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Abstract. Improved Rotating S-box Masking (RSM2.0 for short) is a
well-known countermeasure designed and implemented by DPA Contest
V4.2 committee to provide security protection for AES-128. By combining
both 1st-order masking and shuffling techniques, improved RSM claims to
offer at least non-profiled resistance for its software implementation and
up to now no systematic research has been published to challenge such
security claim yet. To study the practical security of RSM2.0 against non-
profiled attacks, we first propose an analytical methodology to guide the
detection of the exploitable vulnerabilities in RSM2.0. On the basis of the
methodology, several potential flaws hidden in both the algorithm design
and detailed implementation of RSM2.0 are discovered and we make use
of them to design six attacking schemes in total, all of which belong to
non-profiled attacks. Four representative attacks are eventually imple-
mented and submitted to DPA Contest V4.2 for official evaluation and
the results show that all the submitted attacks are both practical and fea-
sible. Among them, the best attack scheme requires only 257 power traces
to crack the complete 128-bit master key with 80% success rate. To fur-
ther improve the security level of RSM2.0, we also discuss some possible
strategies to eliminate or mitigate the threats proposed by us.

Keywords: Side-channel analysis · 1st-order masking schemes · Shuf-
fling · Non-profiled attack · Second order CPA · DPA Contest V4.2

1 Introduction

Adding side channel resistances is indispensable for modern cryptographic
devices to thwart the potential attack first proposed by Kocher et al. in [1].
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The basic idea of the attack is to collect the observable leakages derived from
the operations of sensitive intermediate values and make use of them with the
help of statistical methods to deduce the hidden secret in the devices, generally
the cryptographic key. Masking and shuffling are two classic countermeasures
most extensively studied to enhance the security level of cryptographic devices.
By bringing in random numbers, masking schemes [2–4] divide each sensitive
intermediate value into several individual parts while keeping each part random.
This scheme cuts off the relationship between the hidden secret and the direct
leakage from sensitive intermediate value, thus efficiently resisting the common
statistical analysis methods in side channel areas such as [1,5,6]. On the other
hand, shuffling schemes [7,8] provide the side channel protection from another
perspective, namely time dimension. With the help of randomized index table,
shuffling schemes either disorder the execution path of cryptographic algorithm
or randomly insert the dummy operations, thus randomizing the leakage posi-
tion of each sensitive intermediate value and putting up obstacles to most of the
analysis methods that mainly rely on the constant leakage instant.

To counteract possible attacks against one single defense strategy and achieve
a higher security level, combining both masking and shuffling has been a ten-
dency [3,9–11] in the design of side channel countermeasures. Among them,
improved RSM [11] is a most recent and well-known countermeasure proposed
by DPA Contest V4.2 committee to provide security protection for AES-128.
Improved from the original RSM [12], RSM2.0 updates the original masking
strategy with newly introduced offset array and performs shuffled operations
with the help of the shuffle array, thus aiming to counteract the existing non-
profiled attacks proposed in V4.1. An attack is considered to be non-profiled
when adversaries don’t have the chance to build the precise leakage model of
the device they target in a previous training phase, such as DPA [1], CPA [5]
etc. Thus, compared with classic profiled method, such as template attack [13]
or stochastic model [14], non-profiled attacks usually require more power trace
for secret extraction but show a higher security risk.

The combined countermeasure in RSM2.0 shows its resistance to non-profiled
attacks in the following way. On the one hand, one byte of offset index is super-
seded by an offset array of sixteen bytes which determine the mask usage for
all state1 bytes independently. By this means, the second order attack proposed
by Zhou et al. [15] which combines S-box output with input mask mi and the
masked plaintext with mask mi+1 doesn’t work anymore. It’s also impossible to
exploit the significant power difference when operating on mask 0xFF and 0x00
for offset recovery [16] or to perform two kinds of constructive collision attacks
proposed also in [16] since the relationship of mask usage within the first and
last round has been cut off. On the other hand, the employment of shuffle array
completely disorders the predictable sequence of mask S-box execution both in
the first and last round, causes changeable execution window of the concerned
S-boxes and results in the obstacle to perform constant instant related attacks,
such as 1st-order attack [17] or second order attack which relies on the leakage

1 State denotes the basic data unit of 4 by 4 matrix as defined in standard AES-128.
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preprocessing of two instantaneous moments. Furthermore, V4.2 committee also
rewrites the implementation in assembly code and precharges the specific state
registers before overwritten by new numbers. Thus the constructive first-order
attack proposed in [18] by exploiting hamming distance leakage between the
input and output of masked S-box doesn’t work anymore.

According to the official evaluation, we are the first to launch the non-profiled
attacks against RSM2.0, and this is also the first paper to systematically ana-
lyze the potential non-profiled vulnerabilities hidden in RSM2.0. Although some
other attack schemes have also been submitted to official website [19], almost
all of them belong to profiled schemes where attackers have to perform a train-
ing phase with large quantities of power traces in order to characterize the real
leakage model of the targeted device. Such kind of attacks are capable to recover
secret key within several power traces but require a stronger assumption for the
abilities of the attackers. In this paper, we are only dedicated in the attacks of
non-profiled type.

The contribution of this paper mainly lies in the following aspects. We make
use of an analytical methodology to guide the search of exploitable flaws both
in the algorithm design and implementation of RSM2.0. Then, on the basis of
the discovered non-profiled flaws, we come up with several attack schemes, more
precisely second order schemes and its variants. Four of the attacks are eventually
implemented as examples to validate the usability of the flaws. Official results
show that all of our uploaded attacks are both feasible and practical. And the
best scheme require only 257 traces to recover the AES-128 master key with 80%
global success rate(GSR), thus breaking the security claim of RSM2.0 for the
first time. Furthermore, in order to eliminate or mitigate the threats proposed
by us, some possible countermeasures are also discussed in this paper.

The rest of the paper is organized as follows. In Sect. 2 we review the detailed
algorithm design of RSM2.0, especially the countermeasures newly added to pre-
vent the enhanced implementation from some known attacks. Then, in Sect. 3,
we first explain the analytical methodology used to restrict the range of vul-
nerability detection and then point out several potential flaws hidden in either
the design or implementation of RSM2.0. Besides, the reasons of flaw generation
are also clearly explained in this section. Afterwards, in Sect. 4, we show our
practical attack processes together with the official evaluation results of our four
exemplary attacks. Furthermore, the discussion of some possible countermea-
sures is presented in Sect. 5. Finally, we conclude our work in the last section of
the article.

2 Improved RSM Scheme

In this section, the algorithm details of improved RSM are described explicitly.
The description focuses on the mask usage and tracking in the algorithm flow
and also on some important features newly brought in, including the shuffling
countermeasure and the offset array. What’s worth mentioning is that, for the
simplicity of description, we omit “modulo 16” after all the addition operation
used hereafter unless special explanation is made.
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2.1 Algorithm Description

Mask array, offset array and shuffle array, denotes as M[], O() and Sf[] respec-
tively, are three core components to build up the whole RSM2.0 scheme.

Mask array is designed to be a fixed and publicly known array of 16 bytes.
The latest values are chosen meticulously with the goal to not only min-
imize the mutual information leakage [20] but also take side-channel indis-
tinguishability [21] into consideration. We denote each individual value in
the array as M[i], i ∈ [0, 15], and the whole mask array can be specified
as {0x03, 0x0c, 0x35, 0x3a, 0x50, 0x5f, 0x66, 0x69, 0x96, 0x99, 0xa0, 0xaf, 0xc5,
0xca, 0xf3, 0xfc}.

Offset array contains 16 four-bit random numbers which range from 0 to 15
and are refreshed in each encryption. It cooperates with Mask array to randomly
and independently select mask values which provide the initial protection for
the input state in each encryption round. That is, according to each offset byte,
noted as O(i), i ∈ [0, 15], mask M[O(i)+r] is picked out and later Xored with the
sensitive input variable at the start of each encryption round, where r ∈ [0, 9]
represents the round index. We denote such input masks in each round as Maskr,
and it can be represented in the form of a mask state:

Maskr =

⎛
⎜⎜⎝
M [O(0) + r] M [O(4) + r] M [O(8) + r] M [O(12) + r]
M [O(1) + r] M [O(5) + r] M [O(9) + r] M [O(13) + r]
M [O(2) + r] M [O(6) + r] M [O(10) + r] M [O(14) + r]
M [O(3) + r] M [O(7) + r] M [O(11) + r] M [O(15) + r]

⎞
⎟⎟⎠

Shuffle array is a new feature introduced in RSM2.0. It is refreshed trace by
trace and kept secret to analysts as offset array does. What’s different is that
Sf[] is a random permutation of [0, 15] and is deployed to disorder the non-linear
transformation of 16 S-boxes together with the subsequent linear layer operation,
namely ShiftRows, both in the first and last round. In fact, two separate shuffle
arrays are deployed which are defined as Sf0[] and Sf10[] by us to distinguish the
position of their usage.

After the description of the three fundamental arrays, the round functions
in RSM2.0 are explained below. Apart from the unchanged AddRoundKey(AR)
function, the other round functions can be divided into two categories, namely
the non-linear and linear layer functions.

• Non-linear layer function:
The only one function that belongs to the non-linear layer is MaskedSub-
Bytes(MS). Unlike standard SubBytes function in AES, MaskedSubBytes
consists of sixteen different and reconstructed S-boxes corresponding to both
the input mask and the output mask. Each masked S-box can be defined
as MaskedSubBytemm′ [x] = SubByte[x ⊕ m] ⊕ m′, where m and m′ repre-
sent the input and output mask byte respectively. Specifically in RSM2.0, m
and m′ are designed to be two successive masks in M []. That is, each new
S-box can be denoted as MaskedSubByteM [i]M [i+1][] (MaskedSubBytei[]
for short), i ∈ [0, 15], and can be previously computed due to the already
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known M []. Thus the input mask state Maskr becomes traceable (switch
to Maskr+1) when going through the non-linear layer and such special and
circular way of mask usage for S-box reconstruction is called the Rotating
S-boxes Masking (RSM).

• Linear layer functions:
Linear layer is composed of three functions in total, namely ShiftRows(SR)
and MixColumns(MC), and also the additionally introduced MaskCompen-
sation(MCP). On the one hand, the first three functions keep unchanged as in
the standard AES. The only difference is that all of their inputs and outputs
are protected with masks to randomize all the sensitive intermediate values
in the practical encryption and more importantly, these masks are naturally
traceable due to the linear property of all these functions.

On the other hand, the MaskCompensation function is newly intro-
duced to eliminate the derived output masks after the MixColumns function
and simultaneously re-mask the intermediate variable with the input masks
of the next round. To achieve this goal, the compensation mask, denoted as
MaskCompensationr(MCPr for short), r ∈ [0, 8], should be first generated
and can be expressed as:

MCPr = MC(SR(Maskr+1)) ⊕ Maskr+1

Then the MaskCompensation happening in the first nine rounds can be
described in the following derivation process:

MC(SR(MS(Kr ⊕ Xr ⊕ Maskr))) ⊕ MCPr

= MC(SR(SubBytes(Kr ⊕ Xr) ⊕ Maskr+1)) ⊕ MCPr

= MC(SR(SubBytes(Kr ⊕ Xr))) ⊕ MC(SR(Maskr+1))
⊕ MC(SR(Maskr+1)) ⊕ Maskr+1

= MC(SR(SubBytes(Kr ⊕ Xr))) ⊕ Maskr+1

The only change in MaskCompensation happens in the last round where
MixColumns is omitted and no next round input masks are needed due
to the requirement of the unmasked and correct ciphertext output. Thus
MaskCompensation9 satisfies:

MaskCompensation9 = ShiftRows(Mask10)

With the explanation of functions in both the linear layer and the non-linear
layer, all the major process of RSM2.0 has been clearly demonstrated. And more
detailed and complete algorithm of RSM2.0 is presented in Appendix 1.

2.2 Acquisition Platform and Measurements

The measurement of all the official power traces is completed on a 8-bit AVR
microcontroller Atmega163 embedded in a smartcard. It contains 16 Kb of in-
system programmable flash, 512 bytes of EEPROM, and 32 general purpose
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working registers. The acquisition of traces is performed through a LeCroy
WaveRunner 6100 A oscilloscope by the use of an EM probe. The sampling rate
FS equals to 500 MS/s and the acquisition bandwidth is 200 MHz.

3 Detecting Non-profiled Vulnerabilities in RSM2.0

In this section, we explain the analytical methodology we comply with to lead
the search of the non-profiled vulnerabilities and show the discovered exploitable
leakages and the reason of their generation. Our discoveries validate that the
improved countermeasure are far from perfect to counteract the type of non-
profiled attacks. What’s worse, some of the newly added defense mechanisms
even directly result in the attacks presented in this section.

3.1 Analytical Methodology for Vulnerability Detection

Although 1st-order masking schemes can not resist 2nd-order attack theoreti-
cally, RSM2.0 puts targeted obstacles to such kind of attack. On the one hand,
by protecting each state byte with an independent and randomly indexed mask,
none of the two masked intermediates in the algorithm share the same mask
part. On the other hand, the common attacking points, namely non-linear layer
transformation, and also the subsequent ShiftRows operation are both imple-
mented with shuffled order thus making it difficult to collect the power leakage
from those parts.

In order to follow the traditional second order idea and achieve a better
performance, we are not only expected to discover the new attacking point for
mask elimination but also expected to bypass the shuffle countermeasure in
order to avoid the costly integrated-and-combined strategy [9,22] for second
order attack.

To accomplish the above target, we first perform the vulnerability detection
process in both the algorithm design and the code implementation of RSM2.0.
Our detection mainly comply with the following guidelines aiming at obtaining
optimal attacking performance:

1. Restricting the range of detection in the intermediate values that contain only
8-bit subkey. Although the direct side channel attack against larger subkey
block is possible [23], the expensive resource overheads, such as GPU acceler-
ation and huge memory usage make it inefficient and unsuitable in the official
evaluation platform. Thus, to acquire better attacking performance we focus
on 8-bit subkey recovery at a time.

2. The predictable intermediates utilized by the attackers should be the results of
the non-linear layer transformation. The characteristics of the non-linear trans-
formation lead to the fact that each single bit guessing error of the target subkey
would influence as much bits of the prediction result as possible. Thus, making
it easier to distinguish the correct key from others with less power traces.

3. The security of the newly introduced MaskCompensation process should be
taken into consideration additionally.
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Based on the guidelines above, the vulnerability detection can be simply
limited in the following sensitive regions (Fig. 1).

Fig. 1. Critical regions for vulnerability detection

3.2 Flaws in the Algorithm Design

Online Derivation of Compensation Mask. The first vulnerability we dis-
cover in the critical regions lies in the entire process of MCPr derivation which
must be implemented online in RSM2.0. The inevitable online feature is caused
by the replacement of the offset index by the offset array O(). In the original
RSM, the input mask state of round r, which we denote as Maskidx,r, is uniquely
determined by a 4-bit index denoted by idx. More accurately, such input mask
state satisfies the following formula:

⎛
⎜⎜⎝
M [idx + 0 + r] M [idx + 4 + r] M [idx + 8 + r] M [idx + 12 + r]
M [idx + 1 + r] M [idx + 5 + r] M [idx + 9 + r] M [idx + 13 + r]
M [idx + 2 + r] M [idx + 6 + r] M [idx + 10 + r] M [idx + 14 + r]
M [idx + 3 + r] M [idx + 7 + r] M [idx + 11 + r] M [idx + 15 + r]

⎞
⎟⎟⎠

Due to the fact that M [] is a fixed mask array, there are only 16 possible values
for Maskidx,r state. Therefore, the compensation mask state which is completely
dependent on Maskidx,r, is actually derived offline and stored previously for
later use. However, the input mask state Maskr in RSM2.0 utilizes offset array
O() to index the selected mask for each input mask byte as stated in Sect. 2.
Each element O(i) in the offset array is independent and identically distributed,
thus resulting in 1616 possible values for the Maskr state. In order to store
all these compensation values derived from Maskr, 16 ∗ 1616 bytes of storage
space is required which is unreachable in the embedded devices with constrained
resources. Thus, online compensation mask derivation becomes indispensable
and all of its related power consumption would be recorded in the power traces.

The other significant cause that leads to this online process further
exploitable is the omission of shuffling protection during this stage. This vul-
nerability is serious since it means all the steps during the derivation of com-
pensation mask, including the loading of Maskr, the derivation for the first part
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of compensation mask and the compensation mask generation, are processed at
the constant time instants and leak the power consumptions corresponding to
the original input Maskr or its intermediate state during the transformation.
We briefly show all the available mask leakages in Fig. 2.

Fig. 2. Exploitable mask leakages in the derivation of compensation mask (Color figure
online).

AddRoundKey Function Flaw. In addition to compensation mask deriva-
tion, AddRoundKey operation in RSM2.0 also lacks shuffling protection, thus
causing potential second order threats. The exploitable loophole caused by this
sequential process appears at the end of the ninth round, where the AddRound-
Key function is performed right after the MixColumns of the current round.
That is to say, each output byte of AddRoundKey is protected by the same
mask as in MixColumns output, as shown in Fig. 3, where the Xi represents the
input bytes of the ninth round and Ki, K ′

i are the subkey bytes of the eighth
and ninth round respectively. Special note is that such output masks (in red)
are also generated as the first part of the compensation mask in the online mask
derivation phase (the third leakage point in Fig. 2).

Fig. 3. Exploitable leakages in AddRoundKey, taking the first column as an example.
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3.3 Flaws in the Implementation Level

Location of MaskCompensation. Flaws in the implementation level appear
because of the inserted position of the online MaskCompensation. More pre-
cisely, in the source code of RSM2.0 implementation, the MaskCompensation of
the current round starts operating after AddRoundKey has finished, just before
the MaskedSubBytes of the next round, as shown in Fig. 4. This seemingly neg-
ligible implementation order does matter since all the masked variables after the
ninth round AddRoundKey can be derived reversely from the known ciphertext
by only guessing 8-bit subkey of the last round key, which is a proper subkey
guessing space for side channel attacks. Besides, the MaskCompensation here
would switch the protection masks of its output state to Mask9 which has also
leaked its power consumption at the start of the ninth round MaskCompensation
(as shown in Fig. 2).

Fig. 4. Exploitable leakages at the output of MaskCompensation, taking the first col-
umn as an example.

Flaws in Linear Layer Function. More critical security flaws appear at linear
layer. Since almost all of the proposed attacks against original RSM select the
non-linear function, i.e. masked S-box, as their attacking point, designers of
RSM2.0 pay too much attention to the protection of S-box execution while on the
other hand ignore the potential security risk in the linear layer transformation.

The flaw we find in the linear layer appears in the process of MixColumns
operation in the first encryption round. The essential reason that gives rise to
this flaw actually lies in two aspects. The first one is that both the MixColumns
function used for encryption and the MixColumns included in the compensation
mask derivation stage share the same assembler code. The only difference is the
input variables, namely ShiftRows(X ⊕ K ⊕ Mask1) and ShiftRows(Mask1)
respectively. Also due to the linear characteristics of the MixColumns opera-
tion, such shared implementation implies that whenever a masked intermediate
value is used or generated in the MixColumns for encryption, the corresponding
mask itself, which is used for the protection of that intermediate value, will also
appear in the exactly same position of the MixColumns for compensation mask
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derivation. The second reason that makes the flaws further feasible is that the
entire MixColumns code is implemented in a fixed sequence, which means that
attackers are able to find out leakages in constant time instant, thus meeting the
prerequisite of classic second order attacks.

4 Practical Attacks and Official Evaluation Results

With the clear explanation of all the exploitable vulnerabilities in the section
above, six non-profiled attacks, more precisely second order attacks and the
variants, can be launched. We selectively perform four of them as examples to
validate the usability of the discovered flaws and show the effectiveness of our
attack schemes by citing the official evaluation data.

The basic idea of classic second order attacks, as present in [22,24,25], is
to preprocess the leakages from two parts of the power traces and both parts
respectively correspond to the intermediate variables protected with the exact
same mask. After preprocessing, the combined leakage is relevant to the unpro-
tected intermediate value, and thus making the later correlation attack feasible.
The performance of different preprocessing functions is studied in [26] and our
attacks follow the preprocessing method of improved product combining pro-
posed in this paper.

4.1 Second Order Attacks in the First Round2

We present two attacks in the first round and both of them make use of the
leakages from the execution of shared MixColumns source code in the encryp-
tion and MCPr derivation stage. To better understand the attacks, we briefly
introduce the implementation approach of MixColumns in RSM2.0.

Suppose (V0,j , V1,j , V2,j , V3,j)T is a column of 4 input bytes, which serves as
a basic unit for MixColumns transformation. Then the output of the transfor-
mation, where i ∈ [0, 3], j ∈ [0, 3], can be formalized and recombined as:

Vi,j = (2 ∗ Vi,j) ⊕ (3 ∗ V(i+1)%4,j) ⊕ V(i+2)%4,j ⊕ V(i+3)%4,j

= (2 ∗ Vi,j ⊕ 2 ∗ V(i+1)%4,j) ⊕ V(i+1)%4,j ⊕ V(i+2)%4,j ⊕ V(i+3)%4,j

= Vi,j ⊕ (V1,j ⊕ V2,j ⊕ V3,j ⊕ V4,j) ⊕ 2 ∗ (Vi,j ⊕ V(i+1)%4,j)

The implementation follows the process of the calculation in the last line.
That is, V1,j ⊕V2,j ⊕V3,j ⊕V4,j is firstly generated and shared for all the bytes in
column j. Then, to derive a specific byte Vi,j , the generation of (Vi,j ⊕V(i+1)%4,j)
is subsequently completed. This value is later used as the input of the lookup
table Xtime which is previously calculated to store 2*X (under GF (28)) in the
position of X, where X ranges from 0 to 255. Thus, after going through Xtime
table, 2∗ (Vi,j ⊕V(i+1)%4,j) is acquired. Finally, by Xoring together (V1,j ⊕V2,j ⊕
V3,j ⊕V4,j), 2∗(Vi,j ⊕V(i+1)%4,j) and the original value Vi,j stored in the register,
the newly updated Vi,j comes into being.
2 For the need of expression, all the “mod” operation would be explicitly added in this

subsection.
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Attacking Xtime Input. During the generation of the Xtime input (Vi,j ⊕
V(i+1)%4,j), Vi,j is first loaded into the register and simultaneously leaks instan-
taneous power consumption. When it happens in the encryption process, Vi,j

actually equals to one of the output variables of MaskedSubBytes function. Thus
all the MaskedSubBytes outputs in the form of S(Xi⊕Ki)⊕M [(O(i)+1)%16], i ∈
[0, 15], leaks information. On the other hand, when it goes to MaskCompensa-
tion function, Vi,j in fact represents one of the mask bytes in Mask1 state. Thus,
M [(O(i) + 1)%16] leaks its information as well. By preprocessing both of the
leakages, the combined leakage would be relevant to the following intermediate
variable:

(S(Xi ⊕ Ki) ⊕ M [(O(i) + 1)%16]) ⊕ M [(O(i) + 1)%16] = S(Xi ⊕ Ki), i ∈ [0, 15]

which is an unprotected and predictable value, appropriate for the traditional
CPA attack.

Official evaluation results show that, the second order attack proposed here
are both feasible and practical. Based on the published performance parameter,
merely 258 traces are required (Fig. 5(a)) to recover all of the 128-bit master key
with 80% success rate (the so-called 80% global success rate, GSR [27]) and only
210 traces would suffice to reduce the maximum partial guessing entropy(PGE
[27]) under 10, which means that the remaining key guessing space is less than
1016.

Optimized Chained Attack. Unlike the attack above, here we utilize the
leakage exposed when generating each complete input byte of the Xtime, namely
(Vi,j ⊕ V(i+1)%4,j). After the same combination of the leakages in MixColumns
of different stages, the united leakage would also be related to a predictable
intermediate value which is involved with 16 bits of the master key. Taking the
first column as an example, four predictable values are S(X0⊕K0)⊕S(X5⊕K5),
S(X5 ⊕K5)⊕S(X10 ⊕K10), S(X10 ⊕K10)⊕S(X15 ⊕K15) and S(X15 ⊕K15)⊕
S(X0 ⊕K0) respectively, where Xi and Ki are the ith plaintext and master key
respectively. Direct attacks by guessing the first and the third predictable value
or guessing the second and the fourth one could recover all the subkeys in this
column but the key guessing space is 2 ∗ 216 in total.

In order to further reduce the computation overhead, we optimized the attack
process in a chained way. That is, we first attack K0 by using the leakages and
method mentioned first in this subsection, then with the most probable guessing
K0 revealed, predictable value S(X0⊕K0)⊕S(X5⊕K5) is utilized to extract K5

only. The same approach then goes on for the second predictable value, where
this time, K5 is fixed to the most probable value obtained in the last step and
K10 becomes the only key which needs to be guessed in this step. Finally, K15

is also revealed in the same way. By this means, the key guessing space for
extracting four subkeys in a column is now reduced to 4 ∗ 28 and the subkeys in
other three columns can be inferred similarly as in the first column.

Figure 5(b) depicts the official evaluation result of such chained second-order
attack. It shows that such method does work, and 565 traces are needed to
uniquely determine the master key with 80% success rate(80% GSR).
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(a) GSR for MixColumn input attack. (b) GSR for optimized chained attack.

Fig. 5. Official evaluation results of Global Success Rate, GSR.

Note also that the similar second order and chained attack can also be
launched at the position of Xtime output, namely 2 ∗ (Vi,j ⊕ V(i+1)%4,j), and
the generation of shared (V1,j ⊕ V2,j ⊕ V3,j ⊕ V4,j) respectively. The only dif-
ference lies in the form of the predictable intermediate value, which is selected
and utilized by the attackers to infer the subkey. To avoid repetition, we don’t
describe them here anymore.

4.2 Second Order Attacks in the Ninth Round

Attacking MaskCompensation Output. The attack here utilizes the imple-
mentation level flaw explained in Sect. 3.3. Due to the inserted position of
MaskCompensation, each individual output byte here contains only 8-bit subkey
when derived from the ciphertext and is actually protected by the corresponding
mask in Mask9. Besides, Mask9 has also been loaded byte by byte when gener-
ating the ninth round compensation masks as depicted in Fig. 2. Thus by com-
bining the leakages from both positions, the preprocessed leakage has relevance
to the following values which are predictable from the perspective of side channel
opponents:

(Sbox−1ShiftRows−1[C⊕KL]⊕Mask9)⊕Mask9= Sbox−1ShiftRows−1[C⊕KL]

where C refers to the output ciphertext state and KL denotes the last round key.
After 16 bytes of KL is revealed completely, a reversed key expansion process of
AES should be performed in order to fetch our final target, namely the 128-bit
master key.

Figure 6(a) depicts the GSR tendency of this attack evaluated by DPA Con-
test committee. It shows that the attack by exploiting the implementation level
flaw is of high efficiency that only 257 traces can meet the requirement for 80%
GSR. Besides, to reduce the Max PGE under 10, only 205 traces are required.

Attacking AddRoundKey Output. The only difference between the output
of the ninth round AddRoundKey and MaskCompensation lies in the masks for
protection. For AddRoundKey function, these masks are obtained by transform-
ing the input mask state of the ninth round, namely Mask8, through Masked-
SubBytes, ShiftRows and MixColumns in sequence. Thus, the AddRoundKey
output in the ninth round can be derived from the ciphertext C:
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Sbox−1ShiftRows−1[C ⊕ KL] ⊕ MixColumns[ShiftRows[Mask9]]

On the other hand, during the construction of the compensation mask in the
current round, the first compensation part – MixColumns[ShiftRows[Mask9]]
should be generated first as shown in Fig. 2.

Likewise, by performing second order attacks at both parts, the last round
key KL involved in the predictable variable Sbox−1ShiftRows−1[C⊕KL] can be
recovered and the master key would also be deduced instantly with the help of
the key expansion process but in a reversed way. The official evaluation of GSR
in Fig. 6(b) shows that such attack is also feasible in RSM2.0, and the number
of traces needed to acquire 80% GSR is 698.

(a) GSR for MaskCompensation attack. (b) GSR for AddRoundKey output attack.

Fig. 6. Official evaluation results of Global Success Rate, GSR.

5 Discussion of Possible Countermeasures

In order to mitigate or even get rid of the non-profiled threats presented in this
article, we propose the following coping strategies. All of the strategies follow
the basic principle that both leakages exploited in a single second order attack
should be protected individually by either eliminating the source of the leakage
or by randomizing the position of its appearance.

1. Adding resistance in the ninth round: exchanging the order of the
AddRoundKey and MaskCompensation function in the ninth round can be
the first step to enhance the security level of RSM2.0. In fact, compared
to the original attack aiming at the MaskCompensation output leakage, now
attackers have to deduce each byte of hypothetical intermediate state, namely
Sbox−1ShiftRows−1[C ⊕KL]⊕KP , by searching 16-bit subkey space, where
KL and KP represent the last and penultimate round key respectively.
After exchanging, the output states of both functions are protected with
Mask9. In order to further prevent the second order threat, the sequential
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operations of loading Mask9, Xoring compensation masks and AddRound-
Key execution should all be respectively shuffled. Fortunately, such protec-
tions could be easily added since every operation mentioned above deals with
16 state bytes independently.

2. Adding resistance in the first round: the shared MixColumns code in the
compensation mask derivation and the original encryption part leads to our
attacks in the first round. To plug such leakages, one possible method is to
implement MixColumns in different ways. For example, alter the MixColumns
implementation in the encryption part by following the process of the original
transformation formula, namely Vi,j = 2 ∗ Vi,j ⊕ 3 ∗ V(i+1)%4,j ⊕ V(i+2)%4,j ⊕
V(i+3)%4,j . Thus all of the chained attacks mentioned can be surely counter-
acted since the derived intermediates in different implementations don’t share
the same masks any more.

To further prevent the exploitable leakages caused by the direct loading
of MixColumns input bytes for calculating each output byte, the shuffled gen-
eration order for MixColumns output bytes could be considered as a possible
solution.

3. Special note is that: no extra shuffle array(excluding Sf0[] and Sf10[]) is
needed to perform the shuffling protection suggested above. The only thing
we need to do is to distinguish the shuffle array used in the region of com-
pensation mask derivation from that used to disorder the leakage of masked
intermediate values. By this means, the pair of leakages utilized to perform
certain second order attack mentioned in this paper may now come from 162

possible combinations of time instants, thus significantly increasing the dif-
ficulty for target leakage location and even causing huge overhead (number
of power traces) when using advanced integrated-and-combined technique to
accumulate the shuffled leakages as mentioned in [9,22].

6 Conclusion

This is the first paper to systematically analyze the non-profiled vulnerabilities
in RSM2.0. To achieve the goal, we first propose the analytical methodology to
guide the vulnerability detection and then scrutinize both the algorithm design
and implementation details of the RSM2.0 countermeasure. Based on all the
vulnerabilities newly found, several attacking schemes are proposed and four of
them are finally implemented as examples and submitted for official evaluation.

The evaluation reports show that all of our proposed attacks are both feasible
and practical. Thus, this study validates in the first time that the currently used
countermeasures and implementation are still insufficient to provide RSM2.0
with non-profiled resistance.

To further fix the vulnerabilities described in this paper, we come up with
several corresponding suggestions which either try to eliminate the second order
leakages or to extend the protection region of shuffle countermeasure. These
improvements are not unique but they can be considered as a general direction
to set up obstacles for potential attackers and to further improve the security
level of RSM2.0, especially against non-profiled attacks.
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A Algorithm of Improved Rotating S-Boxes Masking

Algorithm 1. Improved rotating S-boxes masking scheme
Input:

16-bytes plaintext X = [X0, X1, . . . , X15];
One offset array: O(i), i ∈ [0, 15],
(uniformly random, unknown);
Two shuffle arrays: Sf0[i], Sf10[i], i ∈ [0, 15],
(uniformly random permutations, unknown);

Output:
16-bytes ciphertext X = [X0, X1, . . . , X15];

1: On-the-fly key expansion RoundKeyr, r ∈ [0, 10],
2: RoundKey0 ← RoundKey0 ⊕ Mask0
3: X = X ⊕ RoundKey0

/*All rounds but the last one*/
4: for each i ∈ [0, 8] do
5: if r = 0 then
6: for i ∈ Sf0[0, 15] do
7: Xi = MaskedSubBytesO(i)+r(Xi)
8: Xi = SR(Xi)
9: end for

10: else
11: for i ∈ [0, 15] do
12: Xi = MaskedSubBytesO(i)+r(Xi)
13: Xi = SR(Xi)
14: end for
15: end if
16: X = MC(X)

/* AddRouondKey of the next round */
17: X = X ⊕ RoundKeyr+1

18: MCPr = MC(SR(Maskr+1)) ⊕ Maskr+1

19: X = X ⊕ MCPr;
20: end for

/* Last round */
21: for i ∈ Sf10[0, 15] do
22: Xi = MaskedSubBytesO(i)+9(Xi)
23: Xi = SR(Xi)
24: end for
25: X = X ⊕ RoundKey10 /* Ciphertext unmasking */
26: MCP9 = SR(Mask10)
27: X = X ⊕ MCP9;
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