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Abstract. Selection of relevant electrodes is of prime importance for
developing efficient motor imagery Brain Computer Interface devices.
In this paper, we propose a novel spectral clustering based on tempo-
ral similarity of electrodes to select a reduced set of relevant electrodes
for classification of motor imagery tasks. Further, Stationary common
spatial pattern method in conjunction with Composite kernel Support
Vector Machine is utilized to develop a decision model. Experimental
results demonstrate improvement in classification accuracy in compari-
son to variants of the common spatial pattern method on publicly avail-
able datasets. Friedman statistical test shows that the proposed method
significantly outperformed the variants of the common spatial pattern
method.
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tial pattern · Spectral clustering

1 Introduction

Brain computer interfaces (BCI) enable people with neurological disorders to
establish communication and repair lost motor functions by transforming the
brain signals into device commands. Non-invasive nature, low measurement cost
and high resolution of EEG based BCI has favored its wide use for analysis of
brain signals as compared to other modalities. EEG based BCI systems associ-
ated with motor imagery has received particular attention that involve visual-
izing movement of a specific motor part of the body [2]. Motor imagery BCIs
use brain dynamics originating in primary sensorimotor area called sensorimotor
rhythms (mu and beta rhythms), induced by execution or imagination of hand or
leg movement, to translate EEG signals into device commands [2]. During motor
imagination or execution, the amplitude of sensorimotor rhythms reduces, which
is known as Event-Related Desynchronization (ERD). Increment in the ampli-
tude of sensory-motor rhythms just after the motor imagination or execution is
called as Event-Related Synchronization (ERS) [8].
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Common spatial pattern (CSP) [2] is a well known spatial filtering method
that finds subject specific data dependent spatial filters which maximizes vari-
ance of one class and minimizes variance of the other class simultaneously [2].
Extraction of information using the CSP is challenging as this method suffers
from the small sample size (SSS) problem [4], i.e. the quantity of electrodes is
high and the number of task specific EEG samples is less. In such circumstances,
Eigen decomposition of the covariance matrix, whose dimension is number of
electrodes x number of electrodes, is highly computational and may lead to
imprecision.

To reduce the number of electrodes, the research work [3] has utilized neuro-
logical information to segregate the electrodes placed on the brain on the basis
of various anatomical areas of brain cortex and select all electrodes of relevant
brain areas. However, this method utilizes topographical information based sta-
tionary division of electrodes. Further, this approach either uses all electrodes
of a chosen cluster or removes all electrodes of a minimum significant cluster.
There is a possibility that few of the chosen electrodes may not be pertinent or
might be repetitive and few of the removed electrodes of the not chosen brain
region might be applicable for recognizing two motor imagery tasks. Hence, in
this work, the electrodes are partitioned into many clusters such that each clus-
ter contains a set of similar electrodes to reduce the number of electrodes. For
this we use the spectral graph clustering method [7], where the optimal number
of clusters is decided using the Davies Bouldin (DB) index criterion [5]. Features
are extracted from each cluster using stationary CSP (SCSP) method [6]and
composite kernel based support vector machine (CKSVM) is utilised to build a
decision model.

The major contributions of this paper include: (i) To select a subject specific
reduced subset of relevant electrodes; (ii) To evaluate and compare the perfor-
mance of the proposed method and variants of CSP on the publicly available
datasets; (iii) Friedman test is used to demonstrate that the proposed method
significantly outperforms variants of the CSP method. Rest of the article is orga-
nized as follows. Section 2 discusses the proposed work. Experimental results are
discussed in Sect. 3 and finally, Sect. 4 concludes the article and provides future
directions.

2 Proposed Method: Temporal Similarity Based
Clustering in Conjunction with CKCSP (TSC-CKCSP)

The flow diagram of the proposed model is shown in Fig. 1. A brief description
of each step is described as follows:

2.1 Spectral Graph Clustering Based Division of Electrodes

Spectral clustering is a graph theoretic approach to obtain clusters using spec-
tral decomposition of a similarity matrix S. To measure similarity between two
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Fig. 1. Flow diagram of proposed model

samples, xi and xj , we have used Gaussian kernel which is defined as:

S(i, j) = exp

(
−‖ xi − xj ‖2

2σ2

)
(1)

where σ is a tuning parameter. Let d denotes the vector d = [d1, d2, · · · , .dN ]
where di =

∑N
j=1 S(i, j) measures similarity of ith sample with all other samples.

The larger value of di signifies more similarity of sample xi with rest of the
samples. Thus, the degree matrix D is given by:

D(i, j) =

{
di ifi = j

0 otherwise
(2)

The Laplacian matrix L and normalized Laplacian matrix L̃ are defined as:

L = D − S and L̃ = D− 1
2 LD− 1

2 (3)

Eigenvalues and eigenvectors of the normalized Laplacian matrix L̃ is solved as:

L̃γ = δγ (4)

Let the Eigenvector γ2 correspond to the second smallest Eigenvalue δ2. Binary
partitioning of electrodes using Eigenvector γ2 is done as follows:

Electrodei =

{
Cluster 1 if γi,l < 0
Cluster 2 otherwise

(5)

A given cluster is further recursively partitioned using spectral clustering
method. To obtain an optimal number of clusters, a well-known Davies Bouldin
(DB) criterion is used, which minimizes the ratio of within-cluster dispersion
to between-cluster separation. The within-cluster dispersion for ith cluster, Swi

and between-cluster separation for cluster i and cluster j, dbi,j are computed as:

Swi =
1

| C |
∑
xεCi

{‖x − zi‖} and dbi,j = ‖zi − zj‖ (6)
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where zi is the centroid of the ith cluster. The similarity measure between cluster
i and cluster j and the corresponding DB index are given as:

Mi,j =
Swi + Swj

dbi,j
and DB =

1
k

Σk
i=1Mi (7)

where Mi = maxij Mi,j and k is the number of clusters. The number of clusters
that provides minimal DB index value is considered optimal. The division of
electrodes on both datasets is shown in Fig. 2.

Fig. 2. Temporal Similarity based division of electrodes for Dataset 1 and Dataset 2

2.2 Stationary Common Spatial Patterns (SCSP)

Relevant features from each cluster of electrodes are computed using SCSP,
which is evolved by introducing variations in the Rayleigh criterion function
of the traditional CSP technique. Let Σ1 and Σ2 be the average covariance
matrices of motor imagery left and right hand movement (class 1 and class 2),
respectively and W is a spatial filter matrix for a given cluster. The Rayleigh
criterion maximization function using SCSP is given as:

R(w) =
wTΣ1w

wT(Σ1 + Σ2)w + βP(w)
(8)

where P(W) is the introduced penalty term and β is a constant obtained after
cross validation method. Further, the features computed from each cluster are
transformed to a high dimensional Hilbert kernel space using a Gaussian kernel
function to capture the non-linear relations of the extracted features as:

kl(fi,l, fj,l) = exp
(

−‖ fi,l − fi,l ‖
2σ2

)
(9)

where fi,l represents features from cluster l for trial i, obtained using SCSP
method.

2.3 Feature Selection and Classification

In the proposed method, we have used CKSVM method for classification of
motor imagery tasks. CKSVM considers the relevancy of an electrode cluster for
recognition of motor imagery tasks.{

max
α

− 1
2Σi,jαiαjγiγjΣ

L
l=1kl(fi,l, fj,l) + Σiαi

s.t Σiαiγi = 0, 0 � αi � C, 1 � l � R, 1 � i � N
(10)
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where αi is the classifier parameter, C is a classifier regularization parameter,
N is the number of samples and R is the number of clusters. Recursive Feature
Elimination (RFE) is used to order the electrode cluster of a specific brain region
by calculating the quadratic norm of each cluster of electrodes. Higher is the
estimation of the quadratic norm, more important is that cluster to a motor
imagery task. The cluster with lowest value of quadratic normal form is removed
in each iteration till maximum classification accuracy is achieved.

3 Experimental Setup and Results

The experimental evaluation of the proposed work is performed on publicly
available BCI Competition III dataset 4a (Dataset 1) and BCI competition IV
dataset Ia (Dataset 2) [3]. Dataset 1 and Dataset 2 consist of motor imagery data
acquired from five and seven healthy subjects respectively. The data captured
for each trial belongs to the time window of 0.5–2.5 s after the onset of stimulus.
Thus, from each electrode, 200 time units are utilized. Whole data is filtered
using a [7–30 Hz] bandpass filter. SCSP penalty parameter β = 0.1 was used for
all the experiments on both datasets, which is determined using cross-validation.
Number of spatial patterns was fixed to r = 1. The average classification accuracy
of the proposed method is reported in terms of 10 fold cross-validation run 10
times and is compared to CSP, SCSP and CKSCSP methods as shown in Tables 1
and 2 for subjects of Dataset 1 and Dataset 2, respectively.

Table 1. Comparison of TSC-CKCSP with existing methods in terms of average clas-
sification accuracy for Dataset 1.

Subject CSP SCSP CKSCSP TSC-CKCSP

aa 75.37 80.45 81.14 82.8052

al 97.73 94.38 98.34 96.91304

av 69.14 69.82 77.56 78.1667

aw 82.27 82.43 86.64 88.5667

ay 82.17 89.33 88.17 90.13

MEAN 81.34 83.28 86.37 87.3163

We can observe the following from Table 1: (i) The proposed method TSC-
CKCSP achieves highest average classification accuracy for Dataset 1; (ii) An
overall increment of 7.35%, 4.85%, and 1.1% in classification accuracy as com-
pared to CSP, SCSP and CKSCSP is achieved with our proposed method TSC-
CKCSP for Dataset 1. Similarly, the following can be observed from Table 2:
(i) The proposed method TSC-CKCSP achieves highest average classification
accuracy for Dataset 2 (ii) An overall increment of 12.08%, 3.54%, and 3.17%
in classification accuracy as compared to CSP, SCSP and CKSCSP is achieved
with our proposed method TSC-CKCSP. The spectral graph clustering is a data
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Table 2. Comparison of TSC-CKCSP with existing methods in terms of average clas-
sification accuracy for Dataset 2.

Subject CSP SCSP CKSCSP TSC-CKCSP

ds1a 73.1 81.75 67.05 82.65

ds1b 65.4 59.95 71.45 71.89

ds1c 70.5 75.1 75.35 77.55

ds1d 76.8 89.2 90.3 90.55

ds1e 83.3 90.35 89.55 90.15

ds1f 82.8 86.9 88.3 87.35

ds1g 79 91.45 94.75 94.89

MEAN 75.84 82.1 82.39 85.0043

centric approach, hence provide relevant and subject specific clusters. Thus, the
proposed method performs better than existing methods.

Table 3. The Friedman ranking obtained for each method.

Algorithm Ranking

TSC-CKCSP 1.333

CKSCSP 2.166

SCSP 2.833

CSP 3.66

A non-parametric Friedman statistical test [1], is carried out to find the
statistical difference between the proposed method and existing methods at sig-
nificance value of α = 0.5. Table 3 shows the Friedman ranking obtained for each
method. P-value computed by Friedman Test is 1.5642 E-6, which signifies that
the all methods under comparison are statistical significantly different from each
other. Smaller value of Friedman ranking suggests proposed method outperforms
variants of CSP.

4 Conclusion

An immense interest has been garnered by Motor imagery BCI due its wide
applicability for communication. CSP is a widely used feature extraction tech-
nique for motor imagery BCI. However, it suffers from SSS problem due to
numerous electrodes and smaller quantity of samples. The proposed method
determines a reduced set of relevant electrodes using spectral clustering and
CKSVM.
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However, the proposed method uses only temporal information of data for
division of electrodes and does not consider frequency information for clustering
of electrodes. Thus, in future, we will incorporate both spatial, temporal and
frequency information for obtaining a reduced and relevant subset of electrodes.
Further, RFE in conjunction with SVM utilized in this work is computationally
intensive, which requires improvement for real time-applications.
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