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Abstract. The unsupervised techniques for dimension reduction, such
as principal component analysis (PCA), kernel PCA and kernel entropy
component analysis, do not take the information about class labels into
consideration. The reduced dimension representation obtained using the
unsupervised techniques may not capture the discrimination informa-
tion. The supervised techniques, such as multiple discriminant analysis
and generalized discriminant analysis, can capture discriminatory infor-
mation. However the reduced dimension is limited by number of classes.
We propose a supervised technique, kernel entropy discriminant analy-
sis (kernel EDA), that uses Euclidean divergence as criterion function.
Parzen window method for density estimation is used to find an estimate
of Euclidean divergence. Euclidean divergence estimate is expressed in
terms of eigenvectors and eigenvalues of the kernel gram matrix. The
eigenvalues and eigenvectors that contribute significantly to the Euclid-
ean divergence estimate are used for determining the directions for pro-
jection. Effectiveness of the kernel EDA method is demonstrated through
the improved classification accuracy for benchmark datasets.
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1 Introduction

The goal of data transformation techniques is to transform a set of large number
of features into a compact set of informative features. The data transformation
techniques are unsupervised or supervised. In the unsupervised techniques, the
aim is to preserve some significant characteristics of the data in the transformed
space. The most commonly used unsupervised technique is the principal com-
ponent analysis (PCA) [4]. It projects a given d -dimensional feature vector onto
the eigenvectors of data covariance matrix corresponding to l most significant
eigenvalues of the matrix. Kernel PCA [11] performs PCA in the kernel feature
space of a Mercer kernel. The unsupervised techniques do not make use of class
labels because of which the transformed representation may not be discrimina-
tive. In supervised data transformation techniques, the class label information
is also used. The commonly used supervised techniques are Fisher discriminant
analysis (FDA) [3], multiple discriminant analysis (MDA) [2] and their many
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variants. The FDA finds a direction for projection along which the separabil-
ity of projections of data belonging to two classes is maximum. The MDA is a
multi-class extension of FDA. Kernel FDA [7] performs the FDA in the kernel
feature space. Generalized discriminant analysis (GDA) [1] is extension of kernel
FDA for multiple classes. A major limitation of these supervised techniques is
that the dimension of transformed data is limited by the number of classes.

In the kernel entropy component analysis (kernel ECA) [5,6] technique, the
eigenvectors of kernel gram matrix used for projection are determined based on
their contribution to the Renyi quadratic entropy of the input data. The kernel
ECA is an unsupervised technique.

In this paper, we develop a new discriminative transformation method that
can be considered as an extension of kernel ECA modified for supervised dimen-
sion reduction. It chooses the directions for projection that maximally preserves
the Euclidean divergence [10] between the probability density function of two
classes. An estimator of Euclidean divergence is expressed in terms of eigenvec-
tors and eigenvalues of kernel gram matrix of Gaussian kernel used in Parzen
window [9] method for density estimation. The directions for projection are
obtained using eigenvalues and eigenvectors that contribute significantly to the
divergence estimate.

The paper is organized as follows. In Sect. 2, we present the kernel ECA
method. We discuss the proposed kernel EDA method in Sect. 3. Experimental
studies and results are presented in Sect. 4.

2 Kernel Entropy Component Analysis

Kernel entropy component analysis (Kernel ECA) focuses on entropy compo-
nents instead of principal components that represent variance in kernel PCA.
The Renyi’s quadratic entropy of a distribution p(x)is given by

H(p(x)) = −log

∫
p2(x) dx (1)

The information potential of a distribution p(x) is defined as V (p(x))=∫
p2(x) dx. The information potential can also be expressed as V (p)=Ep(p),

where Ep(.) denotes expectation w.r.t. p(x). Consider the data set D =
{x1,x2, ...xN}. Let kσ(xm, ·) be the Gaussian kernel with σ as width of kernel
used in the Parzen window method for estimation of density at xm. It may be
noted that the Gaussian kernel is a Mercer kernel and, therefore, it is a positive
semi-definite kernel. Then the estimate of density is given by

p̂(xm) =
1
N

∑
xn∈D

kσ(xm,xn) (2)

Then the estimate of V (p(x)) denoted by V̂ (p) is given by

V̂ (p) =
1
N

∑
xm∈D

p̂(xm) =
1
N

∑
xm∈D

1
N

∑
xn∈D

kσ(xm,xn) =
1

N2
1̄TK1̄ (3)
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where 1̄ is an (N ×1) vector consisting of all 1’s and K is the kernel gram matrix
of the kernel kσ(·, ·) on the dataset D. Using the eigen decomposition of kernel
gram matrix K, Eq. (3) can be rewritten as

V̂ (p) =
1

N2

N∑
i=1

(
√

λieT
i 1̄)2 (4)

where λi and ei are the eigenvalues and eigenvectors of K respectively. The
eigenvectors of K used for projection are identified based on their extent of
contribution to the information potential estimate. It is noted that the kernel
ECA method does not make use of the information about the class labels of
examples in D.

3 Kernel Entropy Discriminant Analysis

Let D be the data set that consists of data of two classes, D1={x11,x12, ..,x1N1}
and D2 ={x21,x22, ..,x2N2} which we assume are generated from probability
density functions (pdf) p1(x) and p2(x) of classes respectively. The Euclidean
divergence between the pdfs of these two classes is given as

ED(p1, p2) =
∫

p21(x)dx − 2
∫

p1(x)p2(x)dx +
∫

p22(x)dx (5)

Using the Parzen window technique for pdf estimation the estimate of ED(p1, p2)
denoted by ÊD(p1, p2) is given by

ÊD(p1, p2) =
1

N2
1

∑
xm,xn∈D1

kσ(xm,xn) − 2
N1N2

∑
xm∈D1,
xn∈D2

kσ(xm,xn) +
1

N2
2

∑
xm,xn∈D2

kσ(xm,xn)

(6)
Let z1 = [z11, z12, ., z1N ]T and z2 = [z21, z22, ., z2N ]T be vectors with zij = 1

if xj ∈ Di and zij = 0 otherwise. Thus Eq. (6) can be written as

ÊD(p1, p2) =
1

N2
1

zT
1 Kz1 − 2

N1N2
zT
1 Kz2 +

1
N2

2

zT
2 Kz2 (7)

where K is the kernel gram matrix of the dataset D. Using the eigen decompo-
sition of K, Eq. (7) can be rewritten as

ÊD(p1, p2) =
1

N2
1

N∑

i=1

(
√

λie
T
i z1)

2 − 2

N1N2

N∑

i=1

(eT
i z1)λi(e

T
i z2) +

1

N2
2

N∑

i=1

(
√

λie
T
i z2)

2

(8)
where λi are the eigenvalues and ei are the eigenvectors of K. We can write
Eq. (8) as

ÊD(p1, p2) =
N∑

i=1

λi

(
eT

i z1
N1

− eT
i z2
N2

)2

(9)
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Let ψi = λi

(
eT
i z1
N1

− eT
i z2
N2

)2

. Then ÊD(p1, p2) =
N∑

i=1

ψi

The term ψi is a measure of extent of contribution of λi and ei to the Euclid-
ean divergence. Certain eigenvalues and eigenvectors for which ψi is large con-
tribute more to the Euclidean divergence than the others. By considering only
those eigenvalue and eigenvector pairs that contribute significantly to the diver-
gence, we identify the directions for projection that can capture discriminatory
features for the data of two given classes.

As the Gaussian kernel is also a Mercer kernel, it is an inner product kernel.
Therefore, kσ(xm,xn) = 〈φ(xm),φ(xn)〉, where φ(x) is the kernel space repre-
sentation of a data point x. The mean vectors for two classes in φ(x)-space are
given by mφ

1 = 1
N1

∑
xm∈D1

φ(xm) and mφ
2 = 1

N2

∑
xm∈D2

φ(xm). Then each term in

Eq. (6) can be expressed as follows:

1
N2

1

∑
xm,xn∈D1

kσ(xm,xn) =
1

N2
1

∑
xm,xn∈D1

〈φ(xm),φ(xn)〉 = 〈mφ
1 ,mφ

1 〉 (10)

1
N2

2

∑
xm,xn∈D2

kσ(xm,xn) =
1

N2
2

∑
xm,xn∈D2

〈φ(xm),φ(xn)〉 = 〈mφ
2 ,mφ

2 〉 (11)

1
N1N2

∑
xm∈D1,
xn∈D2

kσ(xm,xn) =
1

N1N2

∑
xm∈D1,
xn∈D2

〈φ(xm),φ(xn)〉 = 〈mφ
1 ,mφ

2 〉 (12)

Therefore, the estimate of Euclidean divergence ÊD(p1, p2) can be expressed as

ÊD(p1, p2) = 〈mφ
1 ,mφ

1 〉 − 2〈mφ
1 ,mφ

2 〉 + 〈mφ
2 ,mφ

2 〉 = ||mφ
1 − mφ

2 ||2 (13)

Thus the Euclidean divergence in x space corresponds to squared Euclidean
distance between the means of the data of two classes in the kernel feature
space. Let νi be the direction for projections in the φ(x)-space. As in kernel
PCA, the vector νi is expressed as follows:

νi =
1√
λi

N∑
n=1

einφ(xn) (14)

where ein is the nth element of ei. The projection of a given data point φ(x) in
the kernel feature space is given by

ai = νT
i φ(x) =

1√
λi

N∑
n=1

einφ(xn)T φ(x) =
1√
λi

N∑
n=1

eink(xn,x), (15)

For a given data point x, the l-dimensional transformed representation using
the kernel EDA method is obtained by computing ai, i = 1, 2, .., l where l is the
number of directions for projection chosen.
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4 Experiments

First, we analyze our proposed algorithm on a synthetic dataset. Then we eval-
uate the performance on two-class IDA benchmark datasets and multi-class
datasets. We compare the performance of the proposed kernel EDA method
with PCA, kernel PCA, kernel ECA, kernel FDA and GDA. We have used the
Gaussian kernel for the data transformation techniques. The kernel width σ is
chosen empirically for each dataset and in order to make a fair comparison, the
same kernel width is used for all the techniques. Linear support vector machine is
used for obtaining the classification accuracy on the transformed representation
of data. The choice of using a linear classifier helps us identifying how effective
is the transformed representation in performing the classification task. The data
is split into 75%, 10% and 15% for training, validation and testing respectively.

4.1 Studies on Synthetic Dataset

The synthetic dataset contains 3424 data points randomly distributed on two
spirals, shown in Fig. 1(a). The classification accuracies on the transformed data
using linear SVM are plotted in Fig. 1(b). The accuracies are shown for kernel
PCA, kernel ECA and kernel EDA methods and for different values of l. It is
seen that kernel EDA performs better than the other two methods.

(a) Synthetic spiral dataset (b) Classification accuracy

Fig. 1. (a) Synthetic spiral dataset (b) Classification accuracies (in %) for different
methods for data transformation and for different values of transformed dimensions.

Table 1. Details of the 2-class IDA benchmark datasets used.

Name No. of Examples Dimension

Breast Cancer 263 9

Diabetes 768 8

German 1000 20

Image 2086 18

Splice 2991 60

Waveform 5000 21
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4.2 Studies on 2-Class Real World Datasets

Details of two-class IDA benchmark datasets [6] used in our study are listed
in Table 1. The classification accuracies on transformed representation obtained
using different methods are given in Table 2. The results show an improvement in
performance for the proposed technique over the existing techniques on almost
all of the datasets.

Table 2. Classification accuracies (in %) obtained on the 2-class IDA benchmark
datasets for different methods of dimensionality reduction and for different values of
reduced dimension.

Dataset Reduced
dimension (l)

PCA Kernel PCA Kernel ECA Kernel
FDA

Kernel
EDA

Breast Cancer 1 69.7 68.2 68.2 68.1 68.2

3 68.2 69.7 68.2 - 68.2

5 69.7 69.7 69.7 - 72.7

7 69.7 69.7 69.7 - 72.7

Diabetes 1 69.8 65.1 59.8 61.4 59.4

3 67.2 66.1 66.1 - 67.2

5 68.2 67.7 67.7 - 71.4

7 72.9 75.5 75.5 - 77.1

German 1 69.2 69.2 69.2 69.2 69.2

3 69.2 69.2 69.2 - 69.2

5 71.6 73.2 74.0 - 74.4

10 76.0 75.2 76.0 - 76.0

15 75.2 74 74.4 - 75.6

Image 1 57.8 58.3 58.3 58.3 69.9

3 71.0 70.8 69.7 - 75.8

5 69.3 71.0 67.2 - 80.2

10 72.2 82.7 82.7 - 85.8

15 83.4 83.8 82.9 - 87.7

Splice 1 69.8 69.7 60.0 86.3 75.0

3 67.2 80.6 69.1 - 77.5

5 68.2 82.1 80.3 - 80.3

10 66.1 81.3 81.1 - 83.7

15 65.6 82.1 81.7 - 84.8

Waveform 1 57.8 74.3 66.9 88.9 73.3

3 71.0 79.0 86.7 - 86.4

5 69.3 85.6 89.2 - 89.2

10 72.2 88.5 89.4 - 89.6

15 83.5 89.0 89.7 - 89.4
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4.3 Studies on Multi-class Datasets

The kernel EDA can be used in multiclass classification problem by converting
the multiclass problem to multiple binary classification problems by using “One
vs Rest” or “One vs One” scheme. The datasets of Vogel [12] and MIT [8] scene
multi-class datasets used in our studies are given in Table 3. Local block features
are used. Each image is divided into fixed size blocks. From each block, the color,
edge direction histogram, and texture features are extracted. Thus, each block of
image is represented by a 23-dimensional feature vector. The feature vectors from
all the blocks in an image are concatenated to get the representation for an image.

The classification accuracies obtained on the transformed representation for
the Vogel and MIT datasets using the linear SVM as classifier is given in Table 4.
The kernel EDA technique gives a much higher accuracy as compared to the
other techniques on MIT dataset. On Vogel dataset, all the techniques give a
similar performance.

Table 3. Details of multi-class benchmark datasets used.

Name No. of Examples Dimension No. of Classes

Vogel-6 700 2300 6

MIT-8 2688 828 8

Table 4. Classification Accuracies (in %) obtained on Vogel and MIT datasets for
different methods for dimension reduction and for different values of reduced dimension.
Performance is also compared for the one-versus-one (1-vs-1) and the one-vs-rest (1-
vs-R) approach to multi class classification.

Dataset Classification

Approach

Reduced

dimension (l)

PCA Kernel

PCA

Kernel

ECA

Kernel

FDA

GDA Kernel

EDA

MIT 1 vs 1 1 28.1 20.9 25.7 32.2 25.7 38.9

5 42.9 37.2 41.3 - 46.3 49.5

10 46.6 40.3 45.1 - - 50.9

20 47.8 45.6 47.2 - - 52.5

40 47.4 46.6 49.5 - - 53.4

1 vs R 1 19.4 9.6 22.2 16.5 16.5 21.8

5 33.1 25.0 31.0 - 43.9 40.7

10 39.3 35.7 39.9 - - 43.6

20 41.7 39.8 44.1 - - 46.3

40 46.5 42.1 45.6 - - 50.3

Vogel 1 vs 1 1 30.3 29.6 32.9 25.0 24.3 34.9

5 40.1 32.2 39.5 - 38.1 42.8

10 40.1 39.5 38.8 - - 40.1

20 40.1 39.5 43.2 - - 40.8

40 40.1 42.8 42.8 - - 40.8

1 vs R 1 6.6 11.8 15.8 16.4 16.5 10.5

5 30.9 29.6 37.5 - 40.1 35.5

10 40.1 38.2 38.8 - - 45.4

20 47.4 39.5 40.1 - - 42.1

40 49.3 39.5 42.1 - - 45.4
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5 Conclusion

In this paper, we have proposed kernel entropy discriminant analysis as a data
transformation method. It uses Euclidean divergence between the estimates of
probability density functions of the two classes as the criterion function to decide
the directions for projection. Though the kernel EDA is a supervised technique,
it is not limited by the number of classes. Studies on various datasets show that
proposed kernel EDA performs better or on-par as compared to PCA, kernel
PCA, kernel ECA, kernel FDA and GDA.
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