definition of I(f,B), O(f,B) does not depend on the order
of the blocks in B. This will turn out to be crucial later on in the analysis. Thus,
for B = (B1, . . . , Bs) define {B} = {B1, . . . , Bs} (that is, forgetting the order of
the blocks) and note that

I(f,B) = I(f, {B}) O(f,B) = O(f, {B}).

It is obvious that O(f,B) ⊂ supp(Af ). Next, we argue that if the distribution
of Afj is close to uniform, then O(fj ,B) is large.

Lemma 2. Sample (B, fj) ∼ Dj, and assume that

Pr
fj

[
dist(Afj ,Um′′) ≤ ε

] ≥ 1 − δ.

Then

E[|O(fj ,B)|] ≥
(

1 − q2

s
− ε − 3δ

)
2m′′

.

Proof. We first argue that for each fixed w,

Pr
(B,fj)∼Dj

[w ∈ I(fj ,B)] ≥ 1 − q2

s
.

To see that, let Q = {(x1, y1, . . . , xq, yq)} ⊂ {0, 1}q(n+m) be all possible queries
and answers made by Af (w). That is, x1 = x1(w) is the first query made. If
f(x1) = y1 then x2 is the second query made, and so on. Note that each xi is
determined by w, x1, y1, . . . , xi−1, yi−1, while yi can take any value in {0, 1}m.
In particular, |Q| = 2mq.

Next, fix x1, . . . , xq and let B be a randomly chosen partition. Then

Pr
B

[x1, . . . , xq in distinct blocks] ≥ 1 −
∑
i�=j

Pr
B

[xi, xj in the same block] ≥ 1 − q2

s
.
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Note that if x1, . . . , xq are in distinct blocks, then fj(x1), . . . , fj(xq) are inde-
pendently and uniformly chosen in {0, 1}m. Thus

Pr
(B,fj)∼Dj

[w ∈ I(fj ,B)]

=
∑

(x1,y1,...,xq,yq)∈Q

Pr[w ∈ I(fj ,B) ∧ fj(x1) = y1 ∧ . . . ∧ fj(xq) = yq]

=
∑

(x1,y1,...,xq,yq)∈Q

Pr[x1, . . . , xq in distinct blocks ∧ fj(x1) = y1 ∧ . . . ∧ fj(xq) = yq]

=
∑

(x1,y1,...,xq,yq)∈Q

Pr[x1, . . . , xq in distinct blocks]·

Pr[fj(x1) = y1 ∧ . . . ∧ fj(xq) = yq|x1, . . . , xq in distinct blocks]

≥
∑

(x1,y1,...,xq,yq)∈Q

(
1 − q2

s

)
2−mq

=1 − q2

s
.

We next consider O(fj ,B). Recall that we assume that the distribution of Afj

is ε-close in statistical distance to the uniform distribution Um′′ . Let w ∈ {0, 1}n′′

be chosen uniformly and consider the random variable z = Afj (w). We have

Pr
(B,fj)∼Dj ,w∈{0,1}n′′

[z ∈ O(fj ,B)] ≥ Pr[w ∈ I(fj ,B)] ≥ 1 − q2

s
.

On the other hand, let u ∈ {0, 1}m′′
be chosen uniformly and independently of

all other random variables. Let E = E(fj) denote the event

E :=
[
dist(Afj ,Um′′) ≤ ε

]
.

If we condition that E holds then dist(z, u) = dist(Afj ,Um′′) ≤ ε. Thus for every
fixing of B, fj for which E holds we get

Pr[u ∈ O(fj ,B)|B, fj , E] ≥ Pr[z ∈ O(fj ,B)|B, fj , E] − ε.

Averaging over the choices of B, fj we obtain that

Pr[u ∈ O(fj ,B)|E] ≥ Pr[z ∈ O(fj ,B)|E] − ε.

We next remove the conditioning on E. As Pr[E] ≥ 1 − δ, we can bound

Pr[u ∈ O(fj ,B)] ≥ Pr[u ∈ O(fj ,B)|E] Pr[E] ≥ Pr[u ∈ O(fj ,B)|E] − δ

and

Pr[z ∈ O(fj ,B)] ≤ Pr[z ∈ O(fj ,B)]
Pr[E]

≤ Pr[z ∈ O(fj ,B)|E] + Pr[¬E]/Pr[E]
≤ Pr[z ∈ O(fj ,B)|E] + 2δ.
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Thus

Pr[u ∈ O(fj ,B)] ≥ Pr[z ∈ O(fj ,B)] − 3δ ≥ 1 − q2

s
− ε − 3δ.

This concludes the proof as

E[|O(fj ,B)|] = 2m′′
Pr[u ∈ O(fj ,B)] ≥

(
1 − q2

s
− ε − 4δ

)
2m′′

.

3.4 Main Technical Lemma

The main step in proving Theorem 5 is showing that O(fj−1,B) is not much
smaller than O(fj ,B).

Definition 11. Let us jointly sample B, fj−1, fj as follows:

– Sample (B, fj−1) ∼ Dj−1.
– Sample yj ∈ {0, 1}m independently and uniformly, and set

fj(x) =
{

fj−1(x) x /∈ Bj

yj x ∈ Bj .

We denote this joint distribution over B, fj−1, fj by Dj−1,j . Observe that if we
omit fj−1, then the marginal distribution over (B, fj) is indeed Dj .

Lemma 3 (Main lemma). Assume that δs ≤ j ≤ (1 − δ)s and sample
(B, fj−1, fj) ∼ Dj. Then for any z ∈ {0, 1}m′′

it holds that

Pr [z ∈ O(fj−1,B)] ≥ Pr [z ∈ O(fj ,B)] − ε,

where ε = 4q5/3b2/3

δ4/3s4/3 . In particular, if we set b = 256 and δ = 1/4 then ε =
O(q5/3/s4/3). Averaging over a uniform choice of z gives that

E [|O(fj−1,B)|] ≥ E [|O(fj ,B)|] − ε2m′′
.

We note that it is crucial in Lemma 3 that ε 
 1/s, as we will apply it to
relate O(fs/4,B) to O(fs/2,B), which will incur an additional factor of s. Most
of the technical challenge in proving Lemma 3 is achieving that, as achieving
weaker bounds of the form ε = poly(q)/s is much easier. We defer the proof of
Lemma 3 to Sect. 4, and next show how it implies Theorem 5.

3.5 Deducing Theorem 5

Let A5 be the assumed black box reduction given in Theorem 5, specialized for
m = 3n, k = n−3. Let n′,m′ denote the input and output size of Af

5 in this case
and let k′ = k′(n,m, k). Let A be the black box reduction obtained by first apply-
ing A5 to f ∈ Fn,m, then applying A1 to Af

5 . Thus Af ≤ Fn′′,m′′ where n′′,m′′ ≤
poly(n′,m′). We have QC(A) ≤ QC(A5)QC(A1) ≤ QC(A5)poly(n′,m′).
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Definition 12 (Hybrid distribution). Sample (fj : j = 0, . . . , s) jointly as
follows:

– Sample a random partition B = (B1, . . . , Bs) of {0, 1}n.
– Sample y1, . . . , ys ∈ {0, 1}m uniformly and independently.
– Sample a uniform function g : {0, 1}n → {0, 1}m.
– If x ∈ Bi, i ≤ j then set fj(x) = yi.
– If x ∈ Bi, i > j then sample fj(x) = g(x).

Observe that the marginal distribution of (B, fj) is Dj , and moreover, the mar-
ginal distribution of (B, fj−1, fj) is Dj−1,j . According to Claim 3.2, we have the
following statements by setting b = 256,

– Prfs/4∼Ds/4 [H(fs/4) = n − 2] ≥ 1 − 2−n.
– Prfs/2∼Ds/2 [H(fs/2) = n − 4] ≥ 1 − 2−n.

By the guarantees of A we have that

– If H(fs/4) ≥ (n − 3) + 1 then |supp(Afs/4)| ≤ 0.1 · 2m′′
.

– If H(fs/2) ≤ (n − 3) − 1 then dist(Afs/2 , Um′′) ≤ 0.1.

Let q = QC(A). Applying Lemma 2 to fs/2, and assuming that q2/s ≤ 0.1 gives
that

E
[|O(Afs/2 ,B)|] ≥ 0.8 · 2m′′

.

On the other hand,

E
[|O(Afs/4 ,B)|] ≤ |supp(Afs/4)| ≤ 0.1 · 2m′′

.

Lemma 3, applied for s/4 ≤ j ≤ s/2, gives that

E
[|O(Afj−1 ,B)|] ≥ [|O(Afj ,B)|] − ε2m′′

,

where ε = O(q5/3/s4/3). For all these to hold we need to have

ε(s/2 − s/4) ≥ 0.7

which gives the required bound

QC(A) = q ≥ Ω(s1/5).

This then gives us the bound

QC(Af
5 ) ≥ Ω(2n/5/poly(n′,m′)).
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4 Proof of Main Technical Lemma: Lemma 3

We prove Lemma 3 in this section. To recall, A is a black box reduction from
Fn,m to Fn′′,m′′ . We fix 1 ≤ j ≤ s and z ∈ {0, 1}m′′

from here onwards. We
sample (B, fj−1, fj) ∼ Dj−1,j and wish to compare Pr[z ∈ O(fj−1,B)] and
Pr[z ∈ O(fj ,B)]. To simplify notations define

O(fj−1) = O(fj−1,B) I(fj−1) = I(fj−1,B).

Define the events

X := [z ∈ O(fj−1)] Y := [z ∈ O(fj)].

Our goal is to show that if Y holds, then with high probability also X holds.
The “common information” between X,Y is captured by the random variable

C := ({(Bi, fj |Bi
)}1≤i≤j−1, Bj , {(Bi, fj |Bi

)}j+1≤i≤s) .

Observe that {B} can be computed from C, which we denote as {B} = {B}(C),
and that furthermore

fj−1 = fj−1(C, fj−1|Bj
) fj = fj(C, fj |Bj

).

Thus
X = X(C, fj−1|Bj

) Y = Y (C, fj |Bj
).

In particular, given any fixing of C, we have that fj−1|Bj
is a uniform function

from Bj to {0, 1}m, that fj |Bj
is a random constant function, and that the two

are independent of each other. We obtain the following claim:

Claim. For any fixing of C, the random variables X|C and Y |C are independent.

Recall that fj−1 and fj differ only in their evaluation on the block Bj . We
define a partial function f̂ to be the set of inputs where fj−1 and fj agree,
namely all inputs outside Bj , and outputs “?” otherwise. Formally, we define
the function f̂ : {0, 1}n → ({0, 1}m ∪ {?}) as follows:

f̂(x) =
{

fj−1(x) if x /∈ Bj

? if x ∈ Bj

if x /∈ Bj then f̂(x) = fj−1(x) = fj(x). As we now allow for partial functions, we
will also need to allow running the black box reduction A on partial functions.
We do so by outputing a “?” if the black box reduction queries a point where
the partial function is not defined. Observe that f̂ can be computed given C:

f̂ = f̂(C).
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Definition 13 (Black box reduction of a partial function). Let A be a
black box reduction from Fn,m to Fn′′,m′′ . Let f : {0, 1}n → ({0, 1}m ∪ {?}) be a
partial function. We define Af : {0, 1}n′′ → ({0, 1}m′′ ∪ {?}) to be the following
partial function. When computing Af (w), follows the queries made by A as if f
was a total function. However, if at any point we query a point x where f(x) =?
then we abort and output ?.

We also extend the definition of block compatible inputs and outputs to
partial functions in the obvious manner. Define O(f̂) := O(f̂ , {B}) and define
the event E1 as

E1 = E1(C) := [z ∈ O(f̂)].

Claim. If E1 holds then both X and Y also hold: E1 ⇒ X ∧ Y .

Proof. If E1 holds then by definition, there exists w ∈ I(f̂) for which Af̂ (w) = z.
This implies that Afj−1(w) = Afj (w) = z, as since Af̂ (w) didn’t return a “?”, it
only queried locations outside Bj , where fj−1, fj agree. Also, as w ∈ I(f̂) this
means that Af̂ (w) queries each block Bi at most once, while block Bj is never
queried. Thus also w ∈ I(fj−1), w ∈ I(fj). This implies that z ∈ O(fj−1), z ∈
O(fj) which means that X,Y hold.

According to Claim 4 we have,

Pr[X ∧ E1] = Pr[Y ∧ E1] = Pr[E1]

and hence

Pr[X] − Pr[Y ]
= Pr[X ∧ E1] + Pr[X ∧ ¬E1] − Pr[Y ∧ E1] − Pr[Y ∧ ¬E1]
= Pr[X ∧ ¬E1] − Pr[Y ∧ ¬E1]

Thus, from now on we focus on the case that ¬E1 holds.

4.1 Analyzing the Case that E1 Doesn’t Hold

For each x ∈ Bj , y ∈ {0, 1}m we define the following extension of f̂ . Define a
partial function f̂x,y : {0, 1}n → ({0, 1}m ∪ {?}) as follows:

f̂x,y(x′) :=

⎧⎨
⎩

f̂(x′) if x′ /∈ Bj

y if x′ = x
? if x′ ∈ Bj and x′ �= x

For each x ∈ Bj define

R(x) = Rf̂ (x) := {y ∈ {0, 1}m : z ∈ O(fx,y)}.
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Namely, R(x) is the set of values y for which, if we allow the algorithm to make a
single query to Bj at point x which returns y, then z becomes a block compatible
output. Observe that the definition of R(x) depends only on f̂ , and hence on C.
Crucially, it does not depend on the values of either fj−1 or fj on Bj . We further
define

r(x) := Pr
y∈{0,1}m

[y ∈ R(x)] =
|R(x)|

2m
.

As R(x), r(x) depend only on C, we may consider the following experimant:
first sample C and then sample fj−1, fj conditioned on C. That is, fj−1, fj are
equal to f̂ = f̂(C) outside Bj = Bj(C), and on Bj we sample fj−1 as a random
function, while fj(x) = yj for all x ∈ Bj , where yj is randomly chosen. Recall
that E1 = E1(C).

Claim. For any fixing of C sample fj−1, fj |C. Then

Pr[X|C,¬E1] = 1 −
∏

x∈Bj

(1 − r(x))

and
Pr[Y |C,¬E1] ≤

∑
x∈Bj

r(x).

Proof. Consider any fixing of C and sample fj−1, fj conditioned on it. Recall
that r(x) is a function of C.

Let f : {0, 1}n → {0, 1}m be any function which agrees with f̂ on all x /∈ Bj .
If z ∈ O(f) then there exists w ∈ I(f) for which Af (w) = z. As we assume
that ¬E1 holds, for any such w, Af (w) must query the block Bj at least once,
and since w ∈ I(f) it is exactly once, say at point xw ∈ Bj . But then also
z ∈ O(f̂xw,f(xw)), which means that f(xw) ∈ R(xw). The converse direction also
holds: if f(x) ∈ R(x) for any x ∈ Bj then by definition of R(x), there exists wx

such that wx ∈ I(f) and Af (wx) = z (and moreover Af (wx) queries the block
Bj exactly at x) and in particular z ∈ O(f). Thus

z ∈ O(f) ⇐⇒
∨

x∈Bj

[f(x) ∈ R(x)] .

Next, we apply this logic to both fj−1 and fj . For fj−1, each point fj−1(x) for
x ∈ Bj is uniformly and independently chosen, hence

Pr[X|C,¬E1] = Pr[z ∈ O(fj−1)|C,¬E1]
= 1 − Pr[fj−1(x) /∈ R(x) ∀x ∈ Bj ]

= 1 −
∏

x∈Bj

(1 − r(x)).
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For fj , all the evaluations {fj(x) : x ∈ Bj} are equal to a uniformly chosen point
yj . Hence by the union bound

Pr[Y |C,¬E1] = Pr[z ∈ O(fj)|C,¬E1]

≤
∑

x∈Bj

Pr[yj ∈ R(x)]

≤
∑

x∈Bj

r(x).

The following definition allow us to compare the two bounds appearing in
Claim 4.1.

Definition 14. Let γ > 0. A sequence of numbers r1, . . . , rb ∈ [0, 1] is said to
be γ-balanced if

(1 − γ)
∑

ri ≤ 1 −
∏

(1 − ri).

Let γ > 0 to be determined later, and define the event E2 as

E2 = E2(C) := [(r(x) : x ∈ Bj) is γ-balanced] .

The following is a corollary of Claim 4.1 and the definition of X,Y .

Claim. For any fixing of C for which ¬E1, E2 hold, it holds that

Pr[X|C,¬E1, E2] ≥ (1 − γ) Pr[Y |C,¬E1, E2].

Proof. Fix C such that ¬E1, E2 hold. This fixes in particular Bj and (r(x) :
x∈Bj). As E2 holds, we obtain by Claim 4.1 that

Pr[X|C] = 1 −
∏

x∈Bj

(1 − r(x)) ≥ (1 − γ)
∑

x∈Bj

r(x) ≥ (1 − γ) Pr[Y |C].

Following up on (1), we have

Pr[X] − Pr[Y ] = (Pr[X ∧ ¬E1 ∧ E2] − Pr[Y ∧ ¬E1 ∧ E2])
+ (Pr[X ∧ ¬E1 ∧ ¬E2] − Pr[Y ∧ ¬E1 ∧ ¬E2])

The second term can simply be bounded by Pr[¬E1 ∧¬E2], which we bound
in the next section. For now, lets focus on the first term. Consider any fixing of
C for which ¬E1, E2 hold. By Claim 4.1 we have that Pr[X|C] ≥ (1−γ) Pr[Y |C].
By averaging over such C, we obtain that

Pr[X ∧ ¬E1 ∧ E2] − Pr[Y ∧ ¬E1 ∧ E2] ≥ −γ Pr[Y ∧ ¬E1 ∧ E2].

We can bound the right hand side by

Pr[Y ∧ ¬E1 ∧ E2] ≤ Pr[Y ∧ ¬E1] = Pr[Y ] Pr[¬E1|Y ].



48 S. Lovett and J. Zhang

Claim. Pr[¬E1|Y ] ≤ q/j.

Proof. Sample (B, fj−1, fj) ∼ Dj−1,j . In addition, sample t ∈ {1, . . . , j} uni-
formly. We will define a “proxy” fj−1 obtained from fj by changing the value
on Bt to a random function. We will then argue that with high probability,
this misses any specific set of queries. To that end, define the following random
variables:

– f ′
j−1 : {0, 1}n → {0, 1}m is a random function defined as follows: if x /∈ Bt

then f ′
j−1(x) = fj(x); and if x ∈ Bt then f ′

j−1(x) is a uniformly random
element in {0, 1}m.

– f̂ ′ : {0, 1}n → ({0, 1}m ∪ {?}) is a partial function defined as follows: f̂ ′(x) =
f ′

j−1(x) = fj(x) if x /∈ Bt, and f̂ ′(x) =? if x ∈ Bt.
– B′ is equal to B with blocks Bt, Bj swapped. Namely,

B′ = (B1, . . . , Bt−1, Bj , Bt+1, . . . , Bj−1, Bt, Bj+1, . . . , Bs).

Observe that the joint distributions of (B, fj , fj−1, f̂) and (B′, fj , f
′
j−1, f̂

′) are
identical. Next, define the following events:

– Y ′ := [z ∈ O(fj , {B′})].
– E′

1 := [z ∈ O(f̂ ′, {B′})].

Observe that Y ′ = Y since {B′} = {B}, and that the joint distributions of
(E1, Y ) and (E′

1, Y ) = (E′
1, Y

′) are identical. Next, fix B, fj such that Y holds.
This means that there exists w ∈ I(fj , {B}) = I(fj , {B′}) such that Afj (w) = z.
Let Q = Query(Afj (w)) be the set of queries made by the algorithm, where
|Q| ≤ q. Observe that if Bt ∩Q = ∅ then E′

1 holds, and that Q, t are independent
random variables. Let T = T (B, fj) = {i ∈ {1, . . . , j} : Bi ∩ Q �= ∅}, where
|T | ≤ |Q| ≤ q. Thus

Pr[¬E′
1|B, fj , Y ] ≤ Pr[Bt ∩ Q �= ∅|B, fj , Y ] = Pr[t ∈ T |B, fj , Y ] ≤ |T |

j
≤ q

j
.

By averaging over B, fj , we obtain that Pr[¬E′
1|Y ] ≤ q/j. Thus also

Pr[¬E1|Y ] = Pr[¬E′
1|Y ] ≤ q

j
.

We thus have

Pr[X ∧ ¬E1 ∧ E2] − Pr[Y ∧ ¬E1 ∧ E2] ≥ −γ(q/j) Pr[Y ]

which implies that

Pr[X] − Pr[Y ] ≥ −γ(q/j) Pr[Y ] − Pr[¬E1 ∧ ¬E2]

which in turn gives the bound

Pr[X] ≥ (1 − γ(q/j)) Pr[Y ] − Pr[¬E1 ∧ ¬E2]. (1)

To conclude, we need to upper bound Pr[¬E1 ∧ ¬E2], which is what we do in
the next section.
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4.2 Bounding the Probability that both E1, E2 Don’t Hold

We first need a simple corollary of the definition of γ-balanced.

Claim. Let r1, . . . , rb ∈ [0, 1] be a sequence which is not γ-balanced. Then there
exist distinct 1 ≤ i, j ≤ b such that ri, rj ≥ γ/b.

Proof. Assume not. Then without loss of generality, r2, . . . , rb ≤ γ/b. By the
inclusion-exclusion principle

1 −
∏

(1 − ri) ≥
∑

ri −
∑
i<j

rirj

and by our assumption

∑
i<j

rirj ≤
⎛
⎝∑

j≥2

rj

⎞
⎠

⎛
⎝∑

i≥1

ri

⎞
⎠ ≤ γ

∑
ri.

Thus
1 −

∏
(1 − ri) ≥ (1 − γ)

∑
ri,

which means that the sequence r1, . . . , rb is γ-balanced.

We next define the notion of critical blocks. Informally, a block Bj is critical
if all block compatible input w for which Af (w) = z, Af (w) queries exactly one
point in Bj .

Definition 15 (Critical block). Given f : {0, 1}n → {0, 1}m and a partition
B = (B1, . . . , Bs) of {0, 1}n, we say that the block Bj is critical for f if

(Af (w) = z) ∧ (w ∈ I(f,B)) ⇒ |Query(Af (w)) ∩ Bj | = 1.

A double critical block is a critical block where the output z can be obtained
by two block compatible inputs w1, w2 which query different points x1, x2 in the
block.

Definition 16 (Double critical block). Given f : {0, 1}n → {0, 1}m and a
partition B = (B1, . . . , Bs) of {0, 1}n, we say that the block Bj is double critical
for f if

(i) Bj is a critical block for f .
(ii) There exist distinct w1, w2 ∈ I(f,B) and distinct x1, x2 ∈ Bj such that

(Af (wi) = z) ∧ (Query(Af (wi)) ∩ Bj = {xi}) i = 1, 2.

Lemma 4. Sample (B, fj−1) ∼ Dj−1. Then

Pr[Bj is double critical for fj−1] ≤ 2q3

(s − j + 1)2
.
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Proof. We can jointly sample B, fj−1 as follows:

(1) Sample disjoint blocks B1, . . . , Bj−1 and y1, . . . , yj−1 ∈ {0, 1}m, and set
fj−1(x) = yi if x ∈ Bi, i < j.

(2) Let U := {0, 1}m \ (B1 ∪ . . . ∪ Bj−1). Sample fj−1(x) ∈ {0, 1}m uniformly
and independently for all x ∈ U .

(3) Sample Bj , . . . , Bs a random partition of U to s − j + 1 blocks of size b.

From now on, we fix fj−1, U and consider only the randomness in step (3),
namely the random partition of U . For simplicity of notation we say that Bj is
critical, or double critical, where in both cases we refer with respect to fj−1.

Define

W := {w ∈ {0, 1}n′′
: Afj−1(w) = z, |Query(Afj−1(w)) ∩ Bi| ≤ 1 ∀i = 1, . . . , j − 1}.

The set W is the set of potential elements in I(fj−1,B), in the sense that they
satisfy the requirement |Query(Afj−1(w)) ∩ Bi| ≤ 1 for the blocks defined so
far, namely B1, . . . , Bj−1. If W is empty then no block can be critical, and the
lemma follows. So, we assume that W is nonempty. For simplicity of notation
define Q(w) := Query(Afj−1(w)) ∩ U . Note that so far these definitions do not
depend on the choice of the partition of U to Bj , . . . , Bs.

Next, sample a random partition (Bj , . . . , Bs) of U . We say that an input w
is legal if Afj−1(w) queries each block at most once:

Wlegal := {w ∈ W : |Q(w) ∩ Bi| ≤ 1 ∀i = j, . . . , s}.

Equivalently, Wlegal = {w ∈ I(f,B) : Afj−1(w) = z}. The definitions of critical
and double critical can then be cast as

Bj is critical ⇔ |Bj ∩ Q(w)| = 1, ∀w ∈ Wlegal ;
Bj is double critical ⇔ Bj is critical and |Bj ∩ (∪w∈WlegalQ(w)

) | ≥ 2.

Fix w1 ∈ W and assume for now that w1 ∈ Wlegal. We will handle the case
that w1 /∈ Wlegal later.

If Bj is critical then |Bj ∩ Q(w1)| = 1. Say Bj ∩ Q(w1) = {x1}. If Bj is double
critical then there must be another legal w2 ∈ Wlegal such that Bj ∩ Q(w2) =
{x2} where x2 �= x1. In particular, x1 /∈ Q(w2). Thus, for each x1 ∈ Q(w1) define

Wx1 := {w ∈ W : x1 /∈ Q(w)}.

Note that if Wx1 is empty then it is impossible that Bj is double critical, w1 is
legal and Bj ∩ Q(w1) = {x1}. Thus let

Q′(w1) := {x1 ∈ Q(w1) : |Wx1 | ≥ 1}.

For each x1 ∈ Q′(w1) fix an arbitrary wx1 ∈ Wx1 . By definition, x1 /∈ Q(wx1). We
can bound the probability that Bj is double critical and w1 is legal by requiring
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that Bj ∩ Q(w1) = {x1} and Bj ∩ Q(wx1) = {x2}, where by definition x1 �= x2,
and summing over all choices for x1, x2:

Pr[Bj is double critical ∧ w1 ∈ Wlegal]

≤
∑

x1∈Q′(w1)

∑
x2∈Q(wx1 )

Pr[x1, x2 ∈ Bj ]

≤ q2

(s − j + 1)2

where the bound follows from the union bound and the fact that as Bj , . . . , Bs is
a random partition of U , for any fixed distinct x1, x2 ∈ U it holds that Pr[x1, x2 ∈
Bj ] ≤ 1/(s − j + 1)2.

To conclude the proof, we need to handle the event that w1 is not legal. First,
note that

Pr[w1 /∈ Wlegal] ≤
∑

x1,x2∈Q(w1),x1 �=x2

Pr[x1, x2 in the same block] ≤ q2

s − j + 1
.

We will bound Pr[Bj is double critical|w1 /∈ Wlegal]. To do that, lets condition
on which block does every element of Q(w1) belong to. Let H1 denote the family
of all functions h : Q(w1) → {j, . . . , s}. Let Fh denote the event

Fh := [x ∈ Bh(x) ∀x ∈ Q(w1)].

Note that the events Fh are disjoint, and that the event w1 /∈ Wlegal is equivalent
to Fh holding where h has at least one collision. Thus let

H2 := {h ∈ H1 : ∃x1, x2 ∈ Q(w1), h(x1) = h(x2)}.

We have w1 /∈ Wl ⇐⇒ ∪h∈H2Fh.
For each h ∈ H2 let Wh denote the set of w ∈ W for which Q(w) is not

already illegal given h, namely

Wh := {w ∈ W : ¬∃x1, x2 ∈ Qw ∩ Qw1 , h(x1) = h(x2)}.

If Wh is empty then it is impossible that Bj is double critical and that Fh holds,
as there are no legal inputs. Thus let

H3 := {h ∈ H2 : |Wh| ≥ 1}.

For each h ∈ H3 fix an arbitrary wh ∈ Wh. By definition, if Bj is double critical
then we must have |Bj ∩ Q(wh)| = 1. We can thus bound

Pr[Bj is double critical|w1 /∈ Wlegal] =
∑

h∈H3

Pr[Bj is double critical|Fh] Pr[Fh|w1 /∈ Wlegal]

≤
∑

h∈H3

∑

x∈Q(wh)

Pr[x ∈ Bj |Fh] Pr[Fh|w1 /∈ Wlegal].
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In order to help bound this expression, note that both h ∈ H3 and Pr[Fh|w1 /∈
Wlegal] are invariant to permutations of the output of h. That is, if we replace
h(x) with π(h)(x) = π(h(x)) for any permutation π on {j, . . . , s}, then h ∈
H3 ⇐⇒ π(h) ∈ H3 and Pr[Fh|w1 /∈ Wlegal] = Pr[Fπ(h)|w1 /∈ Wlegal]. Thus

Pr[Bj is double critical|w1 /∈ Wlegal]

≤Eπ

∑
h∈H3

∑
x∈Q(wh)

Pr[x ∈ Bj |Fπ(h)] Pr[Fπ(h)|w1 /∈ Wlegal]

=Eπ

∑
h∈H3

∑
x∈Q(wh)

Pr[x ∈ Bπ−1(j)|Fh] Pr[Fh|w1 /∈ Wlegal].

When we average over π we get that Pr[x ∈ Bπ−1(j)|Fh] = 1
s−j+1 , and hence

Pr[Bj is double critical|w1 /∈ Wlegal] ≤ 1

s − j + 1

∑

h∈H3

∑

x∈Q(wh)

Pr[Fh|w1 /∈ Wlegal] =
q

s − j + 1
.

We obtained the bound

Pr[Bj is double critical ∧ w1 /∈ Wlegal]
= Pr[Bj is double critical|w1 /∈ Wlegal] Pr[w1 /∈ Wlegal]

≤ q

s − j + 1
· q2

s − j + 1
=

q3

(s − j + 1)2
.

Combining the two bounds we obtained, we conclude that

Pr[Bj is double critical]

= Pr[Bj is double critical ∧ w1 ∈ Wlegal] + Pr[Bj is double critical ∧ w1 /∈ Wlegal]

≤ q2

(s − j + 1)2
+

q3

(s − j + 1)2
≤ 2q3

(s − j + 1)2
.

Claim. Let C be such that ¬E1,¬E2 hold. Sample fj−1|C. Then

Pr[Bj is double critical for fj−1|C] ≥ (γ/b)2.

In particular,

Pr[Bj is double critical for fj−1|¬E1,¬E2] ≥ (γ/b)2.

Proof. Fix any C such that ¬E1,¬E2 hold. By Claim 4.2 there are distinct
x1, x2 ∈ Bj such that r(xi) ≥ γ/b. Note that if fj−1(xi) ∈ R(xi) for both i = 1, 2,
then Bj is double critical for fj−1. As fj−1(xi) are sampled independently, we
have

Pr[Bj is double critical for fj−1|C] ≥ Pr[fj−1(xi) ∈ R(xi), i = 1, 2|C] ≥ (γ/b)2.
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Combining Lemma 4 and Claim 4.2 gives a bound on the probability that
both E1, E2 don’t hold.

Corollary 1. Pr[¬E1 ∧ ¬E2] ≤ 2q3b2

γ2(s−j+1)2 .

Proof. Let F := [Bj is double critical for fj−1]. We have

Pr[¬E1 ∧ ¬E2] =
Pr[¬E1 ∧ ¬E2 ∧ F ]
Pr[F |¬E1 ∧ ¬E2]

≤ Pr[F ]
Pr[F |¬E1,¬E2]

≤ 2q3b2

γ2(s − j + 1)2
.

The claim then follows.

We can finally prove Lemma 3. Appealing to (1) we have that

Pr[X] ≥
(

1 − γq

j

)
Pr[Y ] − 2q3b2

γ2(s − j + 1)2
≥ Pr[Y ] −

(
γq

j
+

2q3b2

γ2(s − j + 1)2

)
.

(2)
Let us denote

ε =
γq

j
+

2q3b2

γ2(s − j + 1)2
.

We now choose γ to minimize ε. Let us assume (as we have) that δs ≤ j ≤ (1−δ)s
for some absolute constant δ > 0. Then

ε ≤ γq

δs
+

2q3b2

γ2δ2s2
.

We choose γ = (2q2b2/δs)1/3 to equate the two terms, so that

ε ≤ 4q5/3b2/3

δ4/3s4/3
.

In particular, as we choose b, δ to be absolute constants, we have ε ≤
O(q5/3/s4/3).

5 Conclusions and Open Problems

In this paper, we studied impossibility of reversing entropy in black-box con-
structions. An obvious question that remains open is whether our result can
be extended to the computational setting, given some complexity assumptions.
Note that if we assume that P = NP then P = NISZK = SZK = NP.

Besides considering the relationship between NISZK and SZK, it is also inter-
esting to explore relationships between other non-computational zero-knowledge
proof systems. Concretely, what are the relationships between NIPZK and PZK,
the perfect statistical analogs of NISZK and SZK, and the statistical versions.
In particular, Malka [15] gave a complete problem for NIPZK, which can be a
good starting point to apply the techniques developed in this paper and sepa-
rate NISZK and NIPZK. In a recent work of Bouland et al. [3] gave an oracle to
separate NISZK and NIPZK, however we are still interested in whether we can
separate them in random oracle model.
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