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Abstract. Side-channel attacks against implementations of elliptic-
curve cryptography have been extensively studied in the literature and a
large tool-set of countermeasures is available to thwart different attacks
in different contexts. The current state of the art in attacks and counter-
measures is nicely summarized in multiple survey papers, the most recent
one by Danger et al. [21]. However, any combination of those counter-
measures is ineffective against attacks that require only a single trace and
directly target a conditional move (cmov) – an operation that is at the
very foundation of all scalar-multiplication algorithms. This operation
can either be implemented through arithmetic operations on registers or
through various different approaches that all boil down to loading from
or storing to a secret address. In this paper we demonstrate that such
an attack is indeed possible for ECC software running on AVR ATmega
microcontrollers, using a protected version of the popular µNaCl library
as an example. For the targeted implementations, we are able to recover
99.6% of the key bits for the arithmetic approach and 95.3% of the key
bits for the approach based on secret addresses, with confidence levels
76.1% and 78.8%, respectively. All publicly available ECC software for
the AVR that we are aware of uses one of the two approaches and is thus
in principle vulnerable to our attack.
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1 Introduction

For many years, efficient software implementations of cryptographic algorithms
for constrained embedded processors were mainly restricted to symmetric
ciphers. However, in recent years, various libraries for elliptic curve cryptography
(ECC) have been published that offer acceptable runtime and code size also on
microcontrollers with very limited computational resources, e.g., the 8-bit AVR
ATmega series of processors. Notable examples for these ECC implementations
are summarized in Table 1.

Table 1. Overview of ECC implementations for embedded AVR processors.

Name Description SCA countermeasures

micro-ecc [43] 8/32/64-bit C impl. for NIST
curves

Not documented; apparently
randomized projective
coordinates

nano-ecc [33] Derivate of micro-ecc Same as micro-ecc

µNaCl [23,32,49] Curve25519 for 8/16/32-bit
processors

Constant-time

AVR-Crypto-Lib [53] ECDSA with NIST P-192 None

FLECC IN C [59] 8/16/32/64-bit C impl. for
various curves

Constant time, randomized
projective coordinates

RELIC [2] Various curves and fields
supported

Constant-time

WM-ECC [58] Impl. for sensor networks None

TinyECC [42] Impl. for sensor networks None

MIRACL [13] Lib. supporting multiple
curves

None

WolfSSL [60] Support for AVR unclear None

Wiselib [1] Lib. for distributed systems None

CRS ECC [56] Commercial, closed source None

Due to the fact that an adversary often has physical access to an embedded
device performing ECC operations, implementation attacks and in particular
side-channel analysis (SCA) are severe threats in this scenario. Consequently,
several libraries comprise countermeasures against SCA, for example, by per-
forming computations in constant-time, or by using randomized projective coor-
dinates. The protected implementations are further detailed in Table 1.

Many common SCA countermeasures assume that the adversary needs access
to multiple traces (with identical scalar) to recover the secret key, which inher-
ently protects protocols with ephemeral scalars. In this paper, we challenge this
assumption and target fundamental building blocks of any ECC implementation,
namely conditional moves and loads/stores from/to secret memory addresses.
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We show that template attacks allow to recover most of the secret scalar with a
single trace of elliptic-curve scalar multiplication (ECSM) in both cases, which
in turn renders all currently published ECC implementations for the AVR (and
likely other, similar architectures) insecure.

Note that although this paper focuses on implementations of ECC, our
attacks also apply to exponentiation algorithms as used in, e.g., RSA, classi-
cal Diffie-Hellman, DSA, or ElGamal. We actually expect the attacks to work
even better there, because group elements are larger and thus require more loads
(or conditional moves). We leave this investigation for future work.

Related work. Carefully combining countermeasures like uniformity of mod-
ular operations, (re-)randomization of the projective representation of points,
scalar blinding, point blinding, and random field (or curve) isomorphisms pre-
vent classical side-channel attacks like timing [38], SPA [20], DPA [39], CPA [11]
or collision attacks [25,31]. These attacks require a fixed scalar for multiple mea-
sured power or electromagnetic traces. The main protection relies on the full ran-
domization of intermediate data, including input point, scalar and group, during
the execution of an ECSM [4,19,24]. In this work we consider implementations
based on the Montgomery ladder algorithm, protected by scalar randomization
(SR) and projective-coordinate randomization1.

To overcome the aforementioned countermeasures two kinds of attacks
have emerged: template and horizontal attacks. Although in general template
attacks [14] can be used to attack multiple traces that share the same scalar, we
need to attack ECSM traces independently, because of the SR. Template attacks
combine statistical modeling and power-analysis, and consist of two phases. In
the first phase, called profiling, the attacker builds templates by executing a
sequence of instructions using a fixed scalar (with SR turned off). The second
phase is called matching, in which the attacker matches the templates to attacked
single traces (with SR turned on). The assumption is that the attacker possesses
a profiling device, in order to build templates, that behaves the same as the
target device, and runs the same implementation.

Template attacks on ECC trace back to an attack on ECDSA demonstrated
by Medwed and Oswald [44]. However, this attack requires an offline DPA on the
ECSM during profiling, in order to select the points of interest. Moreover, since
the attack exploits data-dependent leakage it requires profiling with multiple
templates (i.e., 33) while for our attacks two templates are enough. Furthermore,
the attack only needs to recover a few bits of the multiple ephemeral scalars and
can then employ ECDSA-specific lattice techniques to recover the long-term
secret key [10]. This is not possible in the context of our work, since we do not
target ECDSA: an attacker has only a single trace to recover sufficiently many
bits of the randomized scalar using SCA to be able to compute the remaining
bits.

1 The implementations actually attacked apply only projective coordinates randomiza-
tion, however, our attack also works on an implementation with SR enabled, because
we do not make any assumption about the secret scalar, i.e., it may be different from
one execution to another.
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Another template attack on ECC is presented in [30]. This attack follows
a similar approach to our attack, but instead of exploiting address-dependent
leakage, it exploits register location based leakage using a high-resolution induc-
tive EM probe. As a result the attack is considerably expensive to execute. A
template attack on a wNAF ECC algorithm is presented in [61]. However, this
attack is applied to an implementation that is not protected with either, scalar
randomization or base-point randomization. Another approach to attack ECC
are the so called online template attacks [5,22]. These attacks work if SR is
enabled, but not when point randomization is enabled.

The template attack from [16] targets load instructions. However, multiple
traces are required in the attack phase. Therefore, this attack does not work
against implementations protected by SR. The template attack from [28] aims
to extract a random multiplicative mask (base-blinding) out of a single mea-
surement exploiting data leakage; then it is possible to unmask all intermediate
values and run DPA.

Horizontal attacks on RSA [6,8,9,15,17,18,29,54,55,57] and ECC [7,27]
are emerging forms of side-channel attacks on exponentiation-based or scalar-
multiplication-based algorithms. Their methodology allows recovering the expo-
nent bits through the analysis of individual traces. Therefore, these attacks are
efficient against SR even when combined with point and group randomization.
The attacks employ different common distinguishers: SPA, horizontal correlation
analysis [18], Euclidean distance [57], horizontal collision-correlation [6–8,17],
horizontal cross-correlation [27], or clustering [29,55].

An interesting horizontal address-based DPA attack on Montgomery multi-
plications is presented in [15]. The approach is similar to ours, but this attack
exploits Hamming weight leakage of addresses. Furthermore, the analysis in [15]
lacks the results for a full modular exponentiation (only a few iterations are
attacked) and success rates.

The main issue of horizontal attacks is that extracting leakage from a single
unlabeled trace is usually heavily limited by noise. Therefore, we have decided
to attack our state-of-the art implementations, that contains scalar and point
randomizations, using a more powerful attack paradigm, from the point of view
of the attacker setting, namely, template attacks.

Contributions. The main contributions of this paper are threefold:

1. First, by the example of a protected version of μNaCl, we show that the
single-trace leakage of conditional moves within the Montgomery ladder can
be exploited to recover the scalar.

2. Second, we show that a similar attack applies to loads and stores from/to
secret-dependent addresses. In doing so, we show that even implementations
on embedded devices without cache cannot tolerate secret-dependent memory
accesses.

3. Finally, we generalize the method from [26] to tolerate a certain number of
incorrectly recovered scalar bits without relying on normal or side-channel-
enhanced exhaustive search. Furthermore, we present experimental results for
our algorithm.



Attacking Embedded ECC Implementations Through cmov Side Channels 103

Organization of the paper. The remainder of this paper is structured as fol-
lows: in Sect. 2, we review the use of conditional moves in scalar multiplication
algorithms, together with possible countermeasures against side-channel analy-
sis. Then, in Sect. 3, we describe the measurement setup and target implemen-
tation used for our attacks presented subsequently: while Sect. 4 deals with tem-
plate attacks on the (arithmetic) conditional swap within the Montgomery lad-
der, Sect. 5 applies similar methods to recover the scalar by exploiting the leakage
of secret load addresses. Section 6 discusses how to tolerate a certain number
of incorrectly recovered scalar bits more efficiently than by simple exhaustive
search. Finally, we conclude in Sect. 7 with directions for future work, in partic-
ular regarding countermeasures.

2 Scalar Multiplication and Conditional Moves

The most basic scalar-multiplication algorithm is the double-and-add algorithm,
which scans through the bits of the scalar and performs a double operation for
each zero bit and a double-and-add operation for each one bit. This algorithm is
well known to be vulnerable to all kind of side-channel attacks, including power
analysis and timing attacks.

The first step to side-channel protection is to always perform the same
sequence of finite-field operations, independent of the scalar. The most common
approaches to achieve such a structure are either to use (fixed-window) double-
and-add-always scalar multiplication or ladder-based approaches (typically the
Montgomery ladder [45] or, for general Weierstrass curves, the Brier-Joye lad-
der [12]). Another layer of side-channel protection then adds randomization of
the scalar (through one of various blinding methods), and the internal repre-
sentation of points (for example through projective randomization, field isomor-
phisms, or curve isomorphisms). By re-randomizing before or after each ECSM
loop iteration, most horizontal collision or cross-correlation attacks are thwarted.

Interestingly, even with all those countermeasures in place, scalar-
multiplication algorithms contain operations that choose one out of two (or
more) curve points depending on bit(s) of the scalar. An attacker who learns all
of these choices from side-channel information from just one trace, learns all of
the scalar bits used in this scalar multiplication and thus obtains the secret key.
On microcontrollers with restricted register space, there are essentially two dif-
ferent ways to implement this conditional move (cmov): either by loading from
(or storing to) addresses that depend on the secret scalar, or by using arith-
metic operations to perform a conditional register-to-register move. The latter
approach is very common on large processors with cache, where the former app-
roach leaks through cache-timing information. Essentially, the idea is to replace
a computation of the form R ← P [s], where s is a secret scalar bit, by a com-
putation of the form R ← sP [1] + (1 − s)P [0]. Note that this approach does not
require actual multiplications; it is much easier to expand s to a bit mask of all
ones or all zeros and use bit-logical instructions.

Most implementations of ECSM contain considerably more than just one
secretly-indexed load, store, or conditional move. Sometimes this is a choice made
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by the implementors to improve performance (by avoiding otherwise unnecessary
loads and stores); sometimes it is an inherent property of the ECSM algorithm.
For example, the Montgomery ladder needs a conditional swap (cswap) of two
points instead of a conditional move, which requires significantly more operations
that involve the secret scalar bit than a simple cmov (for details, see Sect. 4).

The side-channel attacks described in the remainder of this paper attack
both implementations that make use of secretly indexed memory accesses (in
Sect. 5) and implementations that use the arithmetic cmov operation (or more
specifically, the cswap operation) in Sect. 4. The idea of attacking loads from
secret positions through side-channel information is not new: it is not only used
in various cache-timing attacks (that do not apply to simple architectures such as
the AVR), but it is also the underlying principle of address-bit-DPA [34]. What
is novel is the fact that we need only a single trace. This renders countermeasures
such as scalar blinding and address randomization [35,36] ineffective.

3 Attack Setup

In this section, we describe the targeted implementations, the utilized micro-
controller, our measurement setup. The trace pre-processing, frequency filtering
and alignement, are described in the full paper [48].

3.1 Target Implementations

We target two protected ECSM implementations based on [49]. Both employ
the Montgomery ladder, with the pseudocode given in Algorithm1. The main
difference between the two variants is the realization of the cmov (i.e., the
function cswap coords): The first implementation, described in more detail
in Sect. 4.1, consists of applying an arithmetic conditional swap of the respective
coordinates values of the working points P1 = (X1 : Z1) and P2 = (X2 : Z2).
The second, described in Sect. 5.1, replaces the arithmetic conditional swap by
a conditional swap of pointers to the coordinate values. Both implementations
utilize projective-coordinate re-randomization as the main side-channel counter-
measure. A randomly generated λ ∈ Fp is multiplied with the coordinates of
P1 = (X1 : Z1) and P2 = (X2 : Z2) at the beginning of every ECSM iteration.
We make publicly available the source code for both implementations [47].

3.2 Target Device and Measurement Setup

We carried out our experiments with an ATmega328P 8-bit microcontroller
placed on the target board of the ChipWhisperer [51] side-channel evaluation
platform. While the ChipWhisperer also provides the possibility to capture ana-
log signals (e.g., power consumption or electro-magnetic emanation), we used a
separate oscilloscope (Picoscope 5203) due to the limited bandwidth, memory,
and sample rate of the ChipWhisperer.
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Algorithm 1. Montgomery ladder with arithmetic cswap and randomized pro-
jective coordinates.

// ... initialization omitted ..
bprev ← 0
for i = 254 . . . 0 do

re randomize coords(work)
b ← bit i of scalar
s ← b ⊕ bprev
bprev ← b
cswap coords(work, s)
ladderstep(work)

end for

The targeted ATmega328P has a 32 KB of Flash, 2 KB of SRAM, and 1 KB
of EEPROM. The register file contains 32 registers (R0–R31), among which 6
serve as pointers for indirect 16-bit addressing and have the following aliases: X
(R27:R26), Y (R29:R28) and Z (R31:R30). Arithmetic instructions take 1 cycle,
with the exception of multiplication instructions, which take 2 cycles. Loads
and stores from/to SRAM take 2 cycles. Loads from Flash take 3 cycles. More
technical details about the target device are given in the full paper [48].

4 Attacking Arithmetic Cswaps

In this section, we describe a template attack on conditional swaps (cswaps)
in the Montgomery ladder step. In our case, the cswap is implemented using
Boolean and arithmetic operations in constant time.

4.1 Target Implementation

In the Montgomery ladder (Algorithm1), the function cswap coords imple-
ments the cswap (based on input bit s) by first creating a mask m, which is
either 0x00 or 0xFF for s = 0 and s = 1, respectively, by setting m = −s
(assuming m, s are 8-bit values). Then, a (conditional) XOR swap is executed
as follows:

Listing 1.1. Conditional XOR swap.

1 ld xx , X ; X register points to first value

2 ld yy , Z ; Z register points to second value

3 mov tt, xx

4 eor tt, yy

5 and tt, m ; tt = (xx XOR yy) AND m

6 eor xx, tt ; xx = xx XOR tt

7 eor yy, tt ; yy = yy XOR tt

8 st X+, xx ; Store first value

9 st Z+, yy ; Store second value
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In other words, if m = 0x00 (s = 0), tt = 0 and the XORs xx = xx ⊕ tt and
yy = yy ⊕ tt leave the values unchanged. Otherwise, if m = 0xFF (s = 1), we
have a standard XOR swap, i.e., xx = xx ⊕ xx ⊕ yy = yy (equivalent for yy).

4.2 Template Generation and Matching

We generated templates for the and instruction (line 5 of Listing 1.1), grouping
the traces in the profiling set into two sets V0 and V1. Traces in V0 represent
those where m = 0 (i.e., an AND with 0x00), while V1 are traces where m = 0xFF.
Note that the traces were cut to only contain the clock cycle for the targeted
and instruction, i.e., each trace is 64 · 67 = 4288 samples long (cf. Appendix
2 of the full paper [48]). For Vi, i = 0, 1, we subsequently computed templates
consisting of the pointwise mean vector μ(i) and the covariance matrix Σ(i) [14].
Note that the two possible leakages 0x00 (all bits zero) and 0xFF (all bits one)
can be expected to be maximally (or at least to a large degree) different, which
should facilitate template attacks in this particular case.

We matched the templates to the traces in the test set with the standard app-
roach, i.e., computing the respective probabilities using the multivariate normal
distribution pdf and identifying the template with the highest probability to
recover the respective bit of the scalar. The respective success rates wrt the size
of the profiling set are given in Sect. 4.3.

Classification. For each template we computed the Euclidean distance between
the sample vector and the template mean vector. The template (T0 or T1) that
results in the smallest distance is considered the best match for the sample
vector. In this attack, the index of the closest template (0 or 1) corresponds to
the swap bit.

Confidence score and confidence level. For the first classification method
we derived a simple confidence score on the recovered bit value based on the
distances (d0 and d1) to each template. It varies linearly for a particular d0 + d1
value, ranging from 0 (no confidence) and 1 (full confidence):

conf score = 2 ·
∣
∣
∣
∣
0.5 − min(d0, d1)

d0 + d1

∣
∣
∣
∣

(1)

We furthermore define the confidence level of a given trace (in the test set)
as follows: Let us call a recovered bit suspicious if its confidence level is less than
the greatest confidence score of any falsely identified bit (whereas this threshold
is determined experimentally in the profiling phase). Then, the confidence level
is the percentage of bits that are not suspicious, i.e., that can be unambiguously
recovered. Note that the average confidence level (over all number of traces in
the test set) is always less than or equal to the average success rate, since an
incorrectly recovered bit is always suspicious.

4.3 Attack Results

Figure 1 shows the average and best case success rates (computed over all
255 scalar bits), together with the respective confidence levels over the number
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of traces used for template generation and matching. Note that each full trace
comprises 255 ECSM iterations, which were all used for generating the templates
– in other words, each full trace contributes 255 “effective” traces to the profiling
set.

The traces used for template generation and matching were taken from dif-
ferent trace sets (coming from different capture sessions). The same number of
traces was used for profiling and testing, i.e., a given value on the horizontal axis
of Fig. 1 is the same for profiling and testing.

Fig. 1. Success rates for the template
attack on cswap for different number
of full traces.

Fig. 2. Results for the template attack
on loads/stores for different number of
full traces.

As evident in Fig. 1, already for 10 full traces (i.e., about 2,550 effective
traces), the average success rate reaches 96.71%, i.e., we can recover most of
the bits of the scalar. Furthermore, the best success rate reaches 99.6% with the
confidence level 76.1%. By increasing the number of traces, both success rate and
confidence level change only minimally; due to the strong leakage of the targeted
device, most information can be already extracted with a low trace count.

5 Attacking Secret-Dependent Memory Accesses

In general, ECC (and in particular NaCl-derived) implementations avoid loads
from secret-dependent addresses altogether due to the possibility of cache-timing
attacks. However, for embedded implementations without caches, secret load
addresses are sometimes deemed acceptable. In this section, we show that tem-
plate attacks can be employed to exploit this leakage.

5.1 Target Implementation

The targeted implementation replaces the cswap of the (X1 : Z1) and (X2 : Z2)
coordinates values used in the targeted implementation in Algorithm1 by work-
ing with pointers to those coordinates, and conditionally swapping these point-
ers. Besides being slightly faster, this implementation also potentially exhibits
less leakage, because it uses the secret-dependent mask m in an AND operation
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only twice for each pointer cswap2, rather than 32 times as in the ECSM imple-
mentation based on arithmetic cswap (cf. Sect. 4.1).

However, in implementations of finite-field operations both input and output
operands are pointers. The values of these pointers are addresses to the memory
holding the actual field element value, and those addresses directly depend on
whether the swap occurred or not, which in turn depends on the value of the
secret mask bit.

AVR memory access instructions internals. Memory access instructions
(loads and stores) on an AVR take 2 clock cycles to execute. According to the
ATmega328 datasheet [3], the effective address for such instructions is computed
in the first cycle, while during the second cycle, the data word is read (load) or
written (store) if the effective address is valid. Our proposed attack focuses on the
address leakage of memory access instructions, and thus any data-dependency
may negatively impact the attack success rate if not detected and mitigated.
Therefore, we take advantage of this architectural feature by using only the
samples from the first clock period of such instructions.

Targeted loads and stores. During each iteration of the Montgomery ladder,
the actual field arithmetic occurs in the so-called ladderstep function (cf.
Algorithm 1). We target the loads and stores addresses in the first three field
operations in ladderstep, i.e., addition, subtraction, and addition. Each of
these operations has two Fp inputs (a and b) and one output r.

Finite-field addition and subtraction are implemented with reduction mod-
ulo 2256 − 38. The reduction step also execute loads and stores, of which the
samples are also used for template creation and matching. Listing 1.2 shows a
small segment of the execution trace containing the loads of the first operands
bytes and the store of the first byte of the result (before reduction):

Listing 1.2. Segment of the execution trace for a field addition.

1 0x171a: fp_add +0x5 LD R20 , X+ ; first byte of a

2 0x171a: fp_add +0x5 CPU -waitstate

3 0x171c: fp_add +0x6 LD R21 , Y+ ; first byte of b

4 0x171c: fp_add +0x6 CPU -waitstate

5 0x171e: fp_add +0x7 ADD R20 , R21

6 0x1720: fp_add +0x8 ST Z+, R20 ; first byte of r

7 0x1720: fp_add +0x8 CPU -waitstate

Our oscilloscope’s memory is divided into 255 segments, each of which is
65 kSample in length. A memory segment holds the samples captured from a
single ECSM iteration. Due to the 65 kSample limit for each ECSM iteration, we
were able to capture the samples from all the loads and stores from the first field
addition and the first field subtraction, but only half of the loads and stores from
the arithmetic part of the second field addition. Note that the memory limitation

2 For the AVR architecture, pointers are 16 bit wide and one AND with the secret-
dependent bit is required to cswap a byte. Thus a pointer cswap requires two ANDs.
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is due to the relatively low-cost oscilloscope we used—high-end equipment would
further facilitate the presented attack.

Table 2 shows the number of executed instructions of each type that are used
in the attack. We used a total of 372 instructions, which are concatenated into a
single sample vector. After trace preprocessing, 67 power samples are available
per clock cycle, and as only the first clock period of a memory access instruction
is used, the sample vector per ECSM iteration has nv = 24, 924 samples.

Table 2. Number of executed instructions of each type that are used in the attack.

Type 1st fp add fp sub 2nd fp add Total

LD R20, X+ 32 32 16 80

LD R21, Y+ 32 32 16 80

LD R20, Z+0 33 33 0 66

ST Z+, R20 65 65 16 146

5.2 Template Generation

Each load or store instruction accesses at most two possible addresses. If it
always accesses the same address, then it does not provide useful leakage relevant
for the attack. Considering only those loads and stores that may access two
addresses, during any execution of the ladderstep, only two distinct sequences
of addresses can be accessed: Anoswap, containing the addresses accessed before
the first pointers swap has taken place3, i.e., an even state (noswap state); and
Aswap containing the addresses accessed in an odd state (swap state).

First, we grouped the sample vectors into two sets. The first set, V0, consists
of the load/store sample vectors for addresses in the set Anoswap, while the
second set, V1, contains those originating from addresses in set Aswap. Then,
we computed various statistics for each sample index of Vi, i = 0, 1: mean μ(i),
standard deviation σ(i), median md(i), as well as lower l(i) and upper u(i)

percentiles (the actual percentiles used are discussed in Sect. 5.3). The collection
of these statistics for V0 and V1, called T0 and T1, are the two possible templates.

5.3 Point-of-Interest Selection

The POI selection consists of using the lower and upper percentile vectors l(i)

and u(i) (i=0,1) to compute the intersection of the pair of intervals [l(0)j , u
(0)
j ]

and [l(1)j , u
(1)
j ] for each sample index j = 1, . . . , nv. The sample indices where the

intersection is empty are the considered POIs.

3 These addresses are the same as those accessed after the 2nd but before the 3rd swap,
or after the 4th but before the 5th swap, and so on.
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Intuitively, the sample indices with an empty intersection are those that are
good distinguishers for the two templates, because in these points the samples
tend to be clustered around the median (and also typically around the mean) of
one template, rather than being scattered.

Different values for the lower and upper percentiles may give a different
number of POIs, and that directly affects the success rate and confidence level
of the attack. Thus, we tested the attack for different pairs of values for these
parameters, ranging from wider and more selective percentiles (12.5, 87.5)4 to
narrow, less selective (40, 60). We emphasize that the POI selection is completely
based on the samples of the traces used for the generation—it does not depend
on the samples of the trace being attacked (i.e., the sample vector to classify).
In fact, the POIs are represented as a Boolean vector used during template
matching to select the samples from the target trace vector to be classified.

POI selection refinements. To improve the confidence level of the attack, we
tested two POI selection refinements, as explained above. First, we noticed that
when using more selective percentile parameters, the current selection method
returned sample indices that were clustered in a few instructions, while most of
the remaining instructions were not covered by any sample, although they should
in theory contribute some leakage. To make the POIs more evenly distributed
and exploit leakage from all useful instructions, we forced a minimum of one
sample index per instruction to be included in the POI vector. If there was no
sample index for a given instruction in the current POI vector, one was randomly
selected. Second, also due to the clustering of the POIs in a few instructions,
we limit the number of samples per instruction to one. In the case that sample
indices had to be removed, we selected those randomly as well.

5.4 Template Matching

At first, without using any POI selection, we tried to use the standard multivari-
ate Gaussian model, taking advantage of both the mean vector and covariance
matrix computed from V0 and V1 (also known as complete templates) similar to
the approach of Sect. 4. However, in contrast to Sect. 4, the sample vectors to
be classified and the mean template vectors are relatively long (24, 924 samples)
and relatively similar to each other (i.e., their Euclidean distance is very small),
numerical instability issues due to almost singular matrices arose during the
computation of the probability density function. For those reasons, we decided
to use reduced templates instead, which uses only the mean vectors.

After applying POI selection, the matched sample vectors are much smaller,
and thus full templates could then in principle be applied, as the covariance
matrices would not lead to numerical instability. However, due to the high success
rates achieved using the reduced templates, we decided to not use full templates
to avoid increasing storage and computational requirements.

We also evaluated the effect on the attack success rate and confidence level
of compressing the sample vector using normal and absolute sum for different
4 I.e., the lower is the 12.5-percentile and the upper is the 87.5-percentile.
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window lengths. In addition, we applied a straightforward outlier detection to
remove samples that have likely been subject to larger distortions: In the match-
ing phase, we discarded all samples that have a distance of more than a multiple
of standard deviations to the mean trace at the respective point in time. Using
reduced templates, template matching boils down to computing the (squared)
Euclidean distance between the sample vector to match and the template mean
vectors. The lower that distance is, the stronger is the match. In this case, other
distinguishers can be used in a straightforward way, and thus we also tested the
attack using the Pearson correlation coefficient.

Classification methods and confidence score. As a first classifica-
tion method to test, we selected the template closer to the sample vector
(cf. Sect. 4.2). We also tested majority voting classification, where each sample is
individually classified, also based on its distance to the corresponding element in
the templates mean vectors, and the majority vote wins. In both cases, as each
template directly corresponds to a scalar bit value, the classification output is
the recovered bit value. The confidence score was computed in the same way as
in Sect. 4.2.

5.5 Attack Results

Figure 2 depicts average and best case success rates for the template attack
on secret-dependent memory accesses for the best and average cases. Again,
as in Sect. 4.3, the trace sets used for template generation and matching were
recorded in different capture sessions, and the same number of traces was used
for each set. Again, only a limited number of profiling traces was sufficient to
reach success rates exceeding 90%; the best success rate reaches 95.3% (there
are only 12 errors) with the confidence level 78.8% (the 12 errors are included in
the 54 suspicious bits). To investigate the effect of various pre-processing steps
and attack parameters, using 10 traces we investigated the average success rate
and confidence level depending on various attack parameters. In particular, we
investigated various signal frequency filtering options, POI selection methods,
classification and compression methods, outlier filtering, and distinguishers; the
result of the investigation are described in the full paper [48]. The best parame-
ters that we discovered, were used to perform the main attack described in this
section.

6 Error Detection and Correction

Due to noise, data leakage (note that we are aiming at exploiting the address
leakage only), and other aspects that interfere with the side-channel analysis
(misalignment, clock jitter, etc.), the derivation of the final scalar for a single
trace likely contains errors. If the amount of wrong bits is sufficiently small,
then a brute-force attack may still be feasible. However, first the attacker needs
a metric to indicate the location of the possible wrong bits in the recovered
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scalar. The notion of suspicious bits (cf. Sect. 4.2) can be used as a reference for
the scalar bits selection with respect to a brute-force attack.

Let us consider the trace with smallest amount of suspicious bits from the
experiment from Sect. 5; for this trace there are 54 suspicious bits that comprise
all falsely identified bits. Unfortunately, to recover a full randomized scalar, even
in this case, the attacker needs 254 operations, which is generally impractical.
Note, that we consider only the worst-case complexity and not the average case.

To improve upon the brute-force search complexity, there are two options.
The first approach is to try to exploit the distribution of suspicious bits for
incorrectly (red) and correctly (blue) recovered bits (Fig. 3). While there is a
clear trend for incorrect bits to have lower confidence score, the intersection
between correct and incorrect bits is large. Still, it may possible to exploit the
trend with an informed brute force attack [40], prioritizing bits with the lowest
confidence score. Unfortunately this attack works well if the bits containing
errors are adjacent to each other and that is not the case in our setting.

Fig. 3. Distribution of confidence scores over all traces for suspicious bits. Red: incor-
rectly recovered bits, blue: correctly recovered but suspicious bits. (Color figure online)

Alternatively (or combined with the informed brute-force search), we apply
the second algorithm from [26], which is originally designed for square-and-
multiply chains, to the Montgomery ladder. We describe how the algorithm
works using the aforementioned example trace, which contains s = 54 suspicious
bits, as an example. Let us represent the indices of these bits as a list sorted in
descending order: is, . . . i1, where each ij ∈ {0, . . . 254} and s ≥ j ≥ 1; note that
there are 255 bits in total. Let x denote the bit index i� s

2+1� (namely, i28 for the
example trace). Let a be the number represented by the bit string corresponding
to the left part of the scalar from x (including ix) and let b be the number cor-
responding to the bit string of the (least significant) right part. Furthermore, we
know that R = [k]P , where R is the resulting point, k the scalar to be recovered,
and P the input point. Then, clearly R = [k]P = [a·2ix +b]P = [a]([2ix ]P )+[b]P .
If we denote [2ix ]P by H, then the above equation reduces to

R − [b]P = [a]H (2)

We can use Eq. 2 to check correctness of our guess. Now, following [26], we use
a time-memory trade-off technique to speed up an exhaustive search: Consider
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all different possible guesses for a. For each guess, we compute [a]H and store
all pairs (a, [a]H). We then sort all pairs based on the value of [a]H and store
them in an ordered table.

Next, we make a guess for b and compute z = R − [b]P . If our guess for
b is correct, then z is present in the second column of some row in the table
we built—the first column is the corresponding a. Finding such a pair can be
done using binary search, as the table is sorted as per the second column. If
z is present, we are done since we have determined the scalar. Otherwise, we
make a new, different guess for b and continue. Since there are approximately
2

s
2 guesses for a and b, the time complexity is O(2

s
2 ) operations. As there are 2

s
2

guesses for a, the table has that many entries and the space complexity is O(2
s
2 )

points. This way, we limit the time complexity to O(2
s
2 ) (cf. [26] for a detailed

complexity analysis), which is 227 for the example trace.
We do not know which trace contains the smallest number of suspicious

bits since we do not know the maximum confidence score of a falsely identified
bit. However, to use the above algorithm we assume that we know the num-
ber of suspicious bits to be bruteforced to recover the correct scalar. This can
be determined by using templates to attack some traces, for which we know
the randomized key. Furthermore, note that if the attack fails, we can extend
the execution to the second most likely suspicious bit and reuse the previously
obtained data. Based on our experiments, we determined that the number 54 of
suspicious bits should cover all falsely identified bits for at least one trace. Our
complete attack works as follows: we run the above algorithm sequentially for
each of the n traces. We stop the attack as soon as the time-memory trade-off
technique succeeds for one trace.

Since we are running the attack n times, the complexity of the complete
attack is multiplied by n. It totals to O(n · 2

s
2 ) operations and O(n · 2

s
2 ) points

in memory. For the attack from the previous section, this corresponds to 100 ·
227 = 232 operations. Therefore, we conclude that the scalar can be recovered
successfully and efficiently even in the presence of multiple errors and uncertain
bits (for experimental results see Sect. 6.1). Furthermore, we believe that the
above technique may be of independent interest since it can be applied to a
commonly used ECSM algorithm, i.e., Montgomery ladder, even if errors are
randomly spread across the scalar recovered by the SCA attack.

6.1 Algorithm Implementation and Experimental Results

The first challenge we faced is how to compute the point subtraction in Eq. 2.
Curve25519 is a curve in the Montgomery form, and as such, there is an efficient
formula for differential point addition using XZ coordinates, but no efficient
formula to compute a standard point addition, as far as we know. For that
reason, we decided to do the point addition in affine coordinates, which costs a
field inversion and a few multiplications. However, to use them we need to know
the y-coordinates y(R) and y([b]P ). The attack assumes that x(R) (the ECSM
output) is known, but y(R) is not, and thus has to be computed. To do so, we
use the curve formula directly to compute the two possible values for y(R), at
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the cost of a field square root, an expensive operation, but it has to be done only
once for each value of R. In the case of y([b]P ), an efficient algorithm by Okeya
and Sakurai [52] costs one field inversion.

To generate the table of precomputed points A = [a]H and to compute
B = [b]P in Eq. (2), the naive approach is to compute a full ECSM for each value
of a and b. A more efficient method is to apply Gray coding to the suspicious bits
in scalars a and b. One property of such a code is that consecutive code words
differ in just a single bit, which means that, in our context, we can generate
[k′]P from [k]P using a single point addition (if the bit changed from 0 to 1) or
point subtraction (if the change is from 1 to 0), where k and k′ are scalars whose
unknown bits are represented as Gray code words, and the code word in k′ is the
successor of the respective code word in k. To compute the sequence of points
[ki]P (i = 0, 1 . . .), we first construct the scalar k0, by setting the unknown bits
to zero and the (assumed correct) recovered bits from the output of the SCA
attack to their respective values. Then, we apply the full ECSM algorithm to
compute [k0]P , and from there we use the aforementioned method to generate
the sequence of points [k1]P, [k2]P . . . , which costs essentially a point addition
per each computed point.

We implemented the key recovery algorithm with the aforementioned arith-
metic-level optimizations as a single-threaded program. We tested our imple-
mentation in a smaller scale, to recover 40 suspicious bits of a scalar on a PC
with 8 GB of RAM total, but only 5 GB available for the program, a i7-3740QM
CPU, running at 2.7 GHz. It took 1h23 to recover the correct scalar, where about
1.5 ms is spent to add a single entry to the table and about 3 ms to test a possible
value of b. By using these time values as a reference, we estimate that the time
for the recovery of a scalar with 60 suspicious bits using the current implemen-
tation is around 18 days. The source code of the key recovery implementation is
publicly available [46].

7 Conclusions and Possible Countermeasures

In this paper we show that the single-trace data leakage of conditional moves
can be exploited to recover the scalar using a template attack. We also show
that a similar attack applies to address leakage due to loads and stores from/to
secret-dependent addresses. Furthermore, we generalize the method from [26] to
tolerate a certain number of incorrectly recovered scalar bits without relying on
normal exhaustive search.

Now we discuss possible countermeasures against our attack. We consider
evaluating or improving our attack to work against these countermeasures as
future work. First of all, note that any countermeasure based on modifying the
base point before or during the scalar multiplication does not protect against
our attacks, since they aim at exploiting address-dependent and the cswap leak-
age. Similarly, scalar blinding or splitting does not affect the attack, since we
require only one trace and could hence recover the blinded or split scalar. The
knowledge of the randomized scalar (or the split scalars) is sufficient to either
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recover the original scalar or to compute the correct scalar multiplication result.
A potential countermeasure against our attack is presented in [50], perform-
ing online data randomization during the exponentiation to prevent horizontal
collision-correlation attacks. The main idea is to the split scalar to two parts
and to randomly interleave two scalar multiplications. However, we believe that
our attack might still be mounted if four templates are used to recognize which
bit is processed and during which ECSM.

The idea behind Itoh et al. [34] memory-address countermeasure is to store
sensitive variables at different memory addresses, but with the same Hamming
weight. We believe that although this would cause our attack to be less effec-
tive, the addresses leakage may still be identified by template matching. Ran-
domization of memory addresses of the coordinates used in the Montgomery
ladder before the ECSM might lead to our attack being less effective, since the
templates are prepared assuming fixed addresses. The above countermeasure
can be improved by randomizing not only the addresses but also the memory
accesses [35–37].

The countermeasure of [30] protects against localized EM template attacks
on the ECC Montgomery ladder. The main idea is to randomly swap the ladder
registers at the end of a ladder iteration; the addressing of the registers within
the loop is inverted according to whether the registers have been swapped. The
countermeasure is uniform in its operation sequence, and hence, our template
attacks would be infeasible in principle. In addition, several randomization tech-
niques protecting the Montgomery ladder are presented in [41]. Similarly to the
countermeasure of [30], these techniques generate operation sequences indepen-
dent from the scalar. Thus we assume that our attack would be less effective
or ineffective against them. We therefore regard as future work evaluating and
improving our attacks with respect to the three latter countermeasures.
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7. Bauer, A., Jaulmes, É., Prouff, E., Reinhard, J., Wild, J.: Horizontal collision
correlation attack on elliptic curves - extended version -. Cryptogr. Commun. 7,
91–119 (2015)

8. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-
channel attacks against secure RSA implementations. In: Dawson, E. (ed.) CT-
RSA 2013. LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-36095-4 1

9. Bauer, S.: Attacking exponent blinding in RSA without CRT. In: Schindler, W.,
Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 82–88. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-29912-4 7

10. Benger, N., van de Pol, J., Smart, N.P., Yarom, Y.: “Ooh aah... just a little bit”: a
small amount of side channel can go a long way. In: Batina, L., Robshaw, M. (eds.)
CHES 2014. LNCS, vol. 8731, pp. 75–92. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44709-3 5

11. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-28632-5 2
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curve. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162,
pp. 126–141. Springer, Heidelberg (2001). doi:10.1007/3-540-44709-1 12

53. Otte, D.: Avr-crypto-lib (2016). https://git.cryptolib.org/avr-crypto-lib.git
54. Perin, G., Chmielewski, �L.: A semi-parametric approach for side-channel attacks

on protected RSA implementations. In: Homma, N., Medwed, M. (eds.)
CARDIS 2015. LNCS, vol. 9514, pp. 34–53. Springer, Cham (2016). doi:10.1007/
978-3-319-31271-2 3

http://dx.doi.org/10.1007/3-540-68697-5_9
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/3-540-48405-1_25
http://dx.doi.org/10.1007/978-3-319-16763-3_7
http://dx.doi.org/10.1007/978-3-319-24018-3_11
http://discovery.csc.ncsu.edu/software/TinyECC/ver1.0/index.html
http://discovery.csc.ncsu.edu/software/TinyECC/ver1.0/index.html
https://github.com/kmackay/micro-ecc
http://dx.doi.org/10.1007/978-3-642-00306-6_2
https://github.com/enascimento/SCA-ECC-keyrecovery
https://github.com/enascimento/SCA-ECC-keyrecovery
https://github.com/enascimento/sac2016-avr-target-impls
https://eprint.iacr.org/2016/923
https://eprint.iacr.org/2016/923
http://dx.doi.org/10.1007/978-3-319-24126-5_17
http://dx.doi.org/10.1007/978-3-319-19962-7_7
http://dx.doi.org/10.1007/978-3-319-10175-0_17
http://dx.doi.org/10.1007/3-540-44709-1_12
https://git.cryptolib.org/avr-crypto-lib.git
http://dx.doi.org/10.1007/978-3-319-31271-2_3
http://dx.doi.org/10.1007/978-3-319-31271-2_3


Attacking Embedded ECC Implementations Through cmov Side Channels 119

55. Perin, G., Imbert, L., Torres, L., Maurine, P.: Attacking randomized exponentia-
tions using unsupervised learning. In: Prouff, E. (ed.) COSADE 2014. LNCS, vol.
8622, pp. 144–160. Springer, Cham (2014). doi:10.1007/978-3-319-10175-0 11

56. Sigma. ECDSA and ECDH cryptographic algorithms for 8-bit AVR microcon-
trollers. http://www.cmmsigma.eu/products/crypto/crs avr010x.en.html

57. Walter, C.D.: Sliding windows succumbs to big mac attack. In: Koç, Ç.K.,
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