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Abstract. In this paper, we consider the control problem in a reinforce-
ment learning setting with large state and action spaces. The control
problem most commonly addressed in the contemporary literature is to
find an optimal policy which optimizes the long run γ-discounted tran-
sition costs, where γ ∈ [0, 1). They also assume access to a generative
model/simulator of the underlying MDP with the hidden premise that
realization of the system dynamics of the MDP for arbitrary policies in
the form of sample paths can be obtained with ease from the model.
In this paper, we consider a cost function which is the expectation of
a approximate value function w.r.t. the steady state distribution of the
Markov chain induced by the policy, without having access to the genera-
tive model. We assume that a single sample path generated using a priori
chosen behaviour policy is made available. In this information restricted
setting, we solve the generalized control problem using the incremental
cross entropy method. The proposed algorithm is shown to converge to
the solution which is globally optimal relative to the behaviour policy.

1 Introduction

In this paper, we consider a reinforcement learning setting with the underlying
Markov decision process (MDP) defined by the 4-tuple (S,A,R,P), where the
finite sets S and A are referred to as the state space and action space respectively.
Also, R : S×A×S → R is the reward function which defines the state transition
costs and P : S×A×A → [0, 1] is the transition probability function. A station-
ary randomized policy (SRP) π is a probability mass function over the actions
conditioned on the state space, i.e., for s ∈ S, we have π(·|s) ∈ [0, 1]|A| and∑

a∈A
π(a|s) = 1. A policy determines the action to be taken at each discrete

time step of an arbitrary realization of the MDP. In this paper, we employ a
parametrized class of SRPs {πw|w ∈ W ⊂ R

k2}. We assume that W is compact.
By complying to a policy πw, the behaviour of the MDP reduces to a Markov

chain defined by the transition probabilities Pw(s, s′) =
∑

a∈A
πw(a|s)P(s, a, s′).

The performance of a policy is usually quantified by a value function which is
defined as the long-run γ-discounted transition costs (γ ∈ [0, 1)) incurred by
the MDP while following the policy. The value function is formally defined as
follows: V w(s) = Ew

[∑
t∈N

γtR(st,at, st+1)|s0 = s
]
, s ∈ S, where Ew[·] is the

expectation w.r.t. the probability distribution of the Markov chain induced by
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the policy πw. And the primary goal in an RL setting is to find the optimal policy
which solves arg maxw∈W V w without any knowledge of the model parameters P
and R. However, observations in the form of sample paths which are realizations
of the MDP under any arbitrary policy are made available.

Classical approaches have complexities which scale polynomial in the cardi-
nality of the state space and hence are intractable. This is commonly referred
to as the curse of dimensionality. Hence, one has to resort to approximation
techniques in order to achieve tractability. In this paper, for value function esti-
mation, we consider the linear function approximation. Here, for a given policy
πw, we approximate its value function V w by projecting it on to the subspace
{Φx|x ∈ R

k1}, where Φ = (φ1, φ2, . . . , φk1)
�, k1 � |S| and φi ∈ R

|S|, 1 ≤ i ≤ k1
called the prediction features are chosen a priori. In order for the projection to
be well-defined, we require the following assumption:
(A1): For each w ∈ W, the Markov chain induced by the policy πw is ergodic.

Under this assumption, one can define the weighted norm ‖ · ‖ν as follows:
For V ∈ R

|S|, ‖V ‖ν = (
∑

s∈S
V 2(s)ν(s))

1
2 , where ν is the limiting distribution

(steady state distribution) of the given sample path. If the sample path is gen-
erated using a policy πwb

, wb ∈ W (referred to as the behaviour policy), then
the limiting distribution is the stationary distribution νwb

of the Markov chain
induced by the behaviour policy πwb

. Therefore, the linear function approxima-
tion of the value function V w is defined as follows:

hw|wb
� arg min

x∈Rk1

‖Φx − V w‖νwb
(1)

In this paper, we solve the following problem: w∗ = arg max
w∈W

Eνw

[
hw|w

]
, (2)

where we assume that an infinitely long sample path {s0,a0, r0, s1, a1, r1, s2, . . . }
generated by the behaviour policy πwb

(wb ∈ W ⊆ R
k2) is available.

(A2): The behaviour policy πwb
, where wb ∈ W, satisfies the following condition:

πwb
(a|s) > 0, ∀s ∈ S,∀a ∈ A.

2 Proposed Algorithm

Our proposed approach has two components:

1. A stochastic approximation (SA) version of the cross entropy (CE) method
to solve the control problem (2). The SA version of the CE method is a
zero-order, incremental, adaptive and stable global optimization method.

2. A variation of the off-policy LSTD (λ) to compute the objective function
values (i.e., Eνw

[
hw|w

]
).

We describe the above two components in detail here.
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2.1 Stochastic Approximation Version of the Cross Entropy Method

Cross entropy method [4,9] solves global optimization problems where the objec-
tive function does not possess good structural properties, i.e., those of the kind:
Find x∗ = arg maxx∈X⊂Rd J(x), where J : X → R is a bounded Borel measur-
able function (Jl < J(x) < Ju, ∀x). CE is a zero-order method which implies
that the algorithm does not require the gradient or higher-order derivatives of
the objective function in order to seek the optimal solution. CE method has
found successful application in diverse domains which include continuous multi-
extremal optimization [7], reinforcement learning [5,6] and several NP-hard prob-
lems [7,8].

CE method generates a sequence of model parameters {θt}t∈N, θt ∈ Θ
(assumed to be compact) and a sequence of thresholds {γt ∈ R}t∈N, Jl ≤ γt ≤ Ju

and the algorithm attempts to direct the sequence {θt} towards the degenerate
distribution concentrated at the global optimum x∗ and γt towards J(x∗). The
threshold γt+1 is usually taken as the (1 − ρ)-quantile of J w.r.t the PDF fθt

.
(For θ ∈ Θ, we denote by γρ(J, θ) the (1 − ρ)-quantile of J w.r.t the PDF fθ).
Henceforth, γt+1 = γρ(J, θt). And the model parameter θt+1 is generated by
projecting (w.r.t. the Kullback-Leibler (KL) divergence) on to the family of dis-
tributions F � {fθ|θ ∈ Θ}, the zero-variance distribution concentrated in the
region {J(x) ≥ γt+1} with respect to the PDF fθt

. Thus,

θt+1 = arg min
θ∈Θ

KL(fθ, gt), where gt(x) =
S(J(x))fθt

(x)I{J(x)≥γt+1}
Eθt

[
S(J(X))I{J(X)≥γt+1}

] (3)

with S : R → R+ is a positive, monotonically increasing function.
In this paper, we consider the Gaussian distribution as the family of distri-

butions F . In this case, the PDF is being parametrized as θ = (μ,Σ)�, where
μ and Σ are the mean and the covariance of the Gaussian distribution respec-
tively. Also, one can solve the optimization problem (3) analytically to obtain
the following update rule:

μt+1 =
Eθt

[g1(J(X),X, γt+1)]
Eθt

[g0(J(X), γt+1)]
� Υ1(θt, γt+1),

Σt+1 =
Eθt

[g2(J(X),X, γt+1, μt+1)]
Eθt

[g0(J(X), γt+1)]
� Υ2(θt, γt+1).

⎫
⎪⎪⎬

⎪⎪⎭

(4)

where g0(J(x), γ) � S(J(x))I{J(x)≥γ},

g1(J(x), x, γ) � S(J(x))I{J(x)≥γ}x,

g2(J(x), x, γ, μ) � S(J(x))I{J(x)≥γ} (x − μ) (x − μ)�
.

⎫
⎪⎪⎬

⎪⎪⎭

(5)

Thus the CE algorithm can be expressed as θt+1 = (Υ1(θt, γt+1), Υ2(θt, γt+1))�.
However, this is the ideal scenario which is intractable due to the inability to
compute the quantities Eθt

[·] and γρ(·, ·). There are multiple ways one can track
the ideal CE method. In this paper, we consider the efficient tracking of the
ideal CE method using the stochastic approximation (SA) framework proposed
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in [1,2]. The SA version of the CE method consists of three stochastic recursions
which are defined as follows:

γt+1 =γt − βtΔγt(J(Xt+1)),

where Δγt(y) � −(1 − ρ)I{y≥γt} + ρI{y≤γt}.
(6)

ξ
(0)
t+1 =ξ

(0)
t + βtΔξ

(0)
t (Xt+1, J(Xt+1)),

where Δξ
(0)
t (x, y) � g1(y, x, γt) − ξ

(0)
t g0(y, γt).

(7)

ξ
(1)
t+1 =ξ

(1)
t + βtΔξ

(1)
t (Xt+1, J(Xt+1)),

where Δξ
(1)
j+1(x, y) � g2(y, x, γt, ξ

(0)
t ) − ξ

(1)
t g0(y, γt).

(8)

Here, βt > 0 and Xt+1 ∼ f̂θt
, where the mixture PDF f̂θt

is defined as f̂θt
�

(1 − ζ)fθt
+ ζfθ0 , ζ ∈ (0, 1), fθ0 is the initial PDF. The mixture approach

facilitates extensive exploration of the solution space and prevents the model
iterates from getting stranded in suboptimal solutions.

2.2 Computing the Objective Function Eνw

[
hw|w

]

In this paper, we employ the off-policy LSTD (λ) to approximate hw|w for a
given policy parameter w ∈ W. The procedure to estimate the objective func-
tion Eνw

[
hw|w

]
is formally defined in Algorithm1. The Predict procedure in

Algorithm 1 is almost the same as the off-policy LSTD algorithm. The recursion
(step 9) attempts to estimate the objective function Eνw

[
hw|w

]
as follows:

�w
k+1 = �w

k +
1
k

(
x�

k φ(sk+1) − �w
k

)
, (9)

Algorithm 1. Predict Function
1 Input parameters: w ∈ W, N ∈ N � Input policy vector, Trajectory length;
2 Data: A priori chosen sample trajectory {s0,a0, r0, s1,a1, r1, s2, . . . } generated

using the behaviour policy πwb ;
3 k = 0;
4 while k < N do

5 ek+1 = γλρkek + φ(sk); � ρk is the sampling ratio, ρk = πw(ak|sk)
πwb

(ak|sk)
;

6 Ak+1 = Ak + 1
k

(
ek(φ(sk) − γρkφ(sk+1))

� − Ak

)
;

7 bk+1 = bk + 1
k
(ρkrkek − bk);

8 xk+1 = A−1
k+1bk+1; � Prediction vector;

9 �w
k+1 = �w

k + 1
k

(
x�

k φ(sk+1) − �w
k

)
; � Objective function estimation;

10 k = k + 1;

11 return �w
N ; � Outputs after N iterations;
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For a given w ∈ W, �w
k attempts to find an approximate value of the objective

function J(w). The following lemma formally characterizes the limiting behav-
iour of the iterates �w

k .

Lemma 1. For a given w ∈ W, �w
k → �w

∗ = Eνwb

[
x�

w|wb
φ(s)

]
as k → ∞ w.p. 1,

where

xw|wb
=A−1

w|wb
bw|wb

with Aw|wb
= Φ�Dνwb (I − γλPw)−1(I − γPw)Φ

and bw|wb
= Φ�Dνwb (I − γλPw)−1Rw.

(10)

Here Dνwb is the diagonal matrix with D
νwb
ii = νwb

(i), 1 ≤ i ≤ |S|, where νwb

is the stationary distribution of the Markov chain Pwb
induced by the behavior

policy πwb
and Rw ∈ R

|S| with Rw(s) � Σs′∈S,a∈Aπw(a|s)P(s, a, s′)R(s, a, s′).

Remark 1. By the above lemma, for a given w ∈ W, the quantity �w
k tracks

Jb(w) � Eνwb

[
x�

w|wb
φ(s)

]
. This is however different from the true objective

function value J(w) = Eνw

[
hw|w

]
, when w 
= wb. This additional approximation

error incurred is the extra cost one has to pay for the discrepancy in the policy
which generated the sample path.

2.3 Proposed Algorithm

Our algorithm to solve the control problem (2) is illustrated in Algorithm2.
The following theorem shows that the model sequence {θt} and the averaged
sequence {θt} generated by Algorithm 2 converge to the degenerate distribution
concentrated on the global maximum of the objective function Jb.

Theorem 1. Let S(x) = exp(rx), r ∈ R. Let ρ, ζ ∈ (0, 1) and θ0 =
(μ0, qIk2×k2)

�, where q ∈ R+. Also, let ct → 0 as t → ∞.. Let the learning rates
βt and βt satisfy

∑
t βt =

∑
t βt = ∞,

∑
t β2

t + β2
t < ∞. Let {θt = (μt, Σt)}t∈N

and {θt = (μt, Σt)}t∈N be the sequences generated by Algorithm 2 and also
assume θt ∈ Θ, ∀t ∈ N. Let βt = o(βt). Let wb ∈ W be the chosen behav-
iour policy vector. Also, let the assumptions (A1–A2) hold. Then, there exists
q∗ ∈ R+ and r∗ ∈ R+ s.t. ∀q > q∗ and ∀r > r∗,

θt → (wb∗, 0k2×k2)
�, θt → (wb∗, 0k2×k2)

� as t → ∞, w.p.1, (13)

where wb∗ ∈ arg maxw∈W Jb(w) with Jb(w) � Eνwb

[
x�

w|wb
φ(s)

]
.

3 Experimental Illustrations

The performance of our algorithm is evaluated on the chain walk MDP setting.
This particular setting which is being proposed in [3] demonstrates the scenario
where policy iteration is non-convergent when approximate value functions are
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Algorithm 2. Proposed Algorithm
1 Input parameters: ε, ρ ∈ (0, 1), β̄t, βt, ζ, ct ∈ (0, 1), ct → 0, θ0 = (μ0, Σ0)

�,
{Nt, t ∈ N} � Trajectory length rule chosen a priori;

2 Initialization: t = 0, γ0 = 0, ξ
(0)
0 = 0k2×1, ξ

(1)
0 = 0k2×k2 , T0 = 0, θp = NULL,

γp
0 = −∞;

3 while stopping criteria not satisfied do

4 Sample generation : Wt+1 ∼ f̂θt(·), where f̂θt = (1 − ζ)fθt + ζfθ0 ;

5 Objective function estimation: Ĵ(Wt+1) = Predict(Wt+1, Nt+1);

6 Tracking γρ(Jb, θ̂t): γt+1 = γt − βtΔγt(Ĵ(Wt+1));

7 Tracking Υ1(θ̂t, γρ(Jb, θ̂t)): ξ
(0)
t+1 = ξ

(0)
t + βtΔξ

(0)
t (Wt+1, Ĵ(Wt+1));

8 Tracking Υ2(θ̂t, γρ(Jb, θ̂t)): ξ
(1)
t+1 = ξ

(1)
t + βtΔξ

(1)
t (Wt+1, Ĵ(Wt+1));

9 if θp �= NULL then

10 Wp
t+1 ∼ f̂θp = (1 − ζ)fθp + ζfθ0 ;

11 γp
t+1 = γp

t − βtΔγp
t (Ĵ(Wp

t+1));

12 Threshold Comparison: Tt+1 = Tt + c
(
I{γt+1≥γ

p
t } − I{γt+1<γ

p
t } − Tt

)
;

13 if Tt+1 > ε then

14 Save previous model : θp = θt; γp
t+1 = γt;

15 Update model: θt+1 = θt + βt

(
(ξ

(0)
t , ξ

(1)
t )� − θt

)
; (11)

16 Polyak averaging: θt+1 = θt + βt

(
θt+1 − θt

)
; (12)

else
17 γp

t+1 = γp
t ; θt+1 = θt;

18 t = t + 1;

employed instead of true ones. Here |S| = 300, A = {L,R}, k1 = 5, k2 = 10 and
the discount factor γ = 0.99. The reward function R(·, ·, 100) = R(·, ·, 200) = 1.0
and zero for all other transitions. The transition probability kernel is given by

Fig. 1. Chain walk MDP
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P (s, L, s+1) = 0.1, P (s, L, s−1) = 0.9, P (s,R, s+1) = 0.9 and P (s,R, s−1) =
0.1. We choose the behaviour policy vector wb = (0, 0, . . . , 0)�. We employ the

Gibbs “soft-max” class of policies: πw(a|s) = e(w�ψ(s,a)/τ)
∑

b∈A
e(w�ψ(s,b)/τ)

, where {ψ(s, a) ∈
R

k2 |s ∈ S, a ∈ A} is a given policy feature set and τ ∈ R+ is fixed a priori. We
employ radial basis functions (RBF) as both policy and prediction features, i.e.,

Policy features

ψ(s, a) =

⎛

⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

I{a=L}e
− (s−m1)2

2.0v2
1

...

I{a=L}e
− (s−m5)2

2.0v2
5

I{a=R}e
− (s−m1)2

2.0v2
1

...

I{a=R}e
− (s−m5)2

2.0v2
5

⎞

⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

.

Prediction features

φi(s) = e
− (s−mi)

2

2.0v2
i ,

where mi = 5 + 10(i − 1), vi = 5, 1 ≤ i ≤ 5 (Fig. 1).
The results are shown in Fig. 2.

Fig. 2. The plot of the respective optimal value functions contrived by LSPI, Greedy-
GQ and Algorithm 2 for the chain walk MDP setting. The optimal solutions of various
algorithms are being developed by averaging over 10 independent trials. For Algorithm 2,
we averaged the various optimal solutions obtained for different sample trajectories gen-
erated using the same behaviour policy, but with different initial states which are chosen
randomly. Our approach (Algorithm 2) literally surpassed other algorithms in terms of
its quality. The random choice of the initial state ineffectively favoured sufficient explo-
ration of the state space which directly assisted in generating high quality solutions.
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4 Conclusion

We propose an adaptation of the cross entropy method to solve the control
problem in reinforcement learning under an information restricted setting, where
only a single sample path generated using a priori chosen behaviour policy is
available. The proposed algorithm is shown to converge to the solution which is
globally optimal relative to the behaviour policy.
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