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Abstract. The demand for dense matrix computation in large scale and
complex simulations is increasing; however, the memory capacity of cur-
rent computer system is insufficient for such simulations. Hierarchical
matrix method (H-matrices) is attracting attention as a computational
method that can reduce the memory requirements of dense matrix com-
putations. However, the computation of H-matrices is more complex than
that of dense and sparse matrices; thus, accelerating the H-matrices is
required. We focus on H-matrix - vector multiplication (HMVM) on a
single NVIDIA Tesla P100 GPU. We implement five GPU kernels and
compare execution times among various processors (the Broadwell-EP,
Skylake-SP, and Knights Landing) by OpenMP. The results show that,
although an HMVM kernel can compute many small GEMYV kernels, merg-
ing such kernels to a single GPU kernel was the most effective implemen-
tation. Moreover, the performance of BATCHED BLAS in the MAGMA
library was comparable to that of the manually tuned GPU kernel.

1 Introduction

The scale of computer simulations continues to increase as hardware capability
advances from post-Peta to Exascale. At such scales, the asymptotic complexity
of both computation and memory is a serious bottleneck if they are not (near)
linear. In addition, the deep memory hierarchy and heterogeneity of such systems
are a challenge for existing algorithms. A fundamental change in the underlying
algorithms for scientific computing is required to facilitate exascale simulations,
i.e., (near) linear scaling algorithms with high data locality and asynchronicity
are required.

In scientific computing, the most common algorithmic components are linear
algebra routines, e.g., matrix - vector multiplication, matrix-matrix multiplica-
tion, factorization, and eigenvalue problems. The performance of these compo-
nents has been used as a proxy to measure the performance of large scale systems.
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Note that the general usefulness of the high performance LINPACK benchmark for
supercomputers has long been disputed, and recent advancements of dense linear
algebra methods with near linear complexity could be the final nail in the coffin.

Dense matrices requires O(N?) storage and have a multiplication /factorization
cost of O(N?). Hierarchical low-rank approximation methods, such as H-matrices
[1], hierarchical semi-separable matrices [2], hierarchical off-diagonal low-rank
matrices [3], and hierarchical interpolative factorization methods [4], reduce this
storage requirement to O(N log N) and the multiplication/factorization cost to
O(N log? N), where, q denotes a positive number. With such methods, there is no
point performing large scale dense linear algebra operations directly. Note that,
we refer to all hierarchical low-rank approximation methods as H-matrices in this
paper for simplicity.

‘H-matrices subdivide a dense matrix recursively, i.e., off-diagonal block divi-
sion terminates at a coarse level, whereas diagonal blocks are divided until a
constant block size obtained regardless of the problem size. Here, off-diagonal
blocks are compressed using low-rank approximation, which is critical to achiev-
ing O(Nlog N) storage and O(N log? N) arithmetic complexity. Recently, H-
matrices have attracted increasing attention; however, such efforts have a math-
ematical and algebraic focus. As a result, few parallel implementations of the
‘H-matrix code have been proposed.

In this paper, we focus on a parallel implementation. Specifically, we target
matrix - vector multiplications on GPUs. Of the many scientific applications that
involve solving large dense matrices, we selected electric field analysis based on
boundary integral formulation. Our results demonstrate that orders of magnitude
speedup can be obtained by merging many matrix - vector computations into a
single GPU kernel and proper implementation of batched BLAS operations in
the MAGMA library [5-7].

The remainder of this paper is organized as follows. An overview of the H-
matrices and its basic computation are presented in Sect. 2. In Sect. 3, we focus
on H-matrix - vector multiplication (HMVM) and propose various single GPU
implementations. Performance evaluation results are presented and discussed in
Sect. 4, and conclusions and suggestions for future work are given in Sect. 5.

2 Hierarchical Matrix Method (H-matrices)

‘H-matrices are an approximation technique that can be applied to the dense
matrices in boundary integral equations and kernel summation. The O(N?)
storage requirement O(N?3) factorization cost of H-matrices can be reduced to
O(Nlog? N). Therefore, H-matrices allow calculations at scales that are oth-
erwise impossible. In the following, we describe the formulation of H-matrices
using boundary integral problems as an example.

2.1 Formulation of H-matrices for Boundary Integral Problems

Let H be a Hilbert space of functions in a (d — 1)-dimensional domain 2 C R?
and H’ be the dual space of H. For v € H, f € H’, and a kernel function of a
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convolution operator g: R? x 2 — R, we consider following the integral equation:
[ sty = . (1)
Q

To calculate (1) numerically, we divide domain (2 into elements 2" = {w; :
j € J}, where J is an index set. When we use weighted residual methods, the
function u is approximated from a d-dimensional subspace H" C H. Given a basis
(¢i)ez of H" for an index set Z := {1,..., N}, the approximant u" € H" to u can
be expressed using a coefficient vector ¢ = (¢;);c7 that satisfies u" = 3, 7 ¢ip;.
Note that the supports of the basis QZ := supp (; are assembled from the sets
w;. Equation (1) is reduced to the following system of linear equations.

A¢ = B. (2)

Here, assume that we have two subsets (i.e., clusters) s,t € Z, where the
corresponding domains are defined as follows:

0 = Jsupp i, 2 :=|Jsupp ;. (3)

i€s 1€t

A cluster pair (s,t) is ‘admissible’, if the Euclidian distance between 2% and 2
is sufficiently large compared to their diameters:

min{diam(02"), diam(£2/")} < n dist(2", 1), (4)

where 7 is a positive constant number depending on the kernel function g and
the division £2". For the domain corresponding to the admissible cluster pairs
x € Q" y € N8 we assume that the kernel function can be approximated at
certain accuracy using a degenerate kernel such as

k
9(z,y) =Y g¥ ()95 (v), (5)

where k is a positive number. Such kernel functions are employed in various scien-
tific applications, e.g., electric field analysis, mechanical analysis, and earthquake
cycle simulations. The kernel functions in such applications can be written as
follows:

g(,y) € span({|z —y|~*,p > 0}). (6)

When we consider static electric field analysis as a practical example, the
kernel function is given by

1 1
T,y)=—I|r—y| . 7
9(x,y) = |z —yl (7)
Here, € denotes the electric permittivity. Figure 1 shows the calculation result
when a surface charge method is used to calculate the electrical charge on the
surface of the conductors. We divided the surface of the conductor into triangular
elements and used step functions as the base function ¢; of the BEM.
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Fig.1. Calculated surface Fig. 2. Partition structure of H-matrix Aﬁ for
charge density and triangular  the two-sphere model in Fig. 1. Dark and light red
elements dividing the conductor  blocks represent dense sub-matrices and low-rank
surface. sub-matrices, respectively. (Color figure online)

An H-matrix flﬁ, the approximation of A in (2), is characterized by a parti-
tion H of Nx N with blocks h = sj, x¢), € H and block-wise rank K (Fig.2). Note
that most off-diagonal blocks in ;15 have a low-rank, and the diagonal blocks
remain dense. A low-rank matrix flg |", which approximates a sub-matrix A|"
of the original matrix corresponding to block h, is expressed as

kn
Af( h.= ZU”(w”)T, (8)
v=1

where vV € R, w” € R, and k;, < K. Typically, the upper limit K of the
ranks of sub-matrices is set such that [|A — A% ||z < € for a given tolerance e.
For z,b € R?, we consider the following equation:

Az =b. (9)

To solve (9), we use a Krylov subspace method, such as the BICGSTAB method.
The HACApK library [8] and ppOpen-APPL/BEM [9,10] implement these com-
putations in parallel and distributed computer environments using the MPI and
OpenMP.

2.2 BiCGSTAB Method for the Hierarchical Matrix

We select BiCGSTAB method to solve (2) because the coefficient matrices are
not positive definite. Similar to the BICGSTAB method for a dense matrix, most
of the execution time of the BICGSTAB method for an H-matrix is spent in
HMVM. Low-rank sub-matrix - vector multiplication involves two dense matrix
- vector multiplications; therefore, HMVM results in many dense matrix - vector
multiplications (Fig. 3). Figure4 shows the pseudo code of the HMVM kernel
in ppOpen-APPL/BEM which is optimized for multi-core CPUs. The original
code was implemented in Fortran; however, to develop a GPU version of HMVM,
we have developed a C version that is nearly the same as the algorithm in the
original code. Hereafter, we refer to this kernel as the OMP kernel.
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Fig. 3. HMVM calculation

#pragma omp for
for(ip=0; ip<number_of_leaves; ip++){
if(leaf[ip]==low-rank_sub-matrix){
tmpvec2 <= sub-matrix_2 * vector; low-rank sub-matrix
tmpvec <= sub-matrix_1 * tmpvec2; - vector multiplication

if(leaf[ip]==small_dense_sub-matrix)

tmpvec <= sub-matrix * vector; small dense sub-matrix
1 - vector multiplication
for(...;...;... )14

#pragma omp atomic
result <= result + tmpvec;
}
}

Fig. 4. Pseudo code of the HMVM kernel (OMP kernel); the range of the loops in each
sub-matrix - vector multiplication depends on the target leaves.

HMVM comprises many low-rank sub-matrix - vector multiplications for off-
diagonal blocks and dense sub-matrix - vector multiplications for diagonal blocks.
These matrix - vector calculations correspond to the leaves of a tree structure;
thus, we refer to both low-rank sub-matrix - vector multiplication and dense sub-
matrix - vector multiplication as leaves. This parallel implementation requires
atomic addition because multiple leaves may have partial values of the same
index of the result vector. Although it can be eliminated using atomic opera-
tions in each matrix - vector multiplications, the OMP kernel merges partial
results after sub-matrix - vector multiplication because atomic operations in
sub-matrix - vector multiplication incur additional computation cost and can-
not obtain better performance than previous implementations. Note that the
length of the parallel loop is sufficient for current parallel processors because our
target matrices have greater than thousands of leaves.

3 H-matrix Computation on GPU

The BiCGSTAB method employs basic matrix and vector operations. Here,
HMVM is a dominant component in terms of the time to solution. Therefore, we
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® Host (CPU) side code

for(ip=0; ip<number_of_leaves; ip++){
if(leaf[ip]==low-rank_sub-matrix){

cublasDgemv( tmpvec2 <= sub-matrix_2 * vector ); low-rank sub-matrix
cublasDgemv( tmpvec <= sub-matrix_1 * tmpvec2 ); [~ - vectormultiplication
on GPU
if(leaf[ip]==small_dense_sub-matrix) small dense sub-matrix
cublasDgemv( tmpvec <= sub-matrix * vector ); - vector multiplication
} on GPU

cuda_vadd<<<>>>(); // merging temporary vectors (tmpvec) to result on GPU

Fig. 5. Pseudo code of the HMVM kernel with CUBLAS (CUBLAS kernel); red text
indicates functions executed on the GPU. (Color figure online)

#pragma omp for
for(ip=0; ip<number_of_leaves; ip++){
if(leaf[ip]==low-rank_sub-matrix){

dgemv_(  tmpvec2 <= sub-matrix_2 * vector ); low-rank sub-matrix
dgemv_( tmpvec <= sub-matrix_1 * tmpvec2 ); - vector multiplication
if(leaf[ip]==small_dense_sub-matrix) small dense sub-matrix

*

dgemv_( tmpvec <= sub-matrix * vector ); - vector multiplication

for(...;...5...)4
#pragma omp atomic
result <= result + tmpvec;

}

Fig. 6. Pseudo code of the HMVM kernel with MKL (MKL kernel); red text indicates
MKL functions. (Color figure online)

consider a GPU implementation of HMVM on an NVIDIA Tesla P100 (Pascal
architecture) GPU [11].

3.1 BLAS GEMV

As discussed in Sect. 2, HMVM consists of many dense sub-matrix - vector mul-
tiplications. A dense matrix - vector multiplication can be replaced by the well-
known general matrix vector product calculation (GEMV) in BLAS, and this
calculation is provided by some BLAS libraries for NVIDIA GPUs, e.g., the
CUBLAS [12] and MAGMA libraries. Therefore, using these BLAS libraries, we
can implement HMVM relatively easily. Here, we use CUBLAS for GPUs. In
addition, to compare performance, we also implement HMVM using the Math
Kernel Library (MKL) for CPUs. Hereafter, we refer to these kernels as the
CUBLAS and MKL kernels. Figures 5 and 6 show the pseudo code of an HMVM
kernel using the CUBLAS and MKL kernels, respectively.

3.2 Simple GEMYV Kernels

BLAS libraries are useful; however, they cannot always achieve optimal perfor-
mance. Generally, such libraries perform optimally for large matrix calculations.
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® Host (CPU) side code

for(ip=0; ip<number_of_leaves; ip++){
if(leaf[ip]==low-rank_sub-matrix){

myDgemvi<<<g,b>>>(...); // tmpvec2 <= sub-matrix_2 * vector low-rank sub-matrix
myDgemv2<<<g,b>>>(...); // tmpvec <= sub-matrix_1 * tmpvec2 ‘Vziiﬁr”1““'Phca“°"
on
if(leaf[ip]==small_dense_sub-matrix) small dense sub-matrix
myDgemv2<<<g,b>>>(...); // tmpvec <= sub-matrix * vector - vector multiplication
on GPU

cuda_vadd<<<>>>(); // merging temporary vectors (tmpvec) to result on GPU
® Device (GPU) side code

__global__ void myDgemv1(...){ __global__ void myDgemv2(...){
int gid = blockldx.x, glen = gridDim.x; int gid = blockIdx.x, glen = gridDim.x;
int tid = threadIdx.x, tlen = blockDim.x; int tid = threadIdx.x, tlen = blockDim.x;
double tmp; double tmp;
for(il=gid; il<rows; ilt=glen){ for(il=gid; il<rows; il+=glen){
for(it=tid; it<cols; it+=tlen){ for(it=tid; it<cols; it+=tlen){
tmp += matrix[m+it] * vector[v+it]; tmp += matrix[m+it] * vector[v+it];
} }
reduction_and_write_tmp_ reduction_and_atomicAdd_tmp_
to_vector_on_globalmemory to_vector_on_globalmemory
} }
} }

Fig. 7. Pseudo code of the HMVM kernel with CUDA (SIMPLE kernel); the entire
GPU kernel calculates a single GEMV, and each thread block calculates one GEMV

ToOw.

In contrast, HMVM involves many small GEMYV calculations. With GPUs, if the
CUBLAS GEMYV function is used in HMVM, performance will be low because
of the lack of parallelism. Moreover, launching GPU kernels requires significant
time. In addition, the CUBLAS kernel launches a GEMYV kernel for each leaf;
thus, the incurred overhead will increase execution time.

To evaluate and reduce this overhead, we implemented two HMVM kernels
using CUDA.

The first is a GEMV kernel that performs a single GEMV calculation using
the entire GPU, and each thread block calculates one GEMYV row. Threads in
the thread block multiply the matrix and vector elements and calculate the
total value using a reduction operation. The reduction algorithm is based on an
optimized example code in the CUDA toolkit, which we refer to as the SIMPLE
kernel. Figure 7 shows the pseudo code of an HMVM kernel using the SIMPLE
kernel. The execution form (i.e., the number of thread block and threads per
block) is an optimization parameter.

Note that many of the GEMYV calculations in the HMVM are small; thus, it
is difficult for the SIMPLFE kernel to obtain sufficient performance. To improve
performance, some parts of the GPU should calculate a single GEMV in par-
allel. Thus, we developed an advanced kernel in which a single GEMV kernel
is calculated by one thread block, and each line in a single GEMV is calcu-
lated by a single warp. Moreover, to eliminate data transfer between the CPU
and GPU, two GEMV calculations in low-rank sub-matrix - vector multipli-
cation are merged to a single GPU kernel, and shared memory is used rather
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® Host (CPU) side code

for(ip=0; ip<number_of_leaves; ip++){
if(leaf[ip]==low-rank_sub-matrix){ low-rank sub-matrix
myDgemvA<<<1,b,,s[ip]>>>(...); // tmpvec2 <= sub-matrix_2 * vector - vector multiplication
// tmpvec <= sub-matrix_1 * tmpvec2 [~ on GPU
if(leaf[ip]==small_dense_sub-matrix)
myDgemvB<<<1,b,,s[ip]>>>(...); // tmpvec <= sub-matrix * vector small dense sub-matrix
- vector multiplication
on GPU

cudaThreadSynchronize();
cuda_vadd<<<>>>(); // merging temporary vectors (tmpvec) to result on GPU

® Device (GPU) side code

__global__ void myDgemvA(...){ __global__ void myDgemvB(...){
int wid = threadIdx.x/32; // WARP ID int wid = threadIdx.x/32; // WARP ID
int wlen = blockDim.x/32; int wlen = blockDim.x/32;
int xid = threadIdx.x%32, xlen = 32; int xid = threadIdx.x%32, xlen = 32;
double tmp; double tmp;
__shared__ double tmpvec[]; for(il=wid; il<ndl; il+=wlen){
for(il=wid; il<kt; il+=wlen){ for(it=xid; it<ndt; it+=xlen){
for(it=xid; it<ndt; it+=xlen){ tmp += matrix[m+it] * vector[v+it];
tmp += matrix2[m+it] * vector[v+it]; }
} reduction_and_atomicAdd_tmp_
reduction_and_write_tmp_ to_vector_on_globalmemory
to_tmpvec_on_sharedmemory }
b

__syncthreads();

for(it=wid; it<ndl; it+=wlen){
for(il=xid; il<kt; il+=xlen){

tmp += matrix1[m+il] * tmpvec[v+il];

}
reduction_and_atomicAdd_tmp_
to_vector_on_globalmemory

}

}

Fig. 8. Pseudo code of the HMVM kernel with CUDA (ASYNC kernel); one thread
block calculates one GEMV, each warp in the thread blocks calculates a single line,
two GEMV calculations of low-rank sub-matrix - vector multiplication are merged into
a single GPU kernel, and multiple GPU kernels are launched asynchronously.

than global memory. Note that we refer to this kernel as the ASYNC kernel.
Figure 8 shows the pseudo code of an HMVM kernel with the ASYNC kernel.
Here, the execution form is also an optimization parameter, similar to the SIM-
PLE kernel; however, the number of thread blocks is always one and multiple
GPU kernels are launched concurrently using CUDA stream. Moreover, atomic
function is used to merge the partial results because the atomic addition oper-
ation of the P100 is fast enough and this implementation can make memory
management easy.

3.3 All-in-One Kernel

It is well known that launching a GPU kernel requires much more time than
launching a function executed on a CPU. In previous HMVM kernels, the number
of launched GPU kernels has depended on the number of leaves; therefore, GPU
kernels are launched many times, which may degrade performance. To address
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® Host (CPU) side code
myHMVM<<<g,b>>>(...);
® Device (GPU) side code

__global__ void myHMVM(...){
int gid = blockIdx.x, glen = gridDim.x;
int wid = threadIdx.x/32, wlen = blockDim.x/32; // wid = WARP ID
int xid = threadIdx.x%32, xlen = 32;
double tmp;
__shared__ double tmpvec[];
for(ip=gid; ip<number_of_leaves; ip+=glen){
if(leaf[ip]==low-rank_sub-matrix){ -
for(il=wid; il<kt; il+=wlen){
for(it=xid; it<ndt; it+=xlen){
tmp += matrix2[m+it] * vector[v+it];

reduction_and_write_tmp_to_tmpvec_on_sharedmemory
low-rank sub-matrix
__syncthreads(); L -vector multiplication
for(it=wid; it<ndl; it+=wlen){ on GPU
for(il=xid; it<kt; il+=xlen){
tmp += matrix1[m+it] * tmpvec[v+it];

reduction_and_atomicAdd_tmp_to_vector_on_globalmemory

}

}
if(leaf[ip]==small_dense_sub-matrix){ -
for(il=wid; il<ndl; il<wlen){
for(it=xid; it<ndt; it+=xlen){

tmp += matrix[m+it] * vector[v+it]; O ek

= - vector multiplication

: : on GPU
reduction_and_write_tmp_to_vector_on_globalmemory

}

syncthreads();

}

Fig. 9. Pseudo code of the HMVM kernel with CUDA (A1 kernel); the entire HMVM
calculation is executed by a single GPU kernel.

this issue, we have created a new GPU kernel that calculates all sub-matrix -
vector multiplications using a single GPU kernel, which we refer to as the A1
kernel.

Figure 9 shows the pseudo code of an HMVM kernel with the A1 kernel. In
this kernel, each leaf is calculated by a single warp, and the basic algorithm
of each leaf is similar to that of the ASYNC kernel. Although the loop for the
number of leaves is executed on the CPU in the ASYNC kernel, this loop is
executed on the GPU in the A1 kernel. Similar to the ASYNC kernel, here, the
execution form is an optimization parameter.

3.4 BATCHED BLAS

Similar to HMVM, many small BLAS calculations are required in various
applications, such as machine learning, graph analysis, and multi-physics. To
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void magmablas_dgemv_vbatched (
magma_trans_t trans, magma_int_t* m, magma_int_t* n, double alpha,
magmaDouble_ptr dA_array[], magma_int_t* ldda,
magmaDouble_ptr dx_array[], magma_int_t* incx,
magmaDouble_ptr dy_array[], magma_int_t* dincy,
magma_int_t batchCount, magma_queue_t queue);

Fig.10. Example interface of BATCHED MAGMA BLAS (magmablas_dgemv_
vbatched).

® Host (CPU) side code
for(ip=0; ip<number_of_leaves; ip++){

if(leaf[ip]==low-rank_sub-matrix){ inf tion about
dA_array[m++] = sub-matrix_2[ip];  dx_array[v++] = tmpvector; fg:v'ff;i&"sfg_“;;g?xa ou
dA_array[m++] = sub-matrix_1[ip];  dx_array[v++] = tmpvector; - vector multiplication

if(leaf[ip]==small_dense_sub-matrix) prepare information about

dA_array[m++] = sub-matrix[ip]; dx_array[v++] = tmpvector; [~ small dense sub-matrix
- vector multiplication

magmablas_dgemv_vbatched_atomic(..., dA_array, ..., dx_array, ..., dy_array, ...); // calc on GPU

Fig.11. Pseudo code of the HMVM kernel with BATCHED MAGMA BLAS
(BATCHED kernel).

accelerate many small BLAS calculations, batched BLAS has been proposed by
several BLAS library developers. For example, MKL, MAGMA, and CUBLAS
provide batched BLAS functions. Although gemm is the main target function
of batched BLAS, MAGMA provides batched gemv functions for a GPU [13].
Figure 10 shows one of the interfaces of the batched gemv function in MAGMA.

Note that we implemented an HMVM kernel using the batched gemv func-
tion of MAGMA [14]. Figure11 shows the pseudo code of our HMVM ker-
nel with BATCHED MAGMA BLAS, which we refer to as the BATCHED
kernel. In this kernel, the calculation information is constructed in the loop
of leaves on the CPU, and the GPU calculates the entire HMVM calcu-
lation using the magmablas_dgemv_vbatched_atomic function. Note that the
magmablas_dgemv_vbatched_atomic function is not the original BATCHED
MAGMA function, i.e., it is a function that we modified to use atomic addi-
tion to produce the results.

4 Performance Evaluation

4.1 Execution Environment

In this section, we discuss the performance obtained on the Reedbush-H super-
computer system at the Information Technology Center, The University of
Tokyo [15]. Here, we used the Intel compiler 16.0.4.258 and CUDA 8.0.44.
We used the following main compiler options: -qopenmp -03 -xCORE-AVX2
-mkl=sequential for the Intel compiler (icc and ifort) and -03 -gencode
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Table 1. Execution environment.

Processor Xeon E5-2695 v4 Tesla P100

Architecture Broadwell-EP (BDW) | Pascal

# cores 18 3584 (64 cores x 56 SMs)
Clock speed 2.1 GHz (upto 3.3 GHz) | 1328 MHz (upto 1480 MHz)
Peak performance (DP) 604.8 GFLOPS 5.3 TFLOPS

Memory type & DDR4 65 GB/s HBM2 550 GB/s
bandwidth (STREAM

Triad)

Processor Xeon Gold 6140 Xeon Phi 7150
Architecture Skylake-SP (SKX) Knights Landing (KNL)
# cores 18 68

Clock speed 2.3 GHz (upto 3.7 GHz) | 1.4 GHz (upto 1.6 GHz)
Peak performance (DP) 1324.8 GFLOPS 3046.4 GFLOPS

Memory type (STREAM | DDRA4 95 GB/s MCDRAM 495 GB/s
Triad) & bandwidth DDR4 85 GB/s

arch=compute_60, code="sm_60, compute_60" for CUDA (nvcc). The MKL ker-
nel is called at the multi-threaded region; thus, sequential MKL is linked. Note
that threaded MKL obtained near by the same performance in all cases. Here,
we used MAGMA BLAS 2.2.

Moreover, to compare performance with other current processors, we mea-
sured the performance on a Skylake-SP CPU and a Knights Landing processor.
The Skylake-SP processor is installed in the ITO supercomputer system (test
operation) at Kyushu University [16], and Intel compiler 17.0.4 with ~qopenmp
-03 -xCORE-AVX512 -mkl=sequential compiler options was used. The Knights
Landing processor is installed in the Oakforest-PACS at JCAHPC [17] and Intel
compiler 17.0.4 with -qopenmp -03 -xMIC-AVX512 -mkl=sequential compiler
options was used.

Table 1 shows the hardware specifications of all target hardware. Note that
we focus on the performance of a single socket in this paper. The execution
times of the Broadwell-EP (BDW) and Skylake-SP (SKX) were measured using
all 18 CPU cores. The cluster mode of Knights Landing (KNL) was the quadrant
mode, and the memory mode was flat (i.e., only MCDRAM was used). Note that
the KNL execution times were measured using 64 threads with scatter affinity
and hyper-threading degrades performance.

4.2 Target Data

The four matrices in Table 2 are the target matrices of this evaluation. These
matrices were generated from electric field analysis problems. Here, the 10ts and
100ts matrices were generated from a problem with a single spherical object,
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Table 2. Target matrices.

Matrix name 10ts 216h | human_1x1 | 100ts
Number of lines 10,400 | 21,600 | 19,664 101,250
Number of leaves 23,290 | 50,098 | 46,618 222,274
Number of approximate matrices pairs | 8,430 | 17,002 | 16,202 89,534
Number of small dense matrices 14,860 | 33,096 | 30,416 132,740
Amount of H-matrix (MByte) 136 295 298 2,050

and the 216h matrix was generated from a problem with two spherical objects.
In addition, a human_1x1 matrix was generated from a problem with a single
human-shaped object.

The sizes of the low-rank sub-matrices and small dense sub-matrix of each
target matrix are shown in Fig. 12, where the two left graphs of each matrix
show the size of the low-rank sub-matrices and the right shows the size of the
small dense sub-matrix.

With the 10ts and 100ts matrices, the size of the approximate matrices ndt
and ndl was less than approximately 200 (some were close to 700). Note that all
ranks kt were very small (the largest was 23). With the small dense matrices,
all matrix lengths were less than 100, and many were less than 30.

With the 216h and human_1x1 matrices, the aspect ratio of the small dense
matrices was similar to that of the 10ts and 100ts matrices. With the approxi-
mate matrices, although kt was greater than that of the 10ts and 100ts matrices,
the aspect ratio was similar. However, although nearly all ndt and ndl lengths
were less than 1000, a few matrices had ndt and ndl lengths that were greater
than 5000.

Note that the sizes of these matrices depend on the target matrix. Moreover,
the size is controlled by the matrix assembling algorithm and HACApK param-
eters. The above sizes were generated using current usual HACApK parameter
settings. It is expected that optimizing the matrix size will affect HMVM per-
formance, and this will be the focus of future work.

4.3 Performance Evaluation

In this subsection, we discuss execution time and performance. Note that the
dominant part of the BICGSTAB method is HMVM; therefore we focus on the
execution time of the HMVM. Moreover, the BICGSTAB method does not mod-
ify the matrix data in its own kernel; thus, the each execution time does not
include the time required to perform data transfer between the main memory
and the GPU in the main iteration of the BICGSTAB method. Figures 13 and
14 show the execution times for the target matrices. All times are the average
execution time of 100 HMVM calculations in 50 BiCGSTAB iterations. As men-
tioned in the previous section, although the execution form (i.e., grid layout) of
the SIMPLE, ASYNC, and A1 kernels are the optimization parameters, only
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Fig. 12. Matrix sizes.

the fastest cases are shown and the chosen forms are shown at Table 3. Note that
the ASYNC kernel launches many GEMYV kernels asynchronously with a single
thread block. The “#leaves” grids of the A1 kernel indicate that the number of
thread blocks is equal to the number of leaves, and the outermost GPU kernel
loop is eliminated.

Figure 13(a) shows the execution times of all measurements on the Reedbush-
H. As can be seen, the CUBLAS, SIMPLE, and ASYNC' kernels were too slow
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for a performance comparison with the fast kernels. Figure 13(b) shows graphs
with a limited Y-axis from Fig. 13(a). Relative to the CPU execution time, the
OMP and MKL kernels obtained nearly the same performance with all target
matrices. Focusing on the GPU execution time, it is clear that the execution
times of the CUBLAS, SIMPLE, and ASYNC kernels were much greater than
that of the A1 and BATCHED kernels. The major difference between these two
groups is the number of launched GPU kernels. As mentioned in the previous
section, launching GPU kernels requires more time than executing functions
on the CPU and causes long execution times with the three slower kernels.
Therefore, although the ASYNC kernel improves the performance compared to
the CUBLAS and SIMPLE kernels, its performance is much slower than that
of the A1 and BATCHED kernels. On the other hand, the A1 and BATCHED
kernels obtained much higher performance than the other kernels. Note that the
A1 kernel showed better performance than the BATCHED kernel because the
batched functions in MAGMA BLAS include computations that are unnecessary
for HMVM calculation or the execution form is unoptimized.

The execution time ratio of the OMP kernel (BDW) to the A1 kernel was
17.37% with the 10ts matrix, 24.22% with the 216h matrix, 18.18% with the
human_1x1 matrix, and 14.45% with the 100ts matrix, and the execution time
ratio of the OMP kernel (BDW) to the BATCHED kernel was 34.39% with the
10ts matrix, 32.07% with the 216h matrix, 31.43% with the human_Ix1 matrix,
and 21.67% with the 100ts matrix. Considering that the calculation performance
ratio of the GPU to CPU was 11.4% and the memory performance was 10.5%,
there might be room to improve the GPU implementation.

Figure 14 shows the execution times of the A1 kernel, BATCHED kernel, and
CPU (i.e., the OMP and MKL kernels) on the Broadwell-EP (BDW), Skylake-
SP (SKX), and Knights Landing (KNL). All times of the KNL are the average
execution time of 100 HMVM calculations in 50 BiICGSTAB iterations, but that
of the SKX are average execution time of greater than 10 iterations because of
the resource limitation of the test operation.

Relative to the performance of SKX, both the OMP and MKL kernels
required nearly 30% less execution time than the OMP kernel of the BDW.
By considering the performance gap between the BDW and SKX in terms of
specification, i.e., the SKX has 45% greater memory bandwidth and more than
200% greater calculation performance than the BDW, it was expected that the
SKX would obtain higher performance than 30%. However, HMVM calculation
involves various loop length, and it is not a suitable calculation for AVX512;
therefore, the obtained performance is not unexpected. On the other hand, there
are large differences between the OMP kernel and MKL kernel of the KNL. How-
ever, it is difficult to describe the reason why the performance of the MKL kernel
was unstable because the MKL implementation is undisclosed. There might be
room to improve the KNL implementation. By considering the performance gap
between the BDW and KNL in terms of specification, i.e., the KNL has 7.6 times
greater memory bandwidth and 5.0 times greater calculation performance than
the BDW. The OMP kernel of the KNL obtained 34% to 57% better perfor-
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Fig. 14. HMVM execution times.

mance than the OMP kernel of the BDW. Similar to the SKX, the KNL has
much higher peak performance than the BDW; thus the performance improve-
ment of the KNL is insufficient relative to the performance gap between the
BDW and KNL.

Figure 15 shows the entire execution time of the BiCGSTAB method in
all target environments. Here, although the iteration count was not exactly
the same, only the total computation times are compared. Nearly all vector
and matrix calculations of the BiICGSTAB method were executed on the GPU
with the A1 kernel. Similarly, nearly all vector and matrix calculations of the
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Table 3. Best execution form of each GPU kernel: number of thread block and threads
per thread block
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SIMPLE | 168, 64 112, 64 168, 64 168, 64
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Fig. 15. BiCGSTAB execution times: BDW, SKX, and KNL were the fastest with
OMP and MKL kernels

BiCGSTAB method were executed on the GPU using MAGMA BLAS with the
BATCHED kernel. To simplify the evaluation, only the shortest times of the
OMP and MKL kernels for each hardware configuration are shown. The execu-
tion times of the A1 and BATCHED kernels were less than that of the other
processors, and the A1 kernel demonstrated the fastest performance with all
target matrices. Note that the SKX was faster than the BDW for all matrices
and was faster than the KNL with the 10ts, 216h, and human_1x1 matrices.
However, the KNL showed a shorter execution time than the BDW and SKX
with the 100ts matrix. The reason for this may be that the 100ts matrix has
a greater number of large sub-matrices than the other matrices. Note that the
larger target matrix, the greater performance KNL obtained relatively.

5 Conclusion

Using H-matrices is an essential technique to solve large and complex computer
simulations using a small amount of memory. In this paper, we focus on the
BiCGSTAB method with H-matrices for electric analysis problems on GPUs.
Since matrix - vector multiplication is a dominant part of the execution time of
the BICGSTAB method, we primarily focused on the performance and imple-
mentation of HMVM. We implemented five GPU kernel variations and compared
the execution times of several CPUs and a manycore processor. The results
indicate that, because HMVM requires many small GEMV computations and
launching GPU kernels requires a long time, merging the computation of GEMV
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kernels into a single kernel (i.e., the A1 kernel) was the most effective implemen-
tation. This implementation obtained much better performance among the com-
pared processors. Moreover, the BATCHED BLAS function of MAGMA, which
executes many BLAS computations using a single GPU kernel (BATCHED ker-
nel), obtained good performance. Although the performance of the BATCHED
kernel was less than that of the A1 kernel with all matrices, developing the A1
kernel requires much more time and labor than the BATCHED kernel. There-
fore, it would be beneficial to implement an A1 kernel-based HMVM library in
HACApK. In the best case, the execution time ratio of the OMP kernel on the
Broadwell-EP to the A1 kernel was 14.45% with the 100ts matrix. Owing to the
higher HMVM performance, the BICGSTAB method with A7 kernel demon-
strated overall better performance than the other kernels on the GPU (i.e., the
NVIDIA Tesla P100), as well as the Skylake-SP and Knights Landing hardware.

Note that various opportunities for future work remain. For example, we are
currently implementing and evaluating in the multi-GPU and multi-nodes envi-
ronments. In such environments, load balancing and data transfer optimization
are very important, and to accelerate data transfer between GPUs, the data
layout in GPU memory may have a significant impact on performance. Simpli-
fication of partition structure of H-matrices used in lattice H-matrices would be
required to improve load balancing and communication pattern [18]. Currently,
it is uncertain whether the A1 and BATCHED kernels have good data lay-
outs. The data layouts of approximate and small dense matrices can be modified
by configuring the parameters of the matrix assembly process in the HACApK
library. The relationship between the data layout of matrices and performance is
an interesting topic. Moreover, optimization of the execution forms of GPU ker-
nel in A1 kernel to various target matrices is an important issue; thus, evaluating
the performance of various matrices is required. In addition, we are considering
providing an implementation of our HMVM kernel in HACApK.
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source, provide a link to the Creative Commons license and indicate if changes were
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http://creativecommons.org/licenses/by/4.0/

	Optimization of Hierarchical Matrix Computation on GPU
	1 Introduction
	2 Hierarchical Matrix Method (H-matrices)
	2.1 Formulation of H-matrices for Boundary Integral Problems
	2.2 BiCGSTAB Method for the Hierarchical Matrix

	3 H-matrix Computation on GPU
	3.1 BLAS GEMV
	3.2 Simple GEMV Kernels
	3.3 All-in-One Kernel
	3.4 BATCHED BLAS

	4 Performance Evaluation
	4.1 Execution Environment
	4.2 Target Data
	4.3 Performance Evaluation

	5 Conclusion
	References




