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Abstract. In modern high-performance computing (HPC) systems,
users are usually requested to estimate the job runtime for system
scheduling when they submit a job. In general, an underestimation of job
runtime will cause the HPC system to terminate the job before its com-
pletion. If users could be notified that their jobs may not finish before its
allocated time expires, users can take actions, such as killing the job and
resubmitting it after parameter adjustment, to save time and cost. Mean-
while, the productivity of HPC systems could also be vastly improved. In
this paper, we propose a data-driven approach — that is, one that actively
observes, analyzes, and logs jobs — for predicting underestimation of job
runtime on HPC systems. Using data produced by TSUBAME 2.5, a
supercomputer deployed at the Tokyo Institute of Technology, we apply
machine learning algorithms to recognize patterns about whether the
underestimation of job runtime occurs. Our experimental results show
that our approach on runtime-underestimation prediction with 80% pre-
cision, 70% recall and 74% F1-score on the entirety of a given dataset.
Finally, we split the entire job data set into subsets categorized by sci-
entific application name. The best precision, recall and F1-score of sub-
sets on runtime-underestimation prediction achieved 90%, 95% and 92%
respectively.

Keywords: HPC - Job log analysis
Underestimation on job runtime - Machine learning

The original version of this chapter was revised: The affiliation of the second author
has been corrected. The erratum to this chapter is available at https://doi.org/10.
1007/978-3-319-69953-0_17

© The Author(s) 2018

R. Yokota and W. Wu (Eds.): SCFA 2018, LNCS 10776, pp. 179-198, 2018.
https://doi.org/10.1007/978-3-319-69953-0_11


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-69953-0_11&domain=pdf
http://orcid.org/0000-0002-9678-9960
https://doi.org/10.1007/978-3-319-69953-0_17
https://doi.org/10.1007/978-3-319-69953-0_17

180 J. Guo et al.

1 Introduction

Modern high-performance computing (HPC) systems are built with an increas-
ing number of CPU/GPU cores, memory, and storage space. Meanwhile, scientific
applications have been growing in complexity. However, not all users have enough
experience working reasonably with supercomputing resources. Writing and exe-
cuting programs on an HPC system requires more experience and techniques than
on a PC. First, HPC users need to have relevant knowledge about system-specific
information, such as parallel programming on multi cores or multi nodes in HPC
environments, and how many compute nodes or cores are appropriate for a spe-
cific application job. Furthermore, when submitting a job to an HPC system, users
are usually requested to estimate the runtime of said job for system scheduling. In
general, an underestimated runtime will lead to the HPC system terminating the
job before its completion. On the other hand, an overestimated runtime of the job
usually results in a longer queuing time. In both cases, the productivity of HPC
users is hindered [1]. Especially in the case of underestimation, the system will
directly terminate the undergoing job when its estimated runtime expires. Users
will lose their processing data, and furthermore, can no longer get the final results
they need. Therefore, most users have to resubmit their jobs again and run them
again from the beginning, which is a costly situation for users and systems since
they waste time and system resources.

Predicting jobs, especially those which may not finish before its allocated
time expires, can mitigate wastes of time and system resources by taking early
actions for those jobs. For instance, if an ongoing task execution of a job is
predicted to be runtime-underestimated based on the characteristic patterns,
system administrators or an automated agent can explicitly send a notification
to the user who submitted the job. The user can fix the problem by killing the
job and resubmitting it after parameter adjustment.

In this study, we propose a data-driven approach for predicting job statuses
on HPC systems. Here, “data-driven” means that our approach actively observes,
analyzes, and logs jobs collected on TSUBAME, a large-scale supercomputer
deployed at the Tokyo Institute of Technology. Supervised machine learning
algorithms (i.e., XGBoost and Random Forest) are applied to address this binary
classification problem (having runtime-underestimation or not).

Our experimental results show that our approach predicts the underesti-
mated job with 80% precision, 70% recall and 74% F1-score on the entirety of a
given dataset. Then, we split the entire job data set into subsets categorized by
scientific application name. The best precision, recall and F1-score of subsets on
job runtime-underestimated prediction achieve 90%, 95% and 92% respectively.
This achievement means that, for some scientific applications on HPC systems,
our model can be used to accurately predict whether a job can be completed
before its estimated runtime expires.

Our specific contributions are:

— We introduced some evaluation metrics (precision, recall, and F1-score on
minority classes) which are more fair than metrics used in similar previous
studies (overall precision, recall, and F1-score).
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— Additionally, we plotted feature importance and revealed surprising hidden
patterns between different HPC applications and different features on com-
puting resource usage.

The rest of the paper is organized as follows: Related work about gathering
and analyzing job logs in HPC systems are introduced in Sect. 2, followed by an
overview description of the dataset and feature engineering used for preprocess-
ing the dataset in Sect. 3. Design and implementation of our machine learning-
based prediction methods and the evaluation of our approach are described in
Sect. 4. In Sect. 5, we presented detailed analysis based on experiment results and
discussion. Finally, we gave our future work and conclude the paper in Sect. 6.

2 Related Work

Gathering and analyzing job logs in HPC systems is a widely studied topic in
computer science literature. In recent years, there have been many studies on
analyzing job logs focusing on anomaly detection, failure prediction, runtime
prediction, and so on.

Klinkenberg et al. [2] proposed and evaluated a method for predicting fail-
ures with framed cluster monitoring data and extracted features describing the
characteristic of the signals. Authors in [3] presented a machine learning based
Random forests (RF) classification model for predicting unsuccessful job execu-
tions. In modern supercomputing centers, successful or health jobs occupy a very
large part of job databases. However, authors used the overall accuracy as an eval-
uation metric in those works, which cannot truly reflect unsuccessful execution
results. Tuncer et al. [4] presented a method to detect anomalies and performance
variations in HPC and Cloud environments. However, they run kernels represent-
ing common HPC workloads and infuse synthetic anomalies to mimic anomalies
observed in HPC systems, which may deviate from anomaly situations in reality.

There exists research focusing on predicting other job features, such as I/0,
CPU, GPU, memory usage and runtime in clusters. McKenna et al. [5] utilized
several machine learning methods (kNN, Decision Tree, and RF) for predict-
ing runtime and I/0 usage for HPC jobs with training data from job scripts.
Rodrigues et al. [6] predicted job execution, wait time, and memory usage with
job logs and batch schedulers by an ensemble of machine learning algorithms
such as RF and kNN. Fan et al. [7] proposed an online runtime adjustment
framework for trade-off between prediction accuracy and underestimation rate
in job runtime estimates.

Additionally, others have worked on log file analysis with machine learning,
anomaly detection and so on. In this work, we use system log data collected by
ganglia to predict whether a job runtime was underestimated. We found that our
method has particularly good results at predicting underestimated runtime for
some applications after splitting the entire job data set into subset categorized
by scientific application name.

To the best of our knowledge, our work is the first to analyze job data and
build models according to different HPC scientific applications using machine
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learning. We discover that different features of computing resource usage, with
different weights on the prediction of job runtime-underestimation, ended up
affecting HPC applications’ runtime.

3 Data Collection and Feature Engineering

Our purpose is to model and predict users’ runtime-underestimation on job run-
time that wastes time and system resources. To address this, we propose a machine
learning-based technique which takes advantage of utilization data of different
computing resources as well as users’ resource usage requirements at job submis-
sion. The technique builds classifiers that can recognize hidden patterns in the col-
lected data, which are necessary to understand what jobs are running in the system
and the number of resources allocated at each node.

The overall system architecture from data gathering to result prediction is
depicted in Fig. 1.

Input Data Feature Building Models Training and
Preprocessing Engineering Test

g : Tuni &
Gangliat+ Dropping Randomized H uning Entire
PBS Nan searchCV yperpara Dataset
ments

Label Subset 1
MYSQL "}-elarl;eelt Encoder Random
_ XGBoost . Subset 2
Forest
Subset 3

Feature
Selection

Feature
Scaling

Subset

Fig. 1. Overall workflow diagram in this study

3.1 Gathering TSUBAME DATA

TSUBAME 2.5 [8] is GPU supercomputer located at Tokyo Institute of Technol-
ogy, operated from November 2010 to July 2017, including its ancestor TSUBAME
2.0. TSUBAME 2.5 is well known as “the greenest supercomputer in the world” in
the Green500 List [9] on November 2010 and June 2011. The system consists of 1408
compute nodes, each of which has three NVIDIA Tesla K20X GPUs (upgraded from
NVIDIA TeslaM2050 on September 2013), two CPUs and SSD as local scratch stor-
age. The nodes are interconnected with dual-rail InfiniBand QDR full fat-tree net-
work. All nodes run SUSE Enterprise Linux 11 and compute jobs are managed by
PBS Professional 11. System load (and power) information, including GPU usage,
is monitored and recorded using Ganglia [10]. All nodes process information is also
recorded via process accounting interface in Linux.

We created MySQL database containing anonymized job history data from
PBS’s log, associated CPU and GPU usage information as features from Gan-
glia, and application information from accounting logs of each job. Prediction of



Machine Learning Predictions for Underestimation of Job Runtime 183

online runtime underestimation needs to be based on the progress information,
rather than the post-processing of measured information after jobs are finished.
All features regarding computing resource usage were normalized by dividing by
used wall clock timings. This provides progress information in the form of a ratio —
resource usage related measurements by wall clock units. As they are normalized
by time-based value, those normalized performance related measurements serve as
appropriate data sources for machine learning based job status prediction. Indeed,
this can also be extended to online prediction [3]. In total, 14.3 million jobs were
recorded, with a total database size of 8.5 GiB.

Table 1 shows the really world data we collected by Ganglia and PBS from
TSUBAME 2.5.

Table 1. List of computing resource usage features based on normalized time series data
and job requests information

Features Description Features Description
used_cpupercent | Recorded CPU usage req-pl Requested priority
used_-mem Recorded memory usage |req-et Requested option to
extend maximum runtime
used_ncpus Recorded number of CPU | nhosts Calculated number of
used host involved
used_vmem Recorded memory is_array 1 if the job is a part of
address space usage array (parameter survey)
job
req-mem Requested memory gpu_utilization | Recorded average GPU
amount utilization per node
(0.0-3.0)
req-ncpus Recorded number of CPU | num_gpu_used | Number of GPU per node
used which is actually used
req-walltime Requested runtime app Recorded application
(wallclock time) which run inside of the job
req-gpus Requested number of grouphash Anonymized project
GPUs per node name
used_walltime Recorded runtime userhash Anonymized user name
(wallclock time)
queue_time Timestamp of job submit | start_time Timestamp of job submit
end_time Timestamp of job finish exit_state Recorded exit status of
job script
year Fiscal year month Month
used_nodesec Used runtime on per node | used_cputime | Used runtime per CPU
queue Job class name

3.2 Feature Engineering

The purpose of a feature, other than being an attribute, would be much easier to
understand in the context of a problem. A feature is a characteristic that might
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help when solving the problem [11]. Features describe the structures inherent in
data, and furthermore, they are very important to the predictive models and will
influence the result. The quality and quantity of features have direct impact on
whether the model is good or not. Therefore, getting enough useful features from
the raw data is the first step in building good models for solving our problem.

Feature Selection. From the previous sections, we know that the raw data about
compute resources usage was time series data of extreme size. Directly using raw
time series data will produce unacceptable compute overhead, which may lead to
serious time gaps between data collection and analysis as well as wasted computa-
tional resource. Instead of using raw time series data, we selected a set of relevant
features from the raw job logs data for use in model construction by normalizing and
converting them to MySQL database. In machine learning tasks, this is an essential
step to make results easier to interpret by researchers. Additionally one can enjoy
shorter training times, avoid the curse of dimensionality and enhanced generaliza-
tion by reducing overfitting [12].

In this research, our purpose is building a machine learning technique-based
model that can predict whether a job is underestimated on its runtime. Therefore
we selected features as training set X by removing redundant or irrelevant features
such as used_cputime, used_nodesec, used_walltime, queue_time, start_time and
end_time without incurring much loss of information. This is a preliminary study
in which we try to reveal complex patterns hidden in utilization of computing
resources, user behaviors, and different applications on an HPC system. Those fea-
tures are redundant, which have a large impact on the prediction of job runtime.

Additionally, we needed to create the target variable as the test set y which is
then compared with the results produced with the training set X. We label the test
set by the following formula:

Yy = jaused_walltime — j.reqwalltime

where j.used_walltime is actual runtime of a job, and j.req_walltime is user esti-
mated time of a job. If ¢’ < 0, we label this job as 0 in the test set y, which means
that the actual runtime of this job does not exceed the user’s estimated time when
its user submitted it. Relatively, if 3/ >= 0, this job will be labeled as 1 in the test
set, which indicates runtime-underestimation. In this case, this job will be termi-
nated by the HPC system immediately before its completion. The purpose of our
work is to predict whether a job is runtime-underestimated after job submission.

Feature Preprocessing. So far, we have selected enough feature variables as
the training set and also have made corresponding labels as the test set. However,
there are a few more important things needing to be addressed before we create the
training machine learning model.

First is Labelencoding. For most traditional machine learning algorithms, the
data fed to them must be in numerical type. Based on Table 1, however, we can
see that there are some feature columns that are non-numerical type. For instance,
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Table 2. 5 instances with selected 18 features as training set and test set

Training set (X)
used,cpupercent‘ used_mem ‘usedmcpus‘ used_vmem ‘ req-mem ‘req,ncpus‘req,walltime‘req,gpus

975 974532 3 8.95E407  1.07E+409 3 3540 3
1733 4.8451e+06 12 5.49226e+06 2.14748e+09 12 10800 0
1196 1.12E+06 192 6.83E4+08  2.15E4-09 192 86400 48
896 828776 24 3.41E408  2.15E+09 24 86400 3
1197 2.64E+06 12 9.20E4+07  2.15E4-09 12 86400 1
Training set (X) Test set (y)
req,pl‘req,et‘nhosts‘is,array‘gpu,utilization‘num,dpu,used‘group‘queue‘user‘app Label: 1 or 0
0 0 0 81.0646 3 5 0
0 1 1 0 0 0 11 2 35 8 0
0 1 16 0 48.8958 3 166 5 368 11 0
0 1 1 0 169.295 3 10 5 473 11 0
0 1 1 0 49.8069 3 5 5 185 11 1

the column queue is list including [G, H, L128F, S, S96, X] which represents vary-
ing queues in TSUBAME 2.5 HPC system. In addition, the column userhash and
grouphash keep hash values from 1100 users and 421 user groups. Labelencoder
can also be used to transform non-numerical variables (as long as they are hash-
able and comparable) to numerical variables. For example, LabelEncodeing can
turn [G, S, G, H, S] into [1,2,1, 3,2], but then the imposed ordinality means that
the average of G and His S. In this work, we used Labelencoder to transform feature
variables in columns userhash, grouphash and queue from categorical variables to
numerical variables.

Second is feature standardization. Based on Table 1, we can see that the range
of values of columns varies widely. For instance, in column used_mem, values range
from single units to millions of units. Meanwhile, in column used_cpupercent, the
values range from 0 to hundreds of thousands. In contrast with these two columns,
the column is_array is bool type (0 or 1). Given this wide variation of training set
values in some machine learning algorithms, objective functions will not work prop-
erly without normalization. For example, most of classifiers calculate the distance
between two points by the Euclidean distance. If one of the features has a broad
range of values, the distance will be governed by this particular feature. Therefore,
the range of all features should be feature scaled so that each feature contributes
approximately proportionately to the final distance.

Feature standardization can make the values of each feature in the data have
zero-mean (when subtracting the mean in the numerator) and unit-variance. This
method is widely used for normalization in many machine learning algorithms (e.g.,
SVM, logistic regression, and neural networks). The general method of calculation
is to determine the distribution mean and standard deviation for each feature. Next
we subtract the mean from each feature. Then we divide the values of each fea-
ture by its standard deviation (since mean is already subtracted) [13], which can be
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presented in the following formula:

Where z is the original feature vector, Z is the mean of that feature vector, and o
is its standard deviation. We give 5 job instances - with 18 selected features which
as Table 2 showed.

One important thing to note, researchers usually split the data into training,
validation, and testing sets in the training phase. If we perform feature scaling to
take the mean and variance (or standard deviation) over the whole set of predictor
variables, future information will be introduced into the training predictor vari-
ables; namely, the future information contained in the mean and variance. There-
fore, we perform feature scaling over the training data and save the mean and vari-
ance. Then we apply feature scaling to the predictor variables of the validation and
test data sets, using the training mean and variances. A model can be applied on
unseen data which, in general, is not available at the time the model is built. The
validation process (including data splitting) simulates this. In order to get a good
estimate of the model quality (and generalization power), one needs to restrict the
calculation of the normalization parameters (mean and variance) to the training
set.

Finally, for data cleaning work, we dropped all log job instances that contain
NaN which may be caused by recording error when collecting data. The size of
the logs from Jan. 1, 2015 to Dec. 31, 2016 is about one million job instances,
which are enough for training and testing our models. Table 3 shows the sum-
mary of the entire job data set and subsets categorized by scientific application
name. In Table 3, we found that, regardless of the whole dataset or a given sub-
set, both are imbalanced datasets. That is, at least one of the classes accounts for
only a small minority of the data. Aside from subset named “WRF?”, the rest are
extremely imbalanced subsets. For example, subsets named “Bio: BLAST”, “Bio:
MEGADOCK” and “MD:Desmond MD”, the minority class (labeled 1, having
runtime-underestimation) are less than 1%, 1.45% and 2.2% respectively on those
subsets. The majority class (labeled 0, not having runtime-underestimation) occu-
pies overall 94.82% over the entire data set.

4 Performance Metrics and Algorithm Coverage for Binary
Classification Problem on Imbalanced Dataset

So far, we have realized very clearly that we are dealing with a binary classifica-
tion problem on an extremely imbalanced dataset. Almost all classifications that
will predict every sample as the majority class can still achieve very high perfor-
mance [14]. We can see that no matter what algorithms it is based on, and no mat-
ter what the data subset is, the majority class always has very high scores on all
metrics. Therefore, for building models on extremely imbalanced data, the over-
all classification accuracy is often not an appropriate metric of performance. There
are 2 ways that are given by data scientists and researchers to deal with imbalanced
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Table 3. Imbalanced subsets categorized by scientific application name

Name of dataset Number of Number of instance | Number of instance
instance with label 0 with label 1
(majority class (minority class
percentage) percentage)
Whole data 987,123 935926 (94.82%) 51197 (5.18%)
Ab-Initio: PHASE 454 384 (84.59%) 70 (15.41%)
Bio: BLAST 6367 6352 (99.76%) 15 (0.23%)
Bio: MEGADOCK 228728 225416 (98.54%) 3312 (1.45%)
CAE: Abaqus 170 143 (84.11%) 27 (15.89%)
CAE: CST MW-Studio | 944 861 (91.2%) 83 (8.8%)
CAE: Fluent 467 434 (92.94%) 33 (7.06%)
CAE: LS-DYNA 1712 1583 (92.46%) 129 (7.54%)
CAE: MSC Marc 28 28 (100%) 0
CFD: OpenFOAM 4876 4480 (91.88%) 396 (8.12%)
MATLAB 3127 2832 (90.57%) 295 (9.43%)
MD: AMBER 45554 44 382 (97.43%) 1172 (2.57%)
MD: CHARMM 103 79 (76.7%) 24 (23.3%)
MD: Desmond MD 4510 4411 (97.8%) 99 (2.2%)
MD: GROMACS 212817 205528 (96.57%) 7289 (3.43%)
MD: NAMD 3530 2871 (81.33%) 659 (18.67%)
MD: Tinker 20889 20125 (96.34%) 764 (3.66%)
MD: lammps 1285 1147 (89.26%) 138 (10.74%)
MPI 124 828 112321 (89.98%) 12507 (10.02%)
Others 4365 4044 (92.65%) 321 (7.35%)
Python 208 892 199 368 (95.44%) 9524 (4.56%)
QM: Gaussian 31116 29462 (94.68%) 1654 (5.32%)
QM: OpenMX 3786 3459 (91.36%) 327 (8.64%)
QM: Quantum Espresso | 5276 4482 (84.95%) 794 (15.05%)
QM: VASP 69 445 58541 (84.3%) 10904 (15.7%)
RISM 102 102 (100%) 0
Vis: POV-RAY 1967 1833 (93.19%) 134 (6.81%)
WRF 1785 1258 (70.47%) 527 (29.53%)

data set. First is to collect more minority class data or to re-sample the imbalanced
dataset by over-sampling (e.g. adding copies of instances from the minority class)
or by under-sampling (e.g. deleting instances from the majority class). We can-
not do either of these strategies, because over-sampling will increase the size of
the data set thereby greatly extending training time, and under-sampling may lose



188 J. Guo et al.

important information as a consequence of dropped data. Second is to change the
performance metrics. There are metrics that have been designed to get fair perfor-
mance evaluation when working with imbalanced classes.

4.1 Metrics for Evaluating Imbalanced Data

In machine learning tasks with extremely imbalanced datasets, we use a set of alter-
native metrics such as false positive rate (FPR), true positive rate (TPR), receiver
operating characteristic (ROC), Area under the Curve of ROC (AUC), precision,
recall, and F'1-score to evaluate the performance of our model on imbalanced data:

True Positives (TP): the true positive are the cases when the actual class of the
target label was 1 (True) and the predicted is also 1 (True). In this research, the
case where a job is actually runtime-underestimated (1) and the model classifies
the case as runtime-underestimated (1) falls under True Positives.

True Negatives (TN): the true negative are the cases when the actual class of the
target label was 0 (False) and the predicted is also 0 (False). In this research, the
case where a job is NOT runtime-underestimated and the model classifies the case
as NOT runtime-underestimated falls under True Negatives.

False Positives (FP): the false positive are the cases when the actual class of the
target label was 0 (False) and the predicted is 1 (True). In this research, the case
where a job is NOT runtime-underestimated and the model classifies the case as
runtime-underestimated comes under False Positives.

False Negatives (FN): the false negative are the cases when the actual class of the
target label was 1 (True) and the predicted is 0 (False). In this research, the case
where there is a runtime-underestimated job and the model classifies the case as
NOT runtime-underestimated comes under False Negatives.

Accuracy = TP+TN (1)
TP+TN+FP+FN
Precision = TP?—iPFP (2)
Recall = 1?};—7])17]\7 (3)
"
FpP
FPR = 5 (5)
TP
TPR= 755N (6)
TN
SPC = 3 7P (7)
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The ROC is a kind of curve graph that represents the diagnostic ability for a
binary classification problem with all possible threshold values. ROC can be drawn
with coordinates ranging between FPR and TPR along the x and y axes. Adjusting
the threshold will change the FPR and TPR. In a binary classification problem, the
prediction result for each sample is usually made based on a continuous random
variable X, which is a “score” computed for this sample. Setting a threshold 7', the
sample will be classified as “positive” if X > T, and “negative” otherwise.

The AUC it indicates the probability that a classifier will rank a randomly cho-
sen positive instance higher than a randomly chosen negative one (assuming ‘pos-
itive’ ranks higher than ‘negative’) [15]. The AUC is a single metric which can be
used for an overall performance summary of a classifier, calculated by following
formula:

AUC = / " TPR(T)(—FPR(T))dr
_ [T / T T S TV fo(T)AT'dT = P(X, > Xo) (8

where X7 is the score for a positive instance and X is the score for a negative
instance, and fj is the probability density when the sample actually belongs to
class “positive”, and f; otherwise [16].

Due to space limitations, we will not describe it in detail here. What we need to
know about AUC are as follows: The range of the value of AUC is between 0 and 1,
the higher the better; When AUC is 1, this means that it is a perfect classifier, and
with this prediction classifier, there is at least one threshold that leads to a perfect
prediction (no FP and FN). However, there is no perfect classifier in most real world
cases. 0.5 < AUC < 1 means that the performance of this model is better in cases
of a random guess. If the AUC is around 0.5, that means the performance of this
model is generally the same as the result of a random guess.

The AUC was the first metric used to evaluate the overall accuracy performance
of a classifier in the evaluation stage. After the best classifiers were chosen with the
AUC, we used ROC to trade off precision vs recall in the minority class, because
the majority class always has very high scores on all metrics in extremely imbal-
anced datasets. F'1-score was a useful metric as we desired harmonic average of the
precision and recall.

In all classifiers, a trade off will always occur between true negative rate (SPC,
specificity) and true positive rate (TPR). The same occurs with precision and
recall. In our study, we hope to train a classifier that gives high precision over the
minority class (label 1, a job having runtime-underestimation), while maintain-
ing reasonable precision and recall for the majority class. In the case of modeling
on extremely imbalanced dataset, quite often the minority class is of great signifi-
cance. For our imbalanced binary classification problem, we will take advantage of
the combination of the above-mentioned evaluation metrics to diagnose our model.
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4.2 Machine Learning Algorithms for Imbalanced Data

In this study, we compare two popular supervised machine learning algorithms:
Random Forest (RF) [17] and XGBoost [18]. XGBoost is a scalable tree boosting
system that implements the gradient boosting decision tree algorithm, which is
widely used by data scientists and provides state-of-the-art results on many prob-
lems. The reason we chose to compare these two algorithms is that there are tree
based models (both based on ensembles of decision trees) that solve tabular data
very well, and have certain properties that a deep net does not have (e.g. ease of
interpretation and invariant to input scale, and much easier to tune). Both of these
methods are widely used as they outperform other distance-based algorithms like
logistic regression, support vector machine, kNN in data science [4,14,18-21].

5 Experiment Results and Analysis

Since we split the entire job data set into subsets, there are some subsets in which
the absolute number of minority class samples is too small. Therefore, we use the
leave-one-out cross-validation (LOOCYV) in our work [22]. The LOOCV method
keeps a certain percentage of the full data set as a test set, then the rest of the data
is used to perform k-fold cross-validation (k-fold CV). Next, it records k scores and
calculates the standard deviation (std) of k scores as reference for choosing the best
classifier from them. At the same time, it evaluates the robustness of the model. The
final performance score of this model can be obtained from using the best-chosen
classifier to predict the test set.

Meanwhile, most machine learning algorithms have several hyperparameters
that will affect amodel’s performance. Tuning hyperparameters is an indispensable
step to improve a model’s performance, which often improve its accuracy or other
metrics, like precision and recall, by 3-5%, depending on the algorithm and dataset.
In some cases, parameter tuning may improve the accuracy by around 50% [21]. In
this study, we train our model and tune hyperparameters via LOOCV with the
RandomizedSearchCV function from scikit-learn [23]. The RandomizedSearchCV
is an estimator used to optimizing hyperparameters from parameter settings. In
contrast to GridSearchCV, not all parameter values are attempted, but rather a
fixed number of parameter settings is sampled from the specified distributions. We
set 30% of the each dataset as the test set with a random state, n_iter to 50, and we
also set AUC as the scoring metric in RandomizedSearchCV. Parameter settings
and optimized parameters are presented in Table 4.

5.1 Classification with Entire Dataset

We trained and tuned classifiers with the XGBoost and the RF on the entire
dataset. We used the best chosen classifiers based on 5-fold CV on the training
set (70% entire dataset) to predict the test set (30% entire dataset). Tables 5 and 6
shows that the XGBoost and the RF have an extremely similar overall performance
result. The result consist of similar values of runtime-underestimation prediction
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Table 4. Hyperparameters settings of Random Forest, XGBoost and the best parameters
after tuning for our study

Algorithm Hyperparameters Best parameters after tuning

Random Forest | n_estimators: Number of n_estimators = 500
decision trees in the ensemble

min_weight_fraction_leaf: The | max_features = 2
minimum number of (weighted)
samples for a node to be
considered a leaf. Controls the
depth and complexity of the
decision trees

maz features: Number of criterion = “entropy”
features to consider when
computing the best node split

criterion: Function used to min_weight_fraction_leaf = 8
measure the quality of a split

XGBoost n_estimators: Number of n_estimators = 500
decision trees in the ensemble

learningrate: Shrinks the learning rate = 0.8
contribution of each successive
decision tree in the ensemble

maxdepth: Maximum depth of | max depth =3
the decision trees. Controls the
complexity of the decision trees

mazx_delta_step: Set it to a finite | max_delta_step = 2
number (say 1) will help
convergence

mazx features: Number of max features = “log2”
features to consider when
computing the best node split

(in terms of overall precision, recall, and F1-score) in the entire dataset. As we esti-
mated, the precision, recall, and F1-score of the majority class are very high on
both algorithms (0.98, and as high as 0.99). In contrast, all metrics on the minor-
ity class are lower than those on the majority class (e.g. F1-score: 0.74 vs 0.99).
However, the overall average of precision, recall, and F1-score achieved very high
scores on both algorithms (all around 0.97), due to combining absolute quantity
and relative quantity subsets into an entire imbalanced dataset. There is a slight
difference in precision and recall between the two algorithms; XGBoost outper-
forms the RF in precision by 0.02, while decreases the RF’s recall by 0.01. Thus,
the precision, recall, and F1-score on the minority class are fairer metrics than
those of the majority class when evaluating model performance.
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Table 5. Prediction results with entire dataset by XGBoost

Class Precision Recall F1-score Total

1 0.8 0.7 0.74 15273

0 0.98 0.99 0.99 280864
Avg/Total 0.98 0.97  0.97 296137

Predicted Positive Predicted Negative
Actual Positive 10677 (TP) 4596 (FN)
Actual Negative 2749 (FP) 278115 (TN)

Table 6. Prediction results with entire dataset by Random Forest

Class Precision Recall F1-score Total

1 0.78 0.71 0.74 15304

0 0.98 0.99 0.99 280833
Avg/Total 0.97 0.97 0.97 296137

Predicted Positive Predicted Negative
Actual Positive 11178 (TP) 4287 (FN)
Actual Negative 3186 (FP) 277486 (TN)

5.2 Classification with Subset Dataset Categorized by Scientific
Application Name

In most HPC systems, there are a huge number of jobs submitted by thousands of
users who are potentially grouped into hundreds of user groups. In relevant research
about job logs analysis, researchers usually divide logs into subsets with different
rules or purposes for seeking hidden patterns from those logs [1-3].

In this research, our main purpose is predicting whether a job may or may not
finish before its runtime estimated by its user. The runtime is mainly affected by
many factors, such as user behaviors and computing resource usage in the HPC
environment. (In this study, we do not consider human intervention from users or
administrators, nor random hardware failures). The entire job dataset was split
into subsets categorized by scientific application name for mining potential pat-
terns which may affect runtime of HP C applications. According to Table 3, there are
almost one million job logs based on 27 pre-installed HPC applications in TSUB-
AME 2.5 (except those in the unlabeled “others” class). We used XGBoost and
RF to build prediction models with the optimized hyperparameters presented in
Table 4 and run them through on each subset by 5-fold LOOCYV respectively. The
performance evaluation results including AUC, precision and recall on the minority
class were plotted in Figs. 2 and 3.

Figure 2 shows the AUC and the standard deviation (std) of the AUC by 5-fold
LOOCYV for 26 subsets after taking “others” as a subset and removing “RISM”,
“CAE: MSC”, from all training dataset. This was because there is no instance
of runtime-underestimation (labeled 1, minority class) in their subsets. The AUC
(XGBoost) was chosen as an indicator to sort the results in descending order for
observation and analysis purposes. We can see that the XGBoost outperforms or tie
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Fig. 2. The AUC and its STD after running through subsets with 5-fold LOOCV

with RF slightly in most application subsets with the AUC as the indicator, except
application named “CAE: LS-DYNA”. The std of AUC show the model stability;
the smaller the std is, the more stable the model’s performance is. The percentage
of minority class of each application was also plotted in Fig. 2. We can see that, for
most of cases in this study, the percentage of minority class almost has no impact on
the AUC and the std of the AUC. However, we found that, the higher the absolute
number of minority class is, the more stable the model is relatively. We believe that
the high std of AUC in some subsets is due to the low absolute number of minor-
ity class. The AUC shows the overall performance of models. We can see that both
algorithms achieved very good AUC on 5 subsets including “CAE: Abaqus”, “Vis:
POV-RAY”, “MD: Tinker”, “MD: NAMD” and “MD: GROMACS”. Except for
“MD: NAMD” by RF, the AUC in the rest of 4 subsets are greater than or equal to
0.9, which means that both algorithms provide very good prediction about runtime-
underestimation for those 5 applications in the HPC environment. In contrast to
“CAE:Abagus” and “Vis: POV-RAY?”, the results of “Bio:BLAST” by both 2 algo-
rithms are the worst in all subsets. Since in “Bio:BLAST” subset, the absolute
number (15) and the relative percentage (0.45%) on minority class are much lower
than those on other subsets, our models cannot handle with this kind of problem.
The “CAE:FLUENT” has similar result with “Bio:BLAST”, because of its abso-
lute number (33) on minority class is also very low. But its std of AUC is better
than “Bio:BLAST”, due to its relative percentage on minority class is higher than
“Bio:BLAST”.

In Fig. 3, we used best-chosen classifier from 5-fold LOOCYV to plot precision
and recall in minority class on all subsets, which follows the sorting in Fig. 2. Tak-
ing stable, precision, recall and F'1-score into consideration together, we think that
“Vis: POV-RAY” achieves the best result on minority class by XGBoost (90% pre-
cision, 95% recall, 92% F1-score). This figure helps to find out which algorithms
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Fig. 3. Precision and recall on minority class after running through XGBoost and Ran-
dom Forest

is good at which metric. For example, if we need the best recall on subset “Vis:
POV-RAY”, XGBoost will be the best selection to build model.

If we want our model to provide the best precision for “CAE: LS-DYNA”, RF
should be chosen to build model. In this research, from the user’s point of view,
the precision is more important than the recall, due to the FP is more important
than the FN in the job runtime-underestimated prediction. Since the FP can be
much more costly than FN. On the contrary, if looking at the angle of HPC system
administrators for saving system resources as much as possible, the recall will be
more critical than FP.

Figure 4 represent ROC, AUC and std of AUC after 5-fold CV on “CAE:Aba-
gus” and “Bio: BLAST” by XGBoost. Adjusting the threshold will change the
FPR. For instance, increasing the threshold will decrease FP (and increase FN),
which corresponds to moving in the left direction on the curve. The curve is more
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Fig. 4. ROC, AUC and standard deviation after 5-fold CV on subsets “CAE:Abagus”
(left) and “Bio: BLAST” (right) by XGBoost
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inclined to the upper left corner (0, 1), where the performance of the model is bet-
ter at distinguishing positive and negative classes. Adjusting the threshold on ROC
will be the last step to improve the performance of a model.

5.3 Feature Importance

Feature importance gives ascore (F score) for indicating how valuable or useful each
feature was when building boosted decision trees based models. With the features

Feature importantace for "CAE: Abaqus” Feature importantace for "MD: GROMACS”
fl 6033
fl 170 3 5081
fl2 4378
0 3256
3 133 6 1531
14 376
@ 6 16 §f16 326
2 2 {301
E 2 54 E f15 =232
7 1-169
f13 1130
f——
o M 8 +119
4 166
fi2 $£3 f10 466
f 47
0 25 s 75 100 15 150 175 0 1000 2000 3000 4000 5000 6000
F score F score
Feature importantace for "“MD: NAMD* Feature importantace for "“MD: Tinker”
f12 1746
fl 7
B 1 810 f 2894
f2 288
2 1 20:31 3 1265
§ 7 =108 8
32 fl0 168 5 0 {19
fos e K
4 +=
a5 41 fo =174
f13 121
Z 118 f5 49
B8
0 250 500 750 1000 1250 1500 1750 0 500 1000 1500 2000 2500 3000
F score F score

Feature importantace for "Vis: POV-RAY”

a 28
6 | 123
0 | 106
14 f——22
§ f3 74
5 71 =65
8 116 =50
15 +—48
2 =3
fl0 48
o {6
0 100 200 300 400 500 600

F score

Fig. 5. Important features for different applications; features are automatically named
according to their index, f0: used_cpupercent, fl: used_mem, f2: used_ncpus, f3:
used_vmem, f4: req-mem, 15: req_ncpus, {6: reqwalltime, {7: req_gpus, 8: req_pl, £9:
req_et, f10:nhosts, f11: is_array, f12: gpu_utilization, f13: num_gpu_used, f14: group,
f15: queue and f16: user, from {0 to f16 respectively
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sorted according to how many times they appear, the more a feature was used to
make key decisions within the decision trees, the higher its relative importance was
to the model.

In our study, we plotted feature importance in the top 5 AUC indicated sub-
sets with the features ordered according to how many score they have (how impor-
tant it was) in Fig. 5. We can see that used_mem, used_vmem, used_cpupercent,
req_walltime and gpu_utilization are the most important features in those applica-
tions. However, applications have different weights (namely prediction of runtime-
underestimation) on different features (namely computing resource usage), which
both affected job runtime. Our method recognized these patterns and used them
to predict job runtime-underestimation in HPC systems.

5.4 Discussion

Papers [2-5] demonstrate related research, such as job status prediction, failure
prediction and anomaly detection, based on log file analysis with machine learning
with good results. Whether abnormal detection or job status prediction, the num-
ber of correct instances (majority class) should be much more than the number
of incorrect instances (minority class) in a dataset, which leads to an imbalanced
dataset just like our dataset presented here. However, in those works, authors used
the overall accuracy, precision, recall, and F1-score to evaluate the model perfor-
mance without considering those of on the minority class. As we explained in this
paper, because of the imbalanced absolute number and relative percentage of the
majority classes and the minority classes (the minority class will be more than 1 in
multi-classification problems), the overall metrics cannot accurately reflect the pre-
dictions of minority class. Minority classes are more important than the predictions
of majority classes in classification problem with an imbalanced dataset. Therefore,
we propose that taking precision, recall, and F1-score on minority classes, rather
than overall, is a promising metric for future work.

6 Conclusions and Future Work

Predicting whether a job is runtime-underestimated after job submission can
greatly benefit HPC users and system administrators. In this study, we built a
machine learning based model to mine patterns hidden in HPC job logs for predict-
ing runtime-underestimation. Additionally, we introduced some evaluation metrics
(precision, recall, and F1-score on minority classes) which are more fair than met-
rics used in similar previous studies (overall precision, recall, and F1-score). We
split our dataset into subsets, and found that the best precision, recall, and F1-score
of subsets on job runtime-underestimated prediction (minority class) achieved
90%, 95% and 92% respectively. These results outperform some recent related stud-
ies to date. Finally, we plotted feature importance and revealed surprising hidden
patterns between different HPC applications and different features on computing
resource usage.
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As future work, we would like to improve prediction by extracting more fea-

tures such as the network traffic I/O, the standard deviation of computing resource
usage etc. which may affect the prediction performance. Also, we would like to do
more test with data collected from different time periods to prove and improve the
robustness of our model.
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