Skip to main content

Salient Object Detection Based on Amplitude Spectrum Optimization

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10636))

Included in the following conference series:

Abstract

Saliency detection is prerequisite for many computer vision tasks. The existing frequency domain models can not always detect a complete object. We propose a novel salient object detection model based on an optimized amplitude spectrum. This model computes saliency map in two steps. Firstly, we optimize amplitude spectrum by smoothing the peaks in log amplitude spectrum. The raw saliency maps are computed by combining the optimized amplitude spectrum and the original phase spectrum according to different thresholds. Secondly, we compute the entropy of raw saliency maps and select the raw saliency map with the smallest value of entropy as the final saliency map. Our model detects more complete object region. By testing on the databases ASD, MSRA10K, DUT-OMRON and SED2, experiments demonstrate that the proposed model outperforms the state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alpert, S., Galun, M., Brandt, A., Basri, R.: Image segmentation by probabilistic bottom-up aggregation and cue integration. TPAMI 34(2), 315–327 (2012)

    Article  Google Scholar 

  2. Borji, A., Frintrop, S., Sihite, D.N., Itti, L.: Adaptive object tracking by learning background context. In: CVPR, pp. 23–30 (2012)

    Google Scholar 

  3. Xue, J.R., Li, C., Zheng, N.N.: Proto-object based rate control for JPEG2000: an approach to content-based scalability. TIP 20(4), 1177–1184 (2011)

    MATH  MathSciNet  Google Scholar 

  4. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. TPAMI 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  5. Cheng, M.M., Mitra, N.J., Huang, X.L., Philip, H.S., Hu, S.M.: Global contrast based salient region detection. TPAMI 37(3), 569–582 (2015)

    Article  Google Scholar 

  6. Tavakoli, H.R., Laaksonen, J.: Bottom-up fixation prediction using unsupervised hierarchical models. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV 2016. LNCS, vol. 10116, pp. 287–302. Springer, Cham (2017). doi:10.1007/978-3-319-54407-6_19

    Chapter  Google Scholar 

  7. Guo, C.L., Ma, Q., Zhang, L.M.: Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  8. Hou, X.D., Zhang, L.Q.: Saliency detection: a spectral residual approach. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  9. Hou, X.D., Harel, J., Koch, C.: Image signature: highlighting sparse salient regions. TPAMI 34(1), 194–201 (2012)

    Article  Google Scholar 

  10. Li, J., Levine, M.D., An, X.J., Xu, X., He, H.E.: Visual saliency based on scalespace analysis in the frequency domain. TPAMI 35(4), 996–1010 (2013)

    Article  Google Scholar 

  11. Li, J., Duan, L.Y., Chen, X., Huang, T., Tian, Y.: Finding the secret of image saliency in the frequency domain. TPAMI 37(12), 2428–2440 (2015)

    Article  Google Scholar 

  12. Schauerte, B., Stiefelhagen, R.: Predicting human gaze using quaternion DCT image signature saliency and face detection. In: WACV, pp. 137–144 (2012)

    Google Scholar 

  13. Fang, Y.M., Lin, W.S., Lee, B.S., Lau, C.T., Chen, Z.Z., Lin, C.W.: Bottom-up saliency detection model based on human visual sensitivity and amplitude spectrum. Trans. Multimedia 14(1), 187–198 (2012)

    Article  Google Scholar 

  14. Li, C., Xue, J.R., Tian, Z.Q., Li, L., Zheng, N.N.: Saliency detection based on biological plausibility of hypercomplex Fourier spectrum contrast. Opt. Lett. 37(17), 3609–3611 (2012)

    Article  Google Scholar 

  15. Li, C., Xue, J.R., Zheng, N.N., Lan, X.G., Tian, Z.Q.: Spatio-temporal saliency perception via hypercomplex frequency spectral contrast. Sensors 13(3), 3409–3431 (2013)

    Article  Google Scholar 

  16. Imamoglu, N., Lin, W.S., Fang, Y.M.: A saliency detection model using low-level features based on wavelet transform. Trans. Multimedia 15(1), 96–105 (2013)

    Article  Google Scholar 

  17. Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Low-level spatiochromatic grouping for saliency estimation. TPAMI 35(11), 2810–2816 (2013)

    Article  Google Scholar 

  18. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: CVPR, pp. 1597–1604 (2009)

    Google Scholar 

  19. Yang, C., Zhang, L.H., Lu, H.C., Ruan, X., Yang, M.H.: Saliency detection via graph based manifold ranking. In: CVPR, pp. 3166–3173 (2013)

    Google Scholar 

  20. Zhu, W.J., Liang, S., Wei, Y.C., Sun, J.: Saliency optimization from robust background detection. In: CVPR, pp. 2814–2821 (2014)

    Google Scholar 

Download references

Acknowledgments

The paper was supported in part by the National Natural Science Foundation (NSFC) of China under Grant No. 61365003 and Gansu Province Basic Research Innovation Group Project No. 1506RJIA031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ce Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Li, C., Wan, Y., Liu, H. (2017). Salient Object Detection Based on Amplitude Spectrum Optimization. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10636. Springer, Cham. https://doi.org/10.1007/978-3-319-70090-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70090-8_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70089-2

  • Online ISBN: 978-3-319-70090-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics