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Abstract. Object Tracking has primarily been characterized as the
study of object motion trajectory over constraint subspaces under
attempts to mimic human efficiency. However, the trend of monotonically
increasing applicability and integrated relevance over distributed com-
mercial frontiers necessitates that scalability be addressed. The present
work proposes a system for fast large scale facial tracking over distributed
systems beyond individual human capabilities leveraging the computa-
tional prowess of large scale processing engines such as Apache Spark.
The system is pivoted on an interval based approach for receiving the
input feed streams, which is followed by a deep encoder-decoder network
for generation of robust environment invariant feature encoding. The sys-
tem performance is analyzed while functionally varying various pipeline
components, to highlight the robustness of the vector representations
and near real-time processing performance.

Keywords: Distributed facial tracking · Auto-encoders · Spark
streaming

1 Introduction

Recently, visual representation and tracking has been subject to motivated
research owing to increased relevance and interoperability with innumerable
application domains such as criminal tracking, object tagging [3] etc. Effi-
cient tracking requires learning of good feature representations that exhibit dis-
criminative ability as well as robustness to data variance. Consequently, volu-
minous literatures have been produced and feature extraction methodologies
have evolved significantly. These have largely been holistic or patch based [8].
Advancements in localized vectorization for generation of feature maps forms
the basis of recent progress.

Auto-encoders [1] produce a non-linear representation which, unlike that
of PCA or ICA, can be stacked to yield deeper levels of representation. More
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abstract features [5] can be perceived at deeper levels, enhancing the discrimina-
tive power of the feature descriptor. Facial features are subject to variance due
to pose problems, background clutter, illumination variations. Using an implicit
algorithm for capturing geometric information encoded into the descriptors, the
issue of pose problem and misalignment can be tackled [2]. Simple elastic and
partial metric proposed by Gang can also handle pose change and clutter back-
grounds [4].

Object tracking has largely been characterised and defined as the problem
of estimating the trajectory of a moving object [9] over constrained subspace.
Several near real-time systems such as A Real-time face tracker [11], Pfinder
[10], patch flow based [9] have been researched and reported with attempts to
achieve human like accuracy in effortlessly tracking objects of interest. Eigen-
faces, obtained by performing PCA on a set of faces are commonly used [11]
to identify faces. However, increasing demands of real life applications such as
vehicle navigation, traffic monitoring and surveillance, search and rescue opera-
tions to name a few imply that flexibility be exercised to include tracking that
may require optimally fast and efficient search over large geographical subspaces
that is beyond individual human capabilities involving the use of large scale
distributed datasets.

2 Problem Formulation

In the present work, we propose a near real-time system employing an interval
based programming approach for nodal tracking over distributed live streams
or databases using a non-parametric supervised classification technique. The
present work simulates the proposed approach with facial tracking over uncon-
strained geo-spatial subspaces owing to enhanced relative generality and relia-
bility, while stating that similar work shall be extended to other vision based
applications with relative ease. The system we propose seeks to leverage the par-
ticular computational prowess of large scale processing engines in applications
involving reuse of working set across parallel operations [12] while assuring fault
tolerance, consistency and seamless integration with batch processing, all which
are critical considerables for scalable and reliable execution.

3 Proposed System

The proposed system is used to achieve near real-time, efficient tracking of
individuals over large geographical subspaces. The system constituents can be
largely characterised as A Master Node, Worker Nodes, Camera Nodes and
Request Tracking Node. A high level overview of the system architecture has
been depicted in Fig. 1. The stages in the pipeline are

– Feature Generation
– Facial Identification
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We utilize spark streaming, from the Apache Spark stack, as a core component
for streaming computation tasks. The system defines multiple input streams
obtained by receiving records feed directly from client or by interval defined
loading from external data storage file systems, where it may be placed by a
log collection system [13]. The feature generation stage is represented in Fig. 2.
Facial Extraction and Component Definition is done using a region based Single
Shot Detector [6]. The fast processing speed, 30–35 fps, and efficiency at various
aspect scales enabled segregation of the components. The feature vectors are
generated by passing the concatenated component vectors through the CAE.
The feature vectors generated as a result of the computation associated with the
previous phase are stored in the spark database distributed optimally over the
worker nodes by the master. The database is characterised by 2 major tables
T1 and T2. T1 contains tuples of unique human faces identified or obtained from
organizational records with attributes: human id, feature vector. T2 charac-
terises the occurrences of the human faces at different nodes as unique tuples,
having attributes as: auto id, human id, node id, timestamp. This facilitates
querying over the table using a nearest neighbor approach to identify the indi-
vidual.

Fig. 1. Overall System Architecture - The jth camera node with unique IP on the local
network, of ith block transmits the live feed to the block worker via network switch
for the block. Apache Worker kept at control room of ith block receives live feeds from
all cameras are fed to Apache Spark Worker. For every face detected in the frame, the
computation flow takes place as discussed in Fig. 2.

4 Experiments and Results

In the following section, the proposed system performance is analyzed as a func-
tion of various deterministic parameters, by simulating under approximate set-
tings. For the simulation, we hand-picked images from standard facial bench-
marks - Labeled Faces in the Wild-a (LFW-a) & IARPA Janus Benchmark A
(IJB-A). The images were fed into the client library following an interval based
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Fig. 2. Generation of Feature Vector - A representation of the generation of feature
vectors for the jth extracted face f(t, i, j) from the ith time variant input frame I(t, i)
at the time t. The output of normalization procedure N(f(t, i, j)) is operated upon to
extract components for generation of robust descriptors using CAE.

approach to facilitate micro-batch generation for processing on the cluster work-
ers. We used a multi-node Apache Spark cluster, with nodal configuration 2.6
GHz Intel i7 second generation processors and 8 GB RAM. Near real-time track-
ing was achieved employing k-Nearest Neighbours (k-NN) algorithm over the
distributed database generated over the multi-node by integrating with MLlib
[7]: the machine learning library supported by Apache Spark in simulated video
feed environments while varying the parameters to obtain appropriate results as
explained next.

Fig. 3. The reconstruction loss is plotted against the number of training epochs for
varying lengths of feature vectors for the auto-encoder trained with (a) adadelta (b)
adam optimizer.

4.1 Reconstruction Loss Analyzed on the Variation of Feature
Length

From Fig. 3(a) and (b) we see that applying Adam optimizer produces better
results in the present problem setting. Adam, if compared to Adadelta, is seen to
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perform better because, in addition to saving a functional average of past squared
gradients, it also stores the functional average of past gradients. Decreasing
reconstruction loss depicts the increasing descriptive efficiency and invariance of
the feature descriptors by a contractive auto-encoder.

4.2 Query Processing Time Analyzed as a Measure of the Facial
Components

As evident from Fig. 4, an increase in number of facial components extracted
is associated with a marked increase in the processing time for 300 queries in
case of a single worker node scenario. Graphical representation for 2 and 3 node
scenario exhibit a slightly leaner growth rate of the processing time as a func-
tional measure of the number of components, but these may have significant
considerations in practical settings.

Fig. 4. Processing time for 300 queries, measured in ms, is plotted against differing
number of components for 1, 2 and 3 worker nodes.

4.3 Query Processing Time with Varying Worker Nodes

Increasing range to greater geographical subspaces implies the need for enhanced
computational processing power, which can be achieved by more worker nodes.
The master ensures locality of computation on worker nodes, however in specific
scenarios it may shift records between the worker nodes to ensure more equitable
load balancing. Keeping the total record penetration of the database constant,
a decrease in query processing time is observed on increasing the number of
slave worker nodes in Fig. 5. Further this rate of growth is witnessed to depict
flattening tendencies as number of worker nodes are further added to the cluster.

4.4 Performance of Proposed System

The number of facial components impacts the dimensional complexity of the fea-
ture descriptors and correspondingly their descriptive power. The performance
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Fig. 5. The processing time for 300 queries on the database generated by the system
is plotted against the number of workers for varying number of records. The system
exhibits near real-time performance taking time less than 20 ms for 300 queries.

of the system in terms of True Acceptance Rate at False Acceptance Rate =
0.01 and Recognition Rate at Rank-10 is presented in Table 1. Query processing
is analyzed for different number of facial components (hence, varying feature
length) under consideration.

Table 1. Performance of the proposed system. TAR is reported at FAR = 0.01 for
verification, Recognition Rate at Rank-10 is reported for identification.

Feature length TAR Rank-10

256 bits (4 components) 0.587 0.608

384 bits (6 components) 0.651 0.694

512 bits (8 components) 0.718 0.732

5 Conclusions

Recent attempts in tracking have sought to implement paradigm like human
vision for analysing motion trajectory. No work to our knowledge has performed
tracking at similar scale in real-time, rather major works have focussed on sub-
spaces small as frames of single camera feed. The present work tries to provide
a solution into the particularly untapped and critical task involving large sub-
spaces that is beyond individual human capabilities. The work aimed to provide
a baseline to propel further penetration in the domain. The proposed system is
a multilevel hierarchical model based on Spark streaming to feed input streams
that uses a deep contractive encoder-decoder model to generate robust vector
encoding and a penultimate classifier for searching over the distributed database
prior to final path determination. The processing and path retrieval depicted
near real-time performance that provides encouragement for applicability into
varied commercial settings.
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