
Loop-Abort Faults on Lattice-Based
Fiat-Shamir and Hash-and-Sign Signatures

Thomas Espitau1, Pierre-Alain Fouque2, Benôıt Gérard3,
and Mehdi Tibouchi4(B)

1 École normale supérieure de Cachan & Sorbonne Universités,
UPMC Univ Paris 06, LIP6, Paris, France

tespitau@ens-cachan.fr
2 Institut Universitaire de France & IRISA & Université de Rennes I, Rennes, France

pierre-alain.fouque@univ-rennes1.fr
3 DGA.MI and IRISA, Rennes, France

benoit.gerard@irisa.fr
4 NTT Secure Platform Laboratories, Tokyo, Japan

tibouchi.mehdi@lab.ntt.co.jp

Abstract. Although postquantum cryptography is of growing practical
concern, not many works have been devoted to implementation security
issues related to postquantum schemes.

In this paper, we look in particular at fault attacks against implemen-
tations of lattice-based signature schemes, looking both at Fiat-Shamir
type constructions (particularly BLISS, but also GLP, PASSSing and
Ring-TESLA) and at hash-and-sign schemes (particularly the GPV-
based scheme of Ducas–Prest–Lyubashevsky). These schemes include
essentially all practical lattice-based signatures, and achieve the best effi-
ciency to date in both software and hardware. We present several fault
attacks against those schemes yielding a full key recovery with only a few
or even a single faulty signature, and discuss possible countermeasures
to protect against these attacks.

Keywords: Fault attacks · Digital signatures · Postquantum cryptog-
raphy · Lattices · BLISS · GPV

1 Introduction

Lattice-based cryptography. Recent progress in quantum computation [7],
the NSA advisory memorandum recommending the transition away from Suite
B and to postquantum cryptography [1], as well as the announcement of the
NIST standardization process for postquantum cryptography [6] all suggest that
research on postquantum schemes, which is already plentiful but mostly focused
on theoretical constructions and asymptotic security, should increasingly take
into account real world implementation issues.

Among all postquantum directions, lattice-based cryptography occupies a
position of particular interest, as it relies on well-studied problems and comes
c© Springer International Publishing AG 2017
R. Avanzi and H. Heys (Eds.): SAC 2016, LNCS 10532, pp. 140–158, 2017.
https://doi.org/10.1007/978-3-319-69453-5_8

Loop-Abort Faults 141

with uniquely strong security guarantees, such as worst-case to average-case
reductions [35]. A number of works have also focused on improving the per-
formance of lattice-based schemes, and actual implementation results suggest
that properly optimized schemes may be competitive with, or even outperform,
classical factoring- and discrete logarithm-based cryptography.

The literature on the underlying number-theoretic problems of lattice-based
cryptography is extensive (even though concrete bit security is not nearly as
well understood as for factoring and discrete logarithms; in addition, ring-based
schemes have recently been subjected to new families of attacks that might even-
tually reduce their security, especially in the postquantum setting). On the other
hand, there is currently a distinct lack of cryptanalytic results on the physical
security of implementations of lattice-based schemes (or in fact, postquantum
schemes in general! [39]). It is well-known that physical attacks, particularly
against public-key schemes, are often simpler, easier to mount and more devas-
tating than attacks targeting underlying hardness assumptions: it is often the
case that a few bits of leakage or a few fault injections can reveal an entire secret
key (the well-known attacks from [3,5] are typical examples). We therefore deem
it important to investigate how fault attacks may be leveraged to recover secret
keys in the lattice-based setting, particularly against signature schemes as sig-
natures are probably the most likely primitive to be deployed in a setting where
fault attacks are relevant, and have also received the most attention in terms of
efficient implementations both in hardware and software.

Practical implementations of lattice-based signatures. Efficient signature
schemes are typically proved secure in the random oracle model, and can be
roughly divided in two families: the hash-and-sign family (which includes schemes
like FDH and PSS), as well as signatures based on identification schemes, using the
Fiat-Shamir heuristic or a variant thereof. Efficient lattice-based signatures can
also be divided along those lines, as observed for example in the survey of practical
lattice-based digital signature schemes presented by O’Neill and Güneysu at the
NIST workshop on postquantum cryptography [23,24].

The Fiat-Shamir family is the most developed, with a number of schemes
coming with concrete implementations in software, and occasionally in hard-
ware as well. Most schemes in that family follow Lyubashevsky’s “Fiat-Shamir
with aborts” paradigm [26], which uses rejection sampling to ensure that the
underlying identification scheme achieves honest-verifier zero-knowledge. Among
lattice-based schemes, the exemplar in that family is Lyubashevsky’s scheme from
EUROCRYPT 2012 [27]. It is, however, of limited efficiency, and had to be opti-
mized to yield practical implementations. This was first carried out by Güneysu et
al., who described an optimized hardware implementation of it at CHES 2012 [20],
and then to a larger extent by Ducas et al. in their scheme BLISS [9], which
includes a number of theoretical improvements and is the top-performing lattice-
based signature. It was also implemented in hardware by Pöppelmann et al. [36].
Other schemes in that family include Hoffstein et al.’s PASSSign [22], which

142 T. Espitau et al.

incorporates ideas from NTRU, and Akleylek et al.’s Ring-TESLA [2], which
boasts a tight security reduction.

On the hash-and-sign side, there were a number of early proposals with
heuristic security (and no actual security proofs), particularly GGH [18] and
NTRUSign [21], but despite several attempts to patch them1 they turned out
to be insecure. A principled, provable approach to designing lattice-based hash-
and-sign signatures was first described by Gentry et al. in [16], based on discrete
Gaussian sampling over lattices. The resulting scheme, GPV, is rather inefficient,
even when using faster techniques for lattice Gaussian sampling [30]. However,
Ducas et al. [11] later showed how it could be optimized and instantiated over
NTRU lattices to achieve a relatively efficient scheme with particularly short
signature size. The DLP scheme is somewhat slower than BLISS in software,
but still a good contender for practical lattice-based signatures, and seemingly
the only one in the hash-and-sign family.

Our contributions. In this work, we initiate the study of fault attacks against
lattice-based signature schemes, and obtain attacks against all the practical
schemes mentioned above.

As noted previously, early lattice-based signature schemes with heuristic
security have been broken using standard attacks [15,17,32] but recent construc-
tions including [9,11,16,26,27] are provably secure, and cryptanalysis therefore
requires a more powerful attack model. In this work we consider fault attacks.

We present two attacks, both using a similar type of faults which allows the
attacker to cause a loop inside the signature generation algorithm to abort early.
Successful loop-abort faults have been described many times in the literature,
including against DSA [31] and pairing computations [34], and in our attacks
they can be used to recover information about the private signing key. The
underlying mathematical techniques used to actually recover the key, however,
are quite different in the two attacks.

Our first attack applies to the schemes in the Fiat-Shamir family: we describe
it against BLISS [9,36], and show how it extends to GLP [20], PASSSign [22]
and Ring-TESLA [2]. In that attack, we inject a fault in the loop that generates
the random “commitment value” y of the sigma protocol associated with the
Fiat-Shamir signature scheme. That commitment value is a random polynomial
generated coefficient by coefficient, and an early loop abort causes it to have
abnormally low degree, so that the protocol is no longer zero-knowledge. In
fact, this will usually leak enough information that a single faulty signature is
enough to recover the entire signing key. More specifically, we show that the
faulty signature can be used to construct a point that is very close to a vector
in a suitable integer lattice of moderate dimension, and such that the difference
is essentially (a subset of) the signing key, which can thus be recovered using
lattice reduction.

1 There is a provably secure scheme due to Melchor et al. [29] that claims to “seal the
leak on NTRUSign”, but it actually turns the construction into a Fiat-Shamir type
scheme, using rejection sampling à la Lyubashevsky.

Loop-Abort Faults 143

Our second attack targets the GPV-based hash-and-sign signature scheme
of Ducas et al. [11]. In that case, we consider early loop abort faults against
the discrete Gaussian sampling in the secret trapdoor lattice used in signature
generation. The early loop abort causes the signature to be a linear combination
of the last few rows of the secret lattice. A few faulty signatures can then be
used to recover the span of those rows, and using the special structure of the
lattice, we can then use lattice reduction to find one of the rows up to sign,
which is enough to completely reconstruct the secret key. In practice, if we can
cause loop aborts after up to m iterations, we find that m + 2 faulty signatures
are enough for full key recovery with high probability.

Both of our attacks are supported by extensive simulations in Sage [38],
whose source code is provided in the full version of this paper [13].

We also take a close look at the concrete software and hardware implemen-
tations of the schemes above, and discuss the concrete feasibility of injecting the
required loop-abort faults in practice. We find the attacks to be highly realis-
tic. Finally, we discuss several possible countermeasures to protect against our
attacks.

Related work. To the best of our knowledge, the first previous work on fault
attacks against lattice-based signatures, and in particular the only one mentioned
in the survey of Taha and Eisenbarth [39], is the fault analysis work of Kamal and
Youssef on NTRUSign [25]. It is, however, of limited interest since NTRUSign is
known to be broken [12,32]; it also suffers from a very low probability of success.

Much more recently, a relevant preprint has also been made available online
by Bindel et al. [4] concurrently with this work. That paper proposes various
fault attacks against the same Fiat-Shamir type schemes that we consider in
this paper. Most of the attacks, however, are either in a contrived model (tar-
geting key generation), or require unrealistically many faults and are arguably
straightforward (bypassing rejection sampling in signature generation or size/-
correctness checks in signature verification). One attack described in the paper
can be seen as posing a serious threat, namely the one described in [4, Sect.
IV-B], but it amounts to a weaker variant of our Fiat-Shamir attack, using sim-
ple linear algebra rather than lattice reduction. As a result, it requires several
hundred faulty signatures, whereas our attack needs only one.

Another interesting concurrent work is the recent cache attack against BLISS
of Bruinderink et al. [19]. It uses cache side-channels to extract information about
the coefficients of the commitment polynomial y, and then lattice reduction to
recover the signing key based on that side-channel information. In that sense, it
is similar to our Fiat-Shamir attack. However, since the nature of the information
to be exploited is quite different than in our setting, the mathematical techniques
are also quite different. In particular, again, in contrast with our fault attack,
that cache attack requires many signatures for a successful key recovery.

144 T. Espitau et al.

2 Description of the Lattice-Based Signature Schemes
We Consider

Notation. For any integer q, we represent the ring Zq by [−q/2, q/2)∩Z. Vectors
are considered as column vectors and will be written in bold lower case letters
and matrices with upper case letters. By default, we will use the �2 Euclidean
norm, ‖v‖2 = (

∑
i v2

i)1/2 and �∞-norm as ‖v‖∞ = maxi |vi|.
The Gaussian distribution with standard deviation σ ∈ R and center c ∈ R

at x ∈ R, is defined by ρc,σ(x) = exp
(−(x−c)2

2σ2

)
and more generally by ρc,σ(x) =

exp
(−(x−c)2

2σ2

)
and when c = 0, by ρσ(x). The discrete Gaussian distribution

over Z centered at 0 is defined by Dσ(x) = ρσ(x)/ρσ(Z) (or DZ,σ) and more
generally over Z

m by Dm
σ (x) = ρσ(x)/ρσ(Zm), where ρσ(Zm) =

∑
x∈Zm ρσ(x).

Description of BLISS. The BLISS signature scheme [9] is possibly the most
efficient lattice-based signature scheme so far. It has been implemented in both
software [10] and hardware [36], and boasts performance numbers compara-
ble to classical factoring and discrete-logarithm based schemes. BLISS can be
seen as a ring-based optimization of the earlier lattice-based scheme of Lyuba-
shevsky [27], sharing the same “Fiat-Shamir with aborts” structure [26]. One
can give a simplified description of the scheme as follows: the public key is an
NTRU-like ratio of the form aq = s2/s1 mod q, where the signing key poly-
nomials s1, s2 ∈ R = Z[x]/(xn + 1) are small and sparse. To sign a mes-
sage μ, one first generates commitment values y1,y2 ∈ R with normally dis-
tributed coefficients, and then computes a hash c of the message μ together
with u = −aqy1 + y2 mod q. The signature is then the triple (c, z1, z2), with
zi = yi + sic, and there is rejection sampling to ensure that the distribu-
tion of zi is independent of the secret key. Verification is possible because
u = −aqz1 + z2 mod q. The real BLISS scheme, described in full in Fig. 1,
includes several optimizations on top of the above description. In particular, to
improve the repetition rate, it targets a bimodal Gaussian distribution for the
zi’s, so there is a random sign flip in their definition. In addition, to reduce key
size, the signature element z2 is actually transmitted in compressed form z†

2,
and accordingly the hash input includes only a compressed version of u. These
various optimizations are essentially irrelevant for our purposes.

Description of the GPV-based scheme of Ducas et al. The second sig-
nature scheme we consider is the one proposed by Ducas et al. at ASIACRYPT
2014 [11]. It is an optimization using NTRU lattices of the GPV hash-and-sign
signature scheme of Gentry et al. [16], and has been implemented in software by
Prest [37]. As in GPV, the signing key is a “good” basis of a certain lattice Λ
(with short, almost orthogonal vectors), and the public key is a “bad” basis of
the same lattice (with longer vectors and a large orthogonality defect). To sign a
message μ, one simply hashes it to obtain a vector c in the ambient space of Λ,
and uses the good, secret basis to sample v ∈ Λ according to a discrete Gaussian

Loop-Abort Faults 145

1: function KeyGen()
2: sample f ,g ∈ R = Z[x]/(xn +1), uni-

formly with �δ1n� coefficients in {±1},
�δ2n� coefficients in {±2} and other equal
to zero

3: S = (s1, s2)
T ← (f , 2g + 1)T

4: if Nκ(S) ≥ C2 ·5 · (�δ1n�+4�δ2n�) ·κ
then restart

5: aq = (2g+1)/f mod q (restart if f is
not invertible)

6: return (pk = a1, sk = S) where a1 =
2aq mod 2q

7: end function

1: function Verify(μ, pk = a1, (z1, z
†
2, c))

2: if ‖(z1, 2
d · z†

2)‖2 > B2 then reject
3: if ‖(z1, 2

d · z†
2)‖∞ > B∞ then reject

4: accept iff c = H(�ζ · a1 · z1 + ζ · q ·
c�d + z†

2 mod p, μ)
5: end function

1: function Sign(μ, pk = a1, sk = S)
2: y1 ← Dn

Z,σ, y2 ← Dn
Z,σ

3: u = ζ · a1 · y1 + y2 mod 2q
4: c ← H(�u�d mod p, μ)
5: choose a random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: rejection sampling: restart to

step 2 except with probability
1/ M exp(−‖Sc‖/(2σ2)) cosh(〈z,Sc〉/σ2

)
9: z†

2 ← (�u�d − �u − z2�d) mod p
10: return (z1, z

†
2, c)

11: end function

Fig. 1. Description of the BLISS signature scheme. The random oracle H takes its val-
ues in the set of polynomials in R with 0/1 coefficients and Hamming weight exactly κ,
for some small constant κ. The value ζ is defined as ζ · (q −2) = 1 mod 2q. The authors
of [9] propose four different sets of parameters with security levels at least 128 bits.
The interesting parameters for us are: n = 512, q = 12289, σ ∈ {215, 107, 250, 271},
(δ1, δ2) ∈ {(0.3, 0), (0.42, 0.03), (0.45, 0.06)} and κ ∈ {23, 30, 39}. We refer to the origi-
nal paper for other parameters and for the definition of notation like Nκ and �·�d, as
they are not relevant for our attack. The instruction in red (sampling of y1) is where
we introduce our faults. (Color figure online)

distribution of small variance supported on Λ and centered at c. That vector v
is the signature; it is, in particular, a lattice point very close to c. That property
can be checked using the bad, public basis, but that basis is too large to sam-
ple such close vectors (this, combined with the fact that the discrete Gaussian
leaks no information about the secret basis, is what makes it possible to prove
security). The actual scheme of Ducas–Lyubashevsky–Prest, described in Fig. 2,
uses a lattice of the same form as NTRU: Λ = {(y, z) ∈ R2 | y + z · h = 0},
where the public key h is again a ratio g/f mod q of small, sparse polynomials
in R = Z[x]/(xn + 1). The use of such a lattice yields a very compact represen-
tation of the keys, and makes it possible to compress the signature as well by
publishing only the second component of the sampled vector v. As a result, this
hash-and-sign scheme is very space efficient (even more than BLISS). However,
the use of lattice Gaussian sampling makes signature generation significantly
slower than BLISS at similar security levels.

146 T. Espitau et al.

1: function KeyGen(n, q)
2: f ← Dn

σ0 , g ← Dn
σ0 �

σ0 = 1.17
√

q/2n
3: if ‖(g, −f)‖2 > σ then restart �

σ = 1.17
√

q

4: if
∥∥ qf̄

f f̄+ ḡg
, q¯ g
f f̄+ ḡg

)∥∥
2

> σ then
restart

5: using the extended Euclidean algo-
rithm, compute ρf , ρg ∈ R and Rf , Rg ∈
Z s.t. ρf · f = Rf mod xn +1 and ρg ·g =
Rg mod xn + 1

6: if gcd(Rf , Rg) �= 1 or gcd(Rf , q) �= 1
then restart

7: using the extended Euclidean algo-
rithm, compute u, v ∈ Z s.t. u · Rf + v ·
Rg = 1

8: F ← qvρg,G ← −quρf

9: repeat

10: k ←
⌊

F·̄f+G·̄f
f f̄+ ḡg

⌉
∈ R

11: F ← F − k · f ,G ← G − k · g
12: until k=0
13: h ← g · f−1 mod q

14: B ←
(

Mg −Mf

MG −MF

)
∈ Z

2n×2n �

short lattice basis
15: return sk = B, pk = h
16: end function

1: function GaussianSampler(B, σ, c) �

we denote by bi (resp. b̃i) the rows of B

(resp. of its Gram–Schmidt matrix B̃)
2: v ← 0
3: for i = 2n down to 1 do
4: c′ ← 〈c, b̃i〉/‖b̃i‖2

2

5: σ′ ← σ/‖b̃i‖2

6: r ← DZ,σ′,c′

7: c ← c − rbi and v ← v + rbi

8: end for
9: return v � v sampled according to

the lattice Gaussian distribution DΛ,σ,c

10: end function

1: function Sign(μ, sk = B)
2: c ← H(μ) ∈ Z

n
q

3: (y, z) ← (c,0) −
GaussianSampler(B, σ, (c,0)) � y, z
are short and satisfy y + z · h = c mod q

4: return z
5: end function

1: function Verify(μ, pk = h, z)
2: accept iff ‖z‖2 + ‖H(μ) − z · h‖2 ≤

σ
√

2n
3: end function

Fig. 2. Description of the GPV-based signature scheme of Ducas–Lyubashevsky–Prest.
The random oracle H takes its values in Z

n
q . We denote by f �→ f̄ the conjugation

involution of R = Z[x]/(xn + 1), i.e. for f =
∑n−1

i=0 fix
i, f̄ = f0 −∑n−1

i=1 fn−ix
i. Ma

represents the matrix of the multiplication by a in the polynomial basis of R, which is
anticirculant of dimension n. For 128 bits of security, the authors of [11] recommend
the parameters n = 256 and q ≈ 210. The constant 1.17 is an approximation of

√
e/2.

The steps in red (main loop of the Gaussian sampler) is where we introduce our faults.
(Color figure online)

3 Attack on Fiat-Shamir Type Lattice-Based Signatures

The first fault attack that we consider targets the lattice-based signature schemes
of Fiat-Shamir type, and specifically the generation of the random “commit-
ment” element in the underlying sigma protocols, which is denoted by y in our
descriptions. That element consists of one or several polynomials generated coef-
ficient by coefficient, and the idea of the attack is to introduce a fault in that
random sampling to obtain a polynomial of abnormally small degree, in which
case signatures will leak information about the private signing key. For simplic-
ity’s sake, we introduce the attack against BLISS in particular, but it works
against the other Fiat-Shamir type schemes (GLP, PASSSign and Ring-TESLA)
with almost no changes: see the full version of this paper [13] for details.

Loop-Abort Faults 147

In BLISS, the commitment element actually consists of two polynomials
(y1,y2), and it suffices to attack y1. Intuitively, y1 should mask the secret
key element s1 in the relation z1 = ±s1c + y1, and therefore modifying the
distribution of y1 should cause some information about s to leak in signatures.
The actual picture in the Fiat-Shamir with aborts paradigm is in fact slightly
different (namely, rejection sampling ensures that the distribution of z1 is inde-
pendent of s1, but only does so under the assumption that y1 follows the correct
distribution), but the end result is the same: perturbing the generation of y1

should lead to secret key leakage.
Concretely speaking, in BLISS, y1 ∈ Rq is a ring element generated according

to a discrete Gaussian distribution2, and that generation is typically carried out
coefficient by coefficient in the polynomial representation. Therefore, if we can
use faults to cause an early termination of that generation process, we should
obtain signatures in which the element y1 is actually a low-degree polynomial.
If the degree is low enough, we will see that this reveals the whole secret key
right away, from a single faulty signature!

Indeed, suppose that we can obtain a faulty signature obtained by forcing a
termination of the loop for sampling y1 after the m-th iteration, with m � n.
Then, the resulting polynomial y1 is of degree at most m − 1. As part of the
faulty signature, we get the pair (c, z1) with z1 = (−1)bs1c+y1. Without loss of
generality, we may assume that b = 0 (we will recover the whole secret key only
up to sign, but in BLISS, (s1, s2) and (−s1,−s2) are clearly equivalent secret
keys). Moreover, with high probability, c is invertible: if we heuristically assume
that c behaves like a random element of the ring from that standpoint, we expect
it to be the case with probability about (1 − 1/q)n, which is over 95% for all
proposed BLISS parameters. We thus get an equation of the form:

c−1z1 − s1 ≡ c−1y1 ≡
m−1∑

i=0

y1,ic−1xi (mod q) (1)

Thus, the vector v = c−1z1 is very close to the sublattice of Zn generated by
wi = c−1xi mod q for i = 0, . . . ,m−1 and qZn, and the difference should be s1.

The previous lattice is of full rank in Z
n, so the dimension is too large to

apply lattice reduction directly. However, the relation given by Eq. (1) also holds
for all subsets of indices. More precisely, let I be a subset of {0, . . . , n − 1} of
cardinality �, and ϕI : Zn → Z

I be the projection (ui)0≤i<n �→ (ui)i∈I . Then we
also have that ϕI(z1) is a close vector to the sublattice LI of ZI generated by
qZI and the images under ϕI of the wi’s; and the difference should be ϕI(s1).

Equivalently, using Babai’s nearest plane approach to the closest vector prob-
lem, we hope to show that

(
ϕI(s1), B

)
, for a suitably chosen positive constant

B, is the shortest vector in the sublattice L′
I of ZI ×Z generated by

(
ϕI(v), B

)

as well as the vectors
(
ϕI(wi), 0

)
and qZI × {0}.

2 In the other Fiat-Shamir schemes such as [20], the distribution of each coefficient
is uniform in some interval rather than Gaussian, but this doesn’t affect our attack
strategy at all.

148 T. Espitau et al.

The volume of L′
I is given by:

vol(L′
I) = B · vol(LI) = B · vol(qZI)

[LI : qZI]
= Bq�−r

where r is the rank of the family
(
ϕI(w0), . . . , ϕI(wm−1)

)
in Z

I
q , which is at

most m. Hence vol(L′
I) ≥ Bq�−m, and the Gaussian heuristic predicts that the

shortest vector should be of norm:

λI ≈
√

� + 1
2πe

· vol(L′
I)

1/(�+1) �
√

� + 1
2πe

· B1/(�+1)q1−(m+1)/(�+1).

Thus, we expect that
(
ϕI(s1), B

)
will actually be the shortest vector of L′

I

provided that its norm is significantly smaller than this bound λI . Now ϕI(s1)
has roughly δ1� entries equal to ±1, δ2� entries equal to ±2 and the rest are
zeroes; therefore, the norm of

(
ϕI(s1), B

)
is around

√
(δ1 + 4δ2)� + B2. Let us

choose B = �√δ1 + 4δ2. The condition for s1 to be the shortest vector LI can
thus be written as:

√
(δ1 + 4δ2) · (� + 1) �

√
� + 1
2πe

· B1/(�+1)q1−(m+1)/(�+1)

or equivalently:

� + 1 �
m + 1 + log

√
δ1+4δ2

log q

1 − log
√

2πe(δ1+4δ2)

log q

. (2)

The denominator of the right-hand side of (2) ranges from about 0.91 for
the BLISS–I and BLISS–II parameter sets down to about 0.87 for BLISS–IV.
In all cases, we thus expect to recover ϕI(s1) if we can solve the shortest vector
problem in a lattice of dimension slightly larger than m. This is quite feasible
with the LLL algorithm for m up to about 50, and with BKZ for m up to 100
or so.

To complete the attack, it suffices to apply the above to a family of subsets
I of {0, . . . , n − 1} covering the whole set of indices, which reveals the entire
vector s1. The second component of the secret key is then obtained as s2 =
a1s1/2 mod q.

Simulations using our Sage implementation (see the full version of this
paper [13]) confirm the theoretical estimates, and show that full key recovery
can be achieved in practice in a time ranging from a few seconds to a few hours
depending on m. Detailed experimental results are reported in Table 1.

Remark 1. A variant of that attack which is possibly slightly simpler consists
in observing that ϕI(s1) should be the shortest vector in the lattice generated
by LI and ϕI(v). The bound on the lattice dimension becomes essentially the
same as (2). The drawback of that approach, however, is that we obtain each
ϕI(s1) up to sign, and so one needs to use overlapping subsets I to ensure the
consistency of those signs.

Loop-Abort Faults 149

Table 1. Experimental success rate of the attack and average CPU time for key recov-
ery for several values of m, the iteration after which the loop-abort fault is injected. We
attack the BLISS–II parameter set (n, q, σ, δ1, δ2, κ) = (512, 12289, 10, 0.3, 0, 23) from
[9]. Since the choice of � has no effect on the concrete fault injection (e.g. it does not
affect the required number of faulty signatures, which is always 1), we did not attempt
to optimize it very closely. The simulation was carried out using our Sage implementa-
tion (see the full version of this paper [13]) on a single core of an Intel Xeon E5-2697v3
workstation, using 100 trial runs for each value of m.

Fault after
iteration number
m =

2 5 10 20 40 60 80 100

Theoretical
minimum
dimension �min

3 6 11 22 44 66 88 110

Dimension � in
our experiment

3 6 12 24 50 80 110 150

Lattice reduction
algorithm

LLL LLL LLL LLL BKZ–20 BKZ–25 BKZ–25 BKZ–25

Success
probability (%)

100 99 100 100 100 100 100 98

Avg. CPU time
to recover �
coeffs. (s)

0.002 0.005 0.022 0.23 7.3 119 941 33655

Avg. CPU time
for full key
recovery

0.5 s 0.5 s 1 s 5 s 80 s 14 min 80 min 38 h

Remark 2. Note that a single faulty signature is enough to recover the entire
secret key with this attack, a successful key recovery may require several fault
injections. This is due to rejection sampling: after a faulty y1 is generated, the
whole signature may be thrown away in the rejection step. On average, the fault
attacker may thus need to inject the same number of faults as the repetition
rate of the scheme, which is a small constant ranging from 1.6 to 7.4 depending
on chosen parameters [9], and even smaller with the improved analysis of
BLISS–B [8].

Remark 3. Finally, we note that in certain hardware settings, fault injection
may yield a faulty value of y1 in which all coefficients upwards of a certain
degree bound are non zero but equal to a common constant (see the discussion
in Sect. 5.3). Our attack adapts to that setting in a straightforward way: that
simply means that y1 is a linear combination of the xi for small i and of the
all-one vector (1, . . . , 1), so it suffices to add that vector to the set of lattice
generators.

150 T. Espitau et al.

4 Attack on Hash-and-Sign Type Lattice-Based
Signatures

Our second attack targets the practical hash-and-sign signature scheme of Ducas
et al. [11], which is based on GPV-style lattice trapdoors. More precisely, the
faults we consider are again early loop aborts, this time in the lattice-point
Gaussian sampling routine used in signature generation.

4.1 Description of the Attack

The attack can be described as follows. A correctly generated signature element
is of the form z = R · f + r · F ∈ Z[x]/(xn + 1), where the short polynomials f
and F are components of the secret key, and r,R are short random polynomials
sampled in such a way that z follows a suitable Gaussian distribution. In fact,
r,R are generated coefficient by coefficient, in a single loop with 2n iterations,
going from the top-degree coefficient of r down to the constant coefficient of R.

Therefore, if we inject a fault aborting the loop after m ≤ n iterations (in
the first half of the loop), the resulting signature simply has the form:

z = r0xn−1F + r1xn−2F + · · · + rm−1xn−mF.

Any such faulty signature is, in particular, in the lattice L of rank m generated
by the vectors xn−iF, i = 1, . . . ,m, in Z[x]/(xn + 1).

Suppose then that we obtain several signatures z(1), . . . , z(�) of the previous
form. If � is large enough (slightly more than m is sufficient; see Sect. 4.2 below
for an analysis of success probability depending on �), the corresponding vectors
will then generate the lattice L. Assuming the lattice dimension is not too large,
we should then be able to use lattice reduction to recover a shortest vector in L,
which is expected to be one of the signed shifts ±xn−iF, i = 1, . . . ,m, since the
polynomial F is constructed in a such a way as to make it quite short relative to
the Gram–Schmidt norm of the ideal lattice it generates. Hence, we can recover
F among a small set of at most 2m candidates.

And recovering F is actually sufficient to reconstruct the entire secret key
(f ,g,F,G), and hence completely break the scheme. This is due to the particular
structure of the NTRU lattice. On the one hand, G is linked to F via the public
key polynomial h: G = F ·h mod q, so we obtain it directly. On the other hand,
the basis completion algorithm of Hoffstein et al. [21] allows to recover the pair
(f ,g) from (F,G) via the defining relation f · G − g · F = q. This is actually
used in the opposite direction in the key generation algorithm of the scheme of
Ducas et al. (i.e. they construct (F,G) from (f ,g): see steps 5–12 of KeyGen
in Fig. 2), but applying [21, Theorem 1], the technique is easily seen to work in
both ways.

Moreover, if we start from a polynomial of the form ζF where ζ is of the form
±xα, then applying the previous steps yields the quadruple (ζf , ζg, ζF, ζG),
which is also a valid secret key equivalent to (f ,g,F,G), in the sense that signing
with either keys produces signatures with exactly the same distributions. Thus,

Loop-Abort Faults 151

we don’t even need to carry out an exhaustive search on several possible values
of F after the lattice reduction step: it suffices to use the first vector of the
reduced basis directly.

4.2 How Many Faults Do We Need?

Let us analyze the probability of success of the attack depending on the iteration
m at which the iteration is inserted and the number � > m of faulty signatures
z(i) available. As we have seen, a sufficient condition for the attack to succeed
(provided that our lattice reduction algorithm actually finds a shortest vector)
is that the � faulty signatures generate the rank-m lattice L defined above. This
is not actually necessary (the attack works as soon as one of the shifts of F is
in sub-lattice generated by the signatures, rather than all of them), but we will
be content with a lower bound on the probability of success.

Now, that condition is equivalent to saying that the vectors (r(i)0 , . . . , r
(i)
m−1) ∈

Z
m (sampled according to the distribution given by the GPV algorithm) that

define the faulty signatures:

z(i) = r
(i)
0 xn−1F + · · · + r

(i)
m−1x

n−mF

generate the whole integer lattice Z
m. But the probability that � > m random

vectors generate Z
m has been computed by Maze et al. [28] (see also [14]), and

Table 2. Experimental success probability of the attack and average CPU time for
key recovery for several values of m, the iteration after which the loop-abort fault is
injected. We consider the attack with � = m + 1 and � = m + 2 faulty signatures. The
attacked parameters are (n, q) = (256, 1021) as suggested in [11] for signatures. The
simulation was carried out using our Sage implementation (see the full version of this
paper [13]) on a single core of an Intel Xeon E5-2697v3 workstation, using 100 trial
runs for each pair (�, m).

Fault after iteration
number m =

2 5 10 20 40 60 80 100

Lattice reduction
algorithm

LLL LLL LLL LLL LLL LLL BKZ–20 BKZ–20

Success probability for
� = m + 1 (%)

75 77 90 93 94 94 95 95

Avg. CPU time for
� = m + 1 (s)

0.001 0.003 0.016 0.19 2.1 8.1 21.7 104

Success probability for
� = m + 2 (%)

89 95 100 100 99 99 100 100

Avg. CPU time for
� = m + 2 (s)

0.001 0.003 0.017 0.19 2.1 8.2 21.6 146

152 T. Espitau et al.

is asymptotically equal to
∏�

k=�−m+1 ζ(k)−1. In particular, if � = m+d for some
integer d, it is bounded below by:

pd =
+∞∏

k=d+1

1
ζ(k)

.

Thus, if we take � = m + 1 (resp. � = m + 2, � = m + 3), we expect the attack
to succeed with probability at least p1 ≈ 43% (resp. p2 ≈ 71%, p3 ≈ 86%).

As shown in Table 2, this is well verified in practice (and the lower bound is
in fact quite pessimistic). Moreover, the attack is quite fast even for relatively
large values of m: only a couple of minutes for full key recovery for m = 100.

5 Implementation of the Faults

Once again, due to the obvious similarities between the four instances of the
Fiat-Shamir family that we choose to attack, we only give details of the attack
on the BLISS scheme. We also give details for the GPV scheme but they are
essentially the same as the one for BLISS since the underlying fault introduced
is strictly identical.

In this section we investigate how an attacker may obtain helpful faulty sig-
natures for the proposed attacks. We base our discussion on two available imple-
mentations of BLISS signature, namely the software implementation from Ducas
and Lepoint [10] and the FPGA implementation by Pöppelmann et al. [36], and
on Prest’s software implementation of the GPV-based scheme of Ducas et al. [37].
Notice that the discussion on the hardware implementation is also valid for the
implementation of [20] since both share some common components and archi-
tecture that we exploit (for instance BRAM storage).

We emphasize the fact that those three implementations were not supposed
to have any resilience with respect to fault attacks and were only developed as
proofs of concept to illustrate the efficiency properties of the schemes. The point
here is to show that the fault attacks presented in this paper are relevant based
on the analysis of freely available and published implementations to put forward
the need of dedicated protections against faults attacks (when attackers have
such abilities).

5.1 Classical Fault Models

Faults during a computation may be induced by different means as a laser beam
shot, electromagnetic injection, under-powering, glitches, etc. These faults are
mainly characterized by their

– range: impacting a single bit or many bits (e.g. register or memory word);
– effect: typically target chunk is set to a chosen value, random value or all-

zero/all-one value;
– persistence: a fault may only modify the target for a short period or it may

be definitive.

Loop-Abort Faults 153

Obviously, some fault models are close from being purely theoretical: it is very
unlikely to be able to set a 32-bit register to 0xbad00dad during precisely 2 cycles.
Nevertheless many recent works have been published showing that some faults
models that seemed overdone are actually obtained during lab experiments. One
example is the work of Ordas et al. at CARDIS 2014 [33] showing that with finely
tuned EM probes it is possible to induce a single-bit fault (bit-set or bit-reset).

In the next subsections we discuss which fault models3 may lead to faulty
signatures relevant with respect to the attacks presented in this paper. We did
not investigate clock glitches or under-powering which induce violation of the
setup time and which actual side-effects are implementation and compilation-
dependent (with large ranges of possible parameters to test). Nevertheless, they
may not be overseen in the evaluation of a chip since they may also lead to the
generation of relevant faulty signatures.

5.2 Fault Attacks on Software Implementations

Polynomial y1 can be generated using a loop over the n coefficients. This is,
again, how the implementation in [10] is made: a loop is constructing polyno-
mials y1 and y2 one coefficient at a time using a Gaussian sampler (function
Sign::signMessage). The condition to perform the attack is rather few restric-
tive since we only require y1 to have at most (roughly) a quarter of unknown
coefficients. Such result can be obtain by going out the loop after a few itera-
tions. A random fault on the loop counter or skipping the jump operation will
lead to such result.

Notice here that it is less trivial here to decide whether a faulty signature
will be helpful or not. Hopefully, the timing precision is much less important
here since the attack will succeed even with 50 unknown coefficients out of
512. This means that the time-window for the fault to occur is composed of
decades of loop iterations. Moreover, we may use side-channel analysis to detect
the loop iteration pattern to trigger the fault injection. Such pattern is likely
to be detected after much less than 50 iterations and thus it seems that the
synchronization here will be relatively easy.

Similarly, the short random polynomials R and r used in the GPV scheme
are generated in a single loop [37] ranging from leading coefficient of r to the
constant term in R which allows to fault both polynomials using a single fault.
Again, a random fault on the counter or skipping a jump makes it work and the
time-window large according to the results shown in Table 2.

To conclude, these attacks seems to be a real threat since synchronization
(which is a major difficulty when performing fault attacks) is eased by the loose
condition on the number of known coefficients in faulted polynomials.

5.3 Fault Attacks on Hardware Implementations

Generation of polynomial y1 requires n random coefficients. It is very unlikely
that all these coefficients are obtained at the same time (n is too large) thus y1

3 We only focus on single fault attacks here.

154 T. Espitau et al.

generation will be sequential. This is the case in the implementation we took as
example where the super memory is linked to the sampler through a 14-bit port.
We may fault a flag or a state register to fool the control logic (here the bliss
processor) and keep part of the BRAM cells to their initial state. If this initial
state is known then we know all the corresponding coefficients and hopefully
the number of unknown ones will be small enough for the attack to work. The
large number of unknown coefficients handled by the attack again helps the
attacker by providing a large time window for the fault to occur. The feasibility
of the attack will mostly depend on the precise flag/state implementation and
the knowledge of memory cells previous/initial value.

There is a second way of performing the fault injection here. The value of y1

has to be stored somehow until the computation of z1 (close to the end of the
signature generation). In the example implementation a BRAM is used. We may
fault BRAM access to fix some coefficients to a known value. A possible fault
would be to set the rstram or rstreg signal to one (Xilinx’s nomenclature).
Indeed, when set to one, this will set the output latches (resp. register) of the
RAM block to some fixed value SRVAL defined by the designer. We may notice
two points to understand why this kind of fault enables the proposed attack.

(i) The value y1 used to compute u will not be the faulted one but this has no
impact on the attack.

(ii) If we do not know the default value for the output register, all coefficients
are unknown but a big part of them are equal to the same unknown default
value. In that case, the attack is still applicable by adding one generator to
the constructed lattice: see Remark 3 in Sect. 3.

Again a large time window is given to the attacker due to sequential read induced
by the size of y1.

The BRAM storage of y1 helps here the attacker since a single bit-set fault
may have effects on many coefficients. The only difficulty seems to be able to
perform a single-bit fault—which seems to be possible according to [33]—and
the rstram signal localization4.

6 Conclusion and Possible Countermeasures

We have shown that unprotected implementations of the lattice-based signature
schemes that we considered are vulnerable to fault attacks, in fault models that
our analysis suggests are quite realistic: the faulty signatures required by our
attacks can be obtained on actual implementations. As a result, countermeasures
should be added in applications where such a physical attacker is relevant to the
threat model.
4 Since y1 is not directly outputted checking if the attack actually worked is a bit

more tricky. Again side-channel collision analysis may help here. We may also notice
that if the faulty y1 is sparse (that is known coefficients have been set to zero) then
the number of non-zero coefficients in the corresponding z1 should be significantly
smaller then for a z1 corresponding to a dense y1.

Loop-Abort Faults 155

Simple countermeasures exist to thwart the single fault attacks proposed.
There are simple, non-cryptographic countermeasures that consist in validat-
ing that the full loop have been correctly performed. This can be achieved for
instance by adding a second loop counter and doing a consistency check after
exiting the loop. Such a countermeasure is very cheap and we therefore recom-
mend introducing it in all deployed implementations.

Nevertheless, it will only detect early-abort faults while an attacker may
succeed in getting the same kind of faulty signature using another technique.
For instance, we mentioned the possibility of faulting BRAM blocks so that they
output a fixed value. For software implementations, the compiler may decide to
put the coefficient in some RAM location which address could be faulted to
point to another part of the memory leading in many coefficients having the
same value. A single fault may also alter instruction cache leading to a nop
operation instead of a load from memory and thus not updating the coefficient.
We propose now other countermeasures that may deal with this issue for both
types of signature schemes we considered.

We have described our attack on the Fiat-Shamir schemes in a setting where
the attacker can obtain a commitment polynomial y of low degree, and it works
more generally with a sparse y, provided that the attackers knows where the non
zero coefficients are located. If the locations are unknown, however, the attack
does not work, so one possible countermeasure is to randomize the order of the
loop generating y. One should be careful that this may not protect against faults
introduced after the very first few iterations, however: in the case of BLISS, for
example, we have seen that we could easily attack polynomials y in which the
non zero coefficients are located in the 20% lower degree coefficients, say; then,
if a fault attacker can collect a few hundred faulty signatures with y of very low
Hamming weight (say 3 or 4) at random positions, they have a good chance of
finding one fault with all non zero coefficients in the lower 20%, and hence be
able to attack.

Another possible approach for the Fiat-Shamir schemes is to check that the
degree of the generated y is not too low. One cannot demand that all its coeffi-
cients are non zero, as this would skew the distribution and invalidate the security
argument, but verifying that the top ε · n coefficients of y are not all zero for
some small constant ε > 0, say ε = 1/16, would be a practical countermeasure
that does not affect the security proof. Indeed, in the case of BLISS for exam-
ple, the probability that all of these coefficients vanish is roughly (1/σ

√
2π)εn,

which is exponentially small. Thus, the resulting distribution of y after this
check is statistically indistinguishable from the original distribution, and secu-
rity is therefore preserved. Moreover, the lattice dimension required to mount
our fault attack is then greater than (1 − ε)n, so it will not work. An additional
advantage of that countermeasure is that it also adapts easily to thwart faults
that cause all the top coefficients of y to be equal to some constant non-zero
value.

Regarding the hash-and-sign signature of Ducas et al., one possible coun-
termeasure is to simply check the validity of generated signatures. This will

156 T. Espitau et al.

usually work due to the fact that a faulty signature generated from an early
loop abort from the GaussianSampler algorithm is of significantly larger
norm than a valid signature: a rough estimate of the norm after m ≤ n iter-
ations is ‖F‖2

√
mq/12 (as q/12 is the variance of a uniform random variable in

{−(q − 1)/2, . . . , (q − 1)/2}), which is too large for correct verification even for
very small values of m. An added benefit of that countermeasure is that even
the correct signature generation algorithm has a very small but non zero prob-
ability of generating an invalid signature, so this countermeasure doubles up as
a safeguard against those rare accidental failures.

Acknowledgments. We would like to thank Keita Xagawa and anonymous reviewers
for useful comments on earlier versions of this paper.

References

1. Commercial national security algorithm suite and quantum computing FAQ.
Technical report, National Security Agency, January 2016. https://www.iad.
gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/
cnsa-suite-and-quantum-computing-faq.cfm

2. Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Marson, G.A.: An efficient
lattice-based signature scheme with provably secure instantiation. In: Pointcheval,
D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 44–60.
Springer, Cham (2016). doi:10.1007/978-3-319-31517-1 3

3. Biehl, I., Meyer, B., Müller, V.: Differential fault attacks on elliptic curve cryp-
tosystems. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 131–146.
Springer, Heidelberg (2000). doi:10.1007/3-540-44598-6 8

4. Bindel, N., Buchmann, J.A., Krämer, J.: Lattice-based signature schemes and their
sensitivity to fault attacks. IACR Cryptology ePrint Archive 2016:415 (2016)

5. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of eliminating errors
in cryptographic computations. J. Cryptol. 14(2), 101–119 (2001)

6. Chen, L., Jordan, S., Liu, Y.-K., Moody, D., Peralta, R., Perlner, R., Smith-Tone,
D.: Report on post-quantum cryptography. Technical report, National Institute
of Standards and Technology, February 2016. http://csrc.nist.gov/publications/
drafts/nistir-8105/nistir 8105 draft.pdf

7. Denchev, V.S., Boixo, S., Isakov, S.V., Ding, N., Babbush, R., Smelyanskiy, V.,
Martinis, J., Neven, H.: What is the Computational Value of Finite Range Tun-
neling? ArXiv e-prints, December 2015

8. Ducas, L.: Accelerating BLISS: the geometry of ternary polynomials. Cryptology
ePrint Archive, Report 2014/874 (2014). http://eprint.iacr.org/

9. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4 3

10. Ducas, L., Lepoint, T.: A proof-of-concept implementation of BLISS. Available
under the CeCILL License at http://bliss.di.ens.fr

11. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 22–41. Springer, Heidelberg (2014). doi:10.1007/978-3-662-45608-8 2

https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
https://www.iad.gov/iad/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/cnsa-suite-and-quantum-computing-faq.cfm
http://dx.doi.org/10.1007/978-3-319-31517-1_3
http://dx.doi.org/10.1007/3-540-44598-6_8
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-642-40041-4_3
http://bliss.di.ens.fr
http://dx.doi.org/10.1007/978-3-662-45608-8_2

Loop-Abort Faults 157

12. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of
NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-34961-4 27

13. Espitau, T., Fouque, P., Gérard, B., Tibouchi, M.: Loop-abort faults on lattice-
based Fiat-Shamir and hash-and-sign signatures. IACR Cryptology ePrint Archive
(2016). Full version of this paper

14. Fontein, F., Wocjan, P.: On the probability of generating a lattice. J. Symb. Com-
put. 64, 3–15 (2014)

15. Gentry, C., Jonsson, J., Stern, J., Szydlo, M.: Cryptanalysis of the NTRU signature
scheme (NSS) from Eurocrypt 2001. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS,
vol. 2248, pp. 1–20. Springer, Heidelberg (2001). doi:10.1007/3-540-45682-1 1

16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.), STOC, pp. 197–206. ACM (2008)

17. Gentry, C., Szydlo, M.: Cryptanalysis of the revised NTRU signature scheme. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 299–320. Springer,
Heidelberg (2002). doi:10.1007/3-540-46035-7 20

18. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112–131. Springer, Heidelberg (1997). doi:10.1007/BFb0052231

19. Bruinderink, L.G., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
- a cache attack on the BLISS lattice-based signature scheme. IACR Cryptology
ePrint Archive 2016:300 (2016)

20. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33027-8 31

21. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). doi:10.1007/
3-540-36563-X 9

22. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W.: Practical
signatures from the partial fourier recovery problem. In: Boureanu, I., Owesarski,
P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 476–493. Springer, Cham
(2014). doi:10.1007/978-3-319-07536-5 28

23. Howe, J., Pöppelmann, T., O’Neill, M., O’Sullivan, E., Güneysu, T.: Practical
lattice-based digital signature schemes. ACM Trans. Embed. Comput. Syst. 14(3),
41 (2015)

24. Howe, J., Pöppelmann, T., O’Neill, M., O’Sullivan, E., Güneysu, T., Lyuba-
shevsky, V.: Practical lattice-based digital signature schemes. In: Slides of
the Presentation at the NIST Workshop of Cybersecurity in a Post-Quantum
World (2015). http://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/
session9-oneill-maire.pdf

25. Kamal, A.A., Youssef, A.M.: Fault analysis of the NTRUSign digital signature
scheme. Cryptogr. Commun. 4(2), 131–144 (2012)

26. Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598–616. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10366-7 35

27. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-29011-4 43

http://dx.doi.org/10.1007/978-3-642-34961-4_27
http://dx.doi.org/10.1007/978-3-642-34961-4_27
http://dx.doi.org/10.1007/3-540-45682-1_1
http://dx.doi.org/10.1007/3-540-46035-7_20
http://dx.doi.org/10.1007/BFb0052231
http://dx.doi.org/10.1007/978-3-642-33027-8_31
http://dx.doi.org/10.1007/3-540-36563-X_9
http://dx.doi.org/10.1007/3-540-36563-X_9
http://dx.doi.org/10.1007/978-3-319-07536-5_28
http://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/session9-oneill-maire.pdf
http://csrc.nist.gov/groups/ST/post-quantum-2015/presentations/session9-oneill-maire.pdf
http://dx.doi.org/10.1007/978-3-642-10366-7_35
http://dx.doi.org/10.1007/978-3-642-29011-4_43

158 T. Espitau et al.

28. Maze, G., Rosenthal, J., Wagner, U.: Natural density of rectangular unimodular
integer matrices. Linear Algebra Appl. 434(5), 1319–1324 (2011)

29. Melchor, C.A., Boyen, X., Deneuville, J.-C., Gaborit, P.: Sealing the leak on clas-
sical NTRU signatures. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp.
1–21. Springer, Cham (2014). doi:10.1007/978-3-319-11659-4 1

30. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237,
pp. 700–718. Springer, Heidelberg (2012). doi:10.1007/978-3-642-29011-4 41

31. Naccache, D., Nguyên, P.Q., Tunstall, M., Whelan, C.: Experimenting with faults,
lattices and the DSA. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp.
16–28. Springer, Heidelberg (2005). doi:10.1007/978-3-540-30580-4 3

32. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. J. Cryptol. 22(2), 139–160 (2009)

33. Ordas, S., Guillaume-Sage, L., Tobich, K., Dutertre, J.-M., Maurine, P.: Evi-
dence of a larger EM-induced fault model. In: Joye, M., Moradi, A. (eds.)
CARDIS 2014. LNCS, vol. 8968, pp. 245–259. Springer, Cham (2015). doi:10.1007/
978-3-319-16763-3 15

34. Page, D., Vercauteren, F.: A fault attack on pairing-based cryptography. IEEE
Trans. Comput. 55(9), 1075–1080 (2006)

35. Peikert, C.: A decade of lattice cryptography. Cryptology ePrint Archive, Report
2015/939 (2015). http://eprint.iacr.org/

36. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures
on reconfigurable hardware. In: Batina, L., Robshaw, M. (eds.) CHES 2014.
LNCS, vol. 8731, pp. 353–370. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3 20

37. Prest, T.: Implementation of the GPV-based scheme of Ducas et al. https://github.
com/tprest/Lattice-IBE

38. Stein, W., et al.: Sage Mathematics Software (Version 7.0) (2016). http://www.
sagemath.org

39. Taha, M., Eisenbarth, T.: Implementation attacks on post-quantum cryptographic
schemes. In: Aleisa, E.A. (ed.) ICACC. IEEE Social Implications of Technology
Society (2015)

http://dx.doi.org/10.1007/978-3-319-11659-4_1
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-540-30580-4_3
http://dx.doi.org/10.1007/978-3-319-16763-3_15
http://dx.doi.org/10.1007/978-3-319-16763-3_15
http://eprint.iacr.org/
http://dx.doi.org/10.1007/978-3-662-44709-3_20
http://dx.doi.org/10.1007/978-3-662-44709-3_20
https://github.com/tprest/Lattice-IBE
https://github.com/tprest/Lattice-IBE
http://www.sagemath.org
http://www.sagemath.org

	Loop-Abort Faults on Lattice-Based Fiat-Shamir and Hash-and-Sign Signatures
	1 Introduction
	2 Description of the Lattice-Based Signature Schemes We Consider
	3 Attack on Fiat-Shamir Type Lattice-Based Signatures
	4 Attack on Hash-and-Sign Type Lattice-Based Signatures
	4.1 Description of the Attack
	4.2 How Many Faults Do We Need?

	5 Implementation of the Faults
	5.1 Classical Fault Models
	5.2 Fault Attacks on Software Implementations
	5.3 Fault Attacks on Hardware Implementations

	6 Conclusion and Possible Countermeasures
	References

