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Abstract. In the last few years multivariate public key cryptography
has experienced an infusion of new ideas for encryption. Among these
new strategies is the ABC Simple Matrix family of encryption schemes
which utilize the structure of a large matrix algebra to construct effec-
tively invertible systems of nonlinear equations hidden by an isomor-
phism of polynomials. The cubic version of the ABC Simple Matrix
Encryption was developed with provable security in mind and was pub-
lished including a heuristic security argument claiming that an attack on
the scheme should be at least as difficult as solving a random system of
quadratic equations over a finite field.

In this work, we prove that these claims are erroneous. We present a
complete key recovery attack breaking full sized instances of the scheme.
Interestingly, the same attack applies to the quadratic version of ABC,
but is far less efficient; thus, the enhanced security scheme is less secure
than the original.

Keywords: Multivariate public key cryptography · Differential invari-
ant · MinRank · Encryption

1 Introduction

Classical public key cryptography is mainly based on arithmetic constructions on
Abelson groups. Since the discovery by Shor in the 1990s of efficient algorithms
for factoring and computing discrete logarithms with quantum computers, see
[1], there has been a growing interest in the international community in the task
of constructing algorithms resistant to cryptanalysis with quantum computers.
Indeed, in light of the announcement [?] by the National Institute of Standards
and Technology (NIST) of an imminent call for proposals for post-quantum
standards, the challenge of migrating from the homogeneous heritage of public
key cryptography to a more diverse collection of tools has become mainstream.

One possible candidate for practical, efficient, and nonconforming solutions
to some of the most consequential public key applications is Multivariate Pub-
lic Key Cryptography (MPKC). Multivariate schemes are attractive in certain
applications because of the maleability of the schemes. Different modifications
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of similar ideas can make a scheme more suited to lightweight architectures,
enhance security, or parametrize various aspects of performance.

In addition, MPKC is one among a few serious candidates to have risen to
prominence as post-quantum options. The fundamental problem of solving a
system of quadratic equations is known to be NP-hard, and so in the worst
case, solving a system of generic quadratic equations is unfeasible for a classical
computer; neither is there any indication that the task is easier in the quantum
computing paradigm.

MPKC has experienced a fair amount of success in the realm of digital sig-
natures. Some trustworthy schemes that have survived for almost two decades
include UOV [2], HFE- [3], and HFEv- [4]. Moreover, some of these schemes have
optimizations which have strong theoretical support or have stood unbroken in
the literature for some time. Specifically, UOV has a cyclic variant [5] which
reduces the key size dramatically, and Gui, a new HFEv- scheme, see [6], has
parameters far more appealing than QUARTZ due to greater confidence in the
complexity of algebraically solving the underlying system of equations [7].

The situation with multivariate public key encryption is quite different, how-
ever. Many attempts at multivariate encryption, see [8,9] for example, have
been shown to be weak based on rank or differential weaknesses. Recently, a few
interesting attempts to achieve multivariate encryption have surfaced. ZHFE, see
[10], and the ABC Simple Matrix Scheme, see [11], both use fundamentally new
structures for the derivation of an encryption system. While it was shown that
the best attack known on the Simple Matrix structure, see [12]—which relies
on the differential invariant structure of the central map—supports the claimed
security level of the scheme, a subset of the original authors proposed a cubic
version of the scheme, [13], as a step towards provable security.

In this article, we present a key recovery attack on a full scale version of the
Cubic Simple Matrix encryption scheme, having a complexity on the order of
qs+2 for characteristic p > 3, qs+3 for characteristic 3 and q2s+6 for charac-
teristic 2. Here s is the dimension of the matrices in the scheme, and q is the
cardinality of the finite field used. This technique is an extension and augmen-
tation of the technique of [12], and, similarly, exploits a differential invariant
property of the core map to perform a key recovery attack. We can show that
the attack uses a property which uniquely distinguishes the isomorphism class
of the central map from that of a random collection of formulae.

Specifically, our attack breaks CubicABC (q = 127, s = 7), designed for
80-bit security, in approximately 276 operations (or around 280 if one pessimisti-
cally uses ω = 3 as the linear algebra constant). More convincingly, our attack
completely breaks CubicABC (q = 127, s = 8), designed for 100-bit security,
in approximately 284 operations (or 288 for ω = 3). Furthermore, the attack is
fully parallelizable and requires very little memory; hence, the differential invari-
ant attack is far more efficient than algebraic attacks, the basis for the original
security estimation. Thus, the security claims in [13] are clearly unfounded; in
fact, the cubic version of the scheme, whose security was claimed to be closely
related to an NP-complete problem, is actually less secure than the quadratic
case.
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The paper is organized as follows. In the next section, we present the structure
of the Cubic ABC Simple Matrix encryption scheme. In the following section,
we recall differential invariants and present a natural extension of this notion to
the case of cubic polynomials. The differential invariant structure of the ABC
scheme is derived in the subsequent section and the effect of this structure on
minrank calculations is determined. We next calculate the complexity of the full
attack including the linear algebra steps required to extend the distinguisher
into a key recovery mechanism. Finally, we review these results and discuss the
surprising relationship between the practical security of the Cubic ABC scheme
and its quadratic counterpart.

2 The Cubic ABC Matrix Encryption Scheme

In [13], the Cubic ABC Matrix encryption scheme is proposed. The motiva-
tion behind the scheme is to use a large matrix algebra over a finite field to
construct an easily invertible cubic map. The construction uses matrix multipli-
cation to combine random quadratic formulae and random linear formula into
cubic formulae in a way that allows a user with knowledge of the structure of
the matrix algebra and polynomial isomorphism used to compose the scheme to
invert the map.

Let k = Fq be a finite field. Linear forms and variables over k will be denoted
with lower case letters. Vectors of any dimension over k will be denoted with bold
font, v. Fix s ∈ N and set n = s2 and m = 2s2. An element of Ms(k), Mn(k) or
Mm(k), or the linear transformations they represent, will be denoted by upper
case letters, such as M . When the entries of the matrix are being considered
functions of a variable, the matrix will be denoted M(x). Let φ represent the
vector space isomorphism from Ms×2s(k) to k2s2

sending a matrix to the column
vector consisting of the concatenation of its rows. The output of this map, being
a vector, will be written with bold font; however, to indicate the relationship to
its matrix preimage, it will be denoted with an upper case letter, such as M.

The scheme utilizes an isomorphism of polynomials to hide the internal struc-
ture. Let x =

[
x1, x2, . . . , xn

]� ∈ kn denote plaintext while y =
[
y1, . . . , ym

] ∈
km denotes ciphertext. Fix two invertible linear transformations T ∈ Mm(k)
and U ∈ Mn(k) (One may use affine transformations, but there is no security
or performance benefit in doing so.) Denote the input and output of the central
map by u = Ux and v = T−1(y).

The construction of the central map is as follows. Define three s× s matrices
A, B, and C in the following way:

A =

⎡

⎢
⎢
⎢
⎣

p1 p2 · · · ps

ps+1 ps+2 · · · p2s

...
...

. . .
...

ps2−s+1 ps2−s+2 · · · ps2

⎤

⎥
⎥
⎥
⎦

, B =

⎡

⎢
⎢
⎢
⎣

b1 b2 · · · bs

bs+1 bs+2 · · · b2s

...
...

. . .
...

bs2−s+1 bs2−s+2 · · · bs2

⎤

⎥
⎥
⎥
⎦

,
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and

C =

⎡

⎢
⎢
⎢
⎣

c1 c2 · · · cs

cs+1 cs+2 · · · c2s

...
...

. . .
...

cs2−s+1 cs2−s+2 · · · cs2

⎤

⎥
⎥
⎥
⎦

.

Here the pi are quadratic forms on u chosen independently and uniformly at
random from among all quadratic forms and the bi and ci are linear forms on u
chosen independently and uniformly at random from among all linear forms.

We define two s × s matrices E1 = AB and E2 = AC. Since A is quadratic
and B and C are linear in ui, E1 and E2 are cubic in the ui. The central map
E is defined by

E = φ ◦ (E1||E2).

Thus E is an m dimensional vector of cubic forms in u. Finally, the public key
is given by F = T ◦ E ◦ U .

Encryption with this system is standard: given a plaintext (x1, . . . , xn), com-
pute (y1, . . . , ym) = F(x1, . . . , xn). Decryption is somewhat more complicated.

To decrypt, one inverts each of the private maps in turn: apply T−1, invert
E , and apply U−1. To “invert” E , one assumes that A(u) is invertible, and forms
a matrix

A−1(u) =

⎡

⎢
⎢
⎢
⎣

w1 w2 · · · ws

ws+1 ws+2 · · · w2s

...
...

. . .
...

ws2−s+1 ws2−s+2 · · · ws2

⎤

⎥
⎥
⎥
⎦

,

where the wi are indeterminants. Then using the relations A−1(u)E1(u) = B(u)
and A−1(u)E2(u) = C(u), we have m = 2s2 linear equations in 2n = 2s2

unknowns wi and ui. Using, for example, Gaussian elimination one can elimi-
nate all of the variables wi and most of the ui. The resulting relations can be
substituted back into E1(u) and E2(u) to obtain a large system of equations in
very few variables which can be solved efficiently in a variety of ways.

3 Subspace Differential Invariants for Cubic Maps

Let f : kn → km be an arbitrary fixed function on kn. Consider the discrete
differential Df(a,x) = f(a + x) − f(a) − f(x) + f(0).

If f is quadratic, we can express the differential as an n-tuple of bilinear
differential coordinate forms in the following way: [Df(a,x)]i = a�Dfix, where
Dfi is a symmetric matrix representation of the action on the ith coordinate
of the bilinear differential. If the function f is cubic Df(a,x) is a symmetric
bi-quadratic function. By the symmetry, it is well defined to compute a second
differential D2f(a,b,x) by computing the discrete differential of Df with respect
to either a or x. In this case, we may consider the second differential as an n-
tuple of trilinear differential coordinate forms by letting D2fi be the symmetric
3-tensor representing the action on the ith coordinate of the trilinear differential.
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In [12], the following definition of a subspace differential invariant was
provided:

Definition 1. A subspace differential invariant of a quadratic map f : kn → km

with respect to a subspace X ⊆ km is a subspace V ⊆ kn with the property
that there exists a W ⊆ kn of dimension at most dim(V ) such that simul-
taneously AV ⊆ W for all A =

∑m
i=1 xiDfi where (x1, . . . , xm) ∈ X, i.e.

A ∈ SpanX(Dfi).

This definition captures the idea of a subspace of the span of the public poly-
nomials acting linearly on a subspace of the plaintext space in the same way.
Such behavior is strange for quadratic maps in general. Furthermore, as shown
in [12], this behavior is computable regardless of the rank of the maps involved.

A natural generalization of this definition is the following:

Definition 2. A subspace differential invariant of a cubic map f : kn → km

with respect to a subspace X ⊆ km is a pair of subspaces (V1, V2) ⊆ (kn)2 for
which there exists a subspace W ⊆ kn with dim(W ) ≤ mindim(Vi) such that for
all A =

∑m
i=1 xiD

2fi where (x1, . . . , xm) ∈ X, for all a ∈ V2, for all b ∈ V2 and
for all x ∈ W⊥ we have that A(a,b,x) = 0.

This definition captures the notion of a subspace of the span of the public cubic
polynomials acting quadratically on a subspace of the plaintext space in the
same way. Such behavior is strange for cubic maps in general.

4 The Differential Invariant Structure of the Cubic ABC
Scheme

4.1 Column Band Spaces

Each component of the central E(u) = E1(u)||E2(u) map may be written as:

E(i−1)s+j =
s∑

l=1

p(i−1)s+lb(l−1)s+j , (1)

for the E1 equations, and likewise, for the E2 equations:

Es2+(i−1)s+j =
s∑

l=1

p(i−1)s+lc(l−1)s+j (2)

where i and j run from 1 to s.
Consider the s sets of s polynomials that form the columns of E1, i.e. for each

j ∈ {1, . . . , s} consider (Ej , Es+j , . . . , Es2−s+j). With high probability, the linear
forms bj , bs+j , . . . , bs2−s+j are linearly independent, and if so the polynomials
may be re-expressed, using a linear change of variables to (u′

1, . . . u
′
s2) where

u′
i = b(i−1)s+ j for i = 1, . . . , s. After the change of variables, the only cubic

monomials contained in (Ej , Es+ j , . . . , Es2 − s+ j) will be those containing at least
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one factor of u′
1, . . . , u

′
s. We can make a similar change of variables to reveal

structure in the s sets of s polynomials that form the columns of E2: Setting
u′

i = c(i−1)s+j for i = 1, . . . , s and a fixed j, the only cubic monomials contained
in (Es2 + j , Es2 + s+ j , . . . , E2s2 − s+ j) will be those containing at least one factor
of u′

1, . . . , u
′
s.

More generally, we can make a similar change of variables to reveal structure
in any of a large family of s dimensional subspaces of the span of the component
polynomials of E1 and E2, which we will call column band spaces in analogy
to the band spaces used to analyze the quadratic ABC cryptosystem in [12].
Each family is defined by a fixed linear combination, (β, γ), of the columns of
E1 and E2:

Definition 3. The column band space defined by the 2s-dimensional linear form
(β, γ) is the space of cubic maps, Bβ,γ , given by:

Bβ,γ = Span(Eβ,γ,1, . . . , Eβ,γ,s)

where

Eβ,γ,i =
s∑

j=1

(βjE(i−1)s+j + γjEs2+(i−1)s+j)

=
s∑

l=1

⎛

⎝p(i−1)s+l

s∑

j=1

(
βjb(l−1)s+j + γjc(l−1)s+j

)
⎞

⎠

Theorem 1. There is a pair of subspaces (V1, V2) ∈ (kn)2 which is a subspace
differential invariant with respect to Bβ,γ for all (β, γ). Moreover, there exists
an x1 ∈ kn such that rank(D2E(x1)) ≤ 2s for all E ∈ Bβ,γ .

Proof. Note that under a change of variables (x1, . . . , xs2) M�−→ (u′
1, . . . u

′
s2), where

u′
i =

∑s
j=1

(
βjb(i−1)s+j + γjc(i−1)s+j

)
for i = 1, . . . , s, the only cubic monomials

contained in the elements of Bβ,γ will be those containing at least one factor of
u′
1, . . . , u

′
s. In such a basis, the second differential of any map in Bβ,γ , and thus

the second differential of E can be visualized as a 3-tensor with a special block
form, see Fig. 1.

Let V be the (s2−s)-dimensional preimage M−1(Span(u′
1, . . . , u

′
s)

⊥). This 3-
tensor D2E may be thought of as a bilnear map which takes two vectors x1,x2 ∈
V , i.e. of the form:

(0, . . . , 0, u′
s+1(xk), . . . , u′

s2(xk))�

to a covector of the form:

(y(u′
1), . . . , y(u′

s), 0, . . . , 0).

Thus, in this basis D2E(x1) is a symmetric matrix which is zero on V × V .
Therefore, rank(D2E(x)) ≤ 2s. One checks that (V, V ) is a subspace differential
with respect to Bβ,γ with W := V ⊥, since dim(W ) = s < s2 − s = dim(V ).
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x1

x2

x3

Fig. 1. 3-tensor structure of the second differential of a band space map. Solid regions
correspond to nonzero coefficients. Transparent regions correspond to zero coefficients.

We will define the term “band-kernel” to describe the space of vectors of the
same form as x1 and x2 in the proof above, i.e.:

Definition 4. The band kernel of Bβ,γ , denoted BKβ,γ , is the space of vectors,
x, such that

u′
i =

s∑

j=1

(
βjb(i−1)s+j(x) + γjc(i−1)s+j(x)

)
= 0

for i = 1, . . . , s.

5 A Variant of MinRank Exploiting the Column Band
Space Structure

A minrank-like attack may be used to locate the column band-space maps
defined in the previous section. In this case, the attack proceeds by selecting
s2-dimensional vectors x1, x2, x3, and x4, setting

2s2
∑

i=1

tiD
2Ei(x1,x2) = 0

2s2
∑

i=1

tiD
2Ei(x3,x4) = 0,

(3)
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and solving for the ti. The attack succeeds when
∑2s2

i=1 tiEi ∈ Bβ,γ and x1, x2,
x3, and x4 are all within the corresponding band kernel. If these conditions are
met, then the rank of the 2-tensor

∑2s2

i=1 tiD
2Ei(xk) for k = 1, 2, 3, 4 will be at

most 2s, and this will be easily detectable.
The attack complexity will be significantly reduced if several of the xk are

set equal to one another. In odd characteristic fields, we can reduce the num-
ber of independently chosen vectors to 2, (for example, by setting x1 = x2 and
x3 = x4.) In characteristic 2, however, the antisymmetry of the 2nd differential
prevents the equation

∑2s2

i=1 tiD
2Ei(x1,x1) = 0 from imposing a nontrivial con-

straint on the ti. Even in characteristic 2, though, the number of independently
chosen vectors can be reduced to 3 (e.g. by setting x1 = x4).

Theorem 2. The probability that 2 randomly chosen vectors, x1 and x2, are
both in the band kernel of some band-space Bβ,γ is approximately 1

q−1 ; The prob-
ability that 3 randomly chosen vectors, x1, x2, and x3, are all in the band kernel
of some band-space Bβ,γ is approximately 1

(q−1)qs .

Proof. The condition that the xk are all contained within a band kernel is that
there be a nontrivial linear combination of the columns of the following matrix
equal to zero (i.e. that the matrix has nonzero column corank):

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1(x1) b2(x1) . . . bs(x1) c1(x1) c2(x1) . . . cs(x1)
bs+1(x1) bs+2(x1) . . . b2s(x1) cs+1(x1) cs+2(x1) . . . c2s(x1)

...
...

. . .
...

...
...

. . .
...

bs2−s+1(x1) bs2−s+2(x1) . . . bs2(x1) cs2−s+1(x1) cs2−s+2(x1) . . . cs2(x1)
b1(x2) b2(x2) . . . bs(x2) c1(x2) c2(x2) . . . cs(x2)

bs+1(x2) bs+2(x2) . . . b2s(x2) cs+1(x2) cs+2(x2) . . . c2s(x2)
...

...
. . .

...
...

...
. . .

...
bs2−s+1(x2) bs2−s+2(x2) . . . bs2(x2) cs2−s+1(x2) cs2−s+2(x2) . . . cs2(x2)

...
...

...
...

...
...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

In the case with 2 randomly chosen vectors, the matrix is a uniformly random
2s×2s matrix, which has nonzero column corank with probability approximately
1

q−1 . In the case with 3 randomly chosen vectors, the matrix is a uniformly ran-
dom 3s × 2s matrix, which has nonzero column corank with probability approx-
imately 1

(q−1)qs .

Theorem 3. If x1, x2, x3, and x4 are chosen in such a way that all four vectors
are in the band kernel of a column band space Bβ,γ and also that the symmetric
tensor products x1�x2 and x3�x4 are linearly independent from one another and
statistically independent from the private quadratic forms, p(i−1)s+j in the matrix
A, then the tensor products x1 ⊗ x2 and x3 ⊗ x4 are both in the kernel of some
column band-space differential D2E =

∑
Eβ,γ,i∈Bβ,γ

τiD
2Eβ,γ,i with probability

approximately 1
(q−1)qs .
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Proof. A DE meeting the above condition exists iff there is a nontrivial solution
to the following system of equations

∑

Eβ,γ,i∈Bβ,γ

τiD
2Eβ,γ,i(x1,x2) = 0,

∑

Eβ,γ,i∈Bβ,γ

τiD
2Eβ,γ,i(x3,x4) = 0.

(5)

Expressed in a basis (e.g. the u′
i basis used in Definition 4) where the first s

basis vectors are chosen to be outside the band kernel, and the remaining s2 − s
basis vectors are chosen from within the band kernel, the column band-space
differentials, D2Eβ,γ,i are 3-tensors of the form shown in Fig. 1.

Likewise x1, x2, x3, and x4 take the form (0| xk ). The 2-tensors D2Eβ,γ,i(xk)
can then be represented by matrices of the form:

D2Eβ,γ,i(xk) =

⎡

⎢
⎢
⎣

Sk,i Rk,i

R�
k,i 0

⎤

⎥
⎥
⎦ (6)

where Rk,i is a random s × s2 − s matrix and Sk,i is a random symmetric s × s
matrix. Removing the redundant degrees of freedom we have the system of 2s
equations in s variables:

s∑

i=1

τiR1,ix2
� = 0,

s∑

i=1

τiR3,ix4
� = 0.

(7)

This has a nontrivial solution precisely when the following 2s × s matrix has
nonzero column corank:

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

| | |
R1,1x2

� R1,2x2
� . . . R1,sx2

�

| | |
| | |

R3,1x4
� R3,2x4

� . . . R3,sx4
�

| | |

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)

This is a random matrix over k = Fq, which has nonzero column corank with
probability approximately 1

(q−1)qs , for practical parameters.
To verify that the conditions given in the theorem are sufficient to establish

the randomness of the matrix M , we can give the following explicit expression
for the matrix M , which is most easily derived by applying the product rule for
the discrete differential to Definition 3:
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M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Dp1(x1,x2) Dps+1(x1,x2) · · · Dps2−s+1(x1,x2)
Dp2(x1,x2) Dps+2(x1,x2) · · · Dps2−s+2(x1,x2)

...
...

. . .
...

Dps(x1,x2) Dp2s(x1,x2) · · · Dps2(x1,x2).
Dp1(x3,x4) Dps+1(x3,x4) · · · Dps2−s+1(x3,x4)
Dp2(x3,x4) Dps+2(x3,x4) · · · Dps2−s+1(x3,x4)

...
...

. . .
...

Dps(x3,x4) Dp2s(x3,x4) · · · Dps2(x3,x4)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)

Combining the results of Theorems 2 and 3, we find that for each choice
of the vectors xk, there is a column band-space map among the solutions of
Eq. (3) with probability approximately 1

(q−1)2q2s for even characteristic and
1

(q−1)2qs for odd characteristic. Equation (3) is a system of 2s2 equations in
2s2 variables; one might expect it to generally have a 0-dimensional space of
solutions. In some cases, however, there are linear dependencies among the equa-
tions, due to the fact that the D2Ei are symmetric tensors. In even characteris-
tic, we get 4 linear dependencies: D2Ei(x1,x2)(x1) = 0, D2Ei(x1,x2)(x2) = 0,
D2Ei(x3,x4)(x3) = 0, and D2Ei(x3,x4)(x4) = 0, and an additional linear depen-
dency when we reduce the number of independent vectors to 3 by setting x1 = x4:
D2Ei(x1,x2)(x3) + D2Ei(x3,x4)(x2) = 0, resulting in a 5-dimensional space of
solutions. In characteristic 3, reducing the number of independent vectors to 2
results in 2 linear dependencies among the equations: e.g. setting x1 = x2 and
x3 = x4, we have D2Ei(x1,x2)(x1) = 0 and D2Ei(x3,x4)(x3) = 0. In higher
characteristic, there are no linear dependencies imposed on the equations by
setting x1 = x2 and x3 = x4.

For characteristic 2, finding the expected 1-dimensional space of band-space
solutions in a 5-dimensional space costs q4 + q3 + q2 + q + 1 rank operations,
which in turn cost (s2)ω field operations, where ω ≈ 2.373 is the linear algebra
constant. Likewise, for characteristic 3, finding the expected 1-dimensional space
of band-space solutions in a 2-dimensional space costs q+1 rank operations. Thus
the total cost of finding a column band-space map using our variant of MinRank
is approximately q2s+6s2ω for charactersitic 2, qs+3s2ω for characteristic 3, and
qs+2s2ω for higher characteristic.

6 Complexity of Invariant Attack

The detection of a low rank induced bilinear form D2E(x) already constitutes a
distinguisher from a random system of equations. Extending this calculation to
a full key recovery requires further use of the differential invariant structure of
the public key.

First, note that U is not a critical element of the scheme. If A is a random
matrix of quadratic forms and B and C are random matrices of linear forms,
so are A ◦ U , B ◦ U and C ◦ U for any full rank map U . Thus, since clearly
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T ◦ φ(AB||AC) ◦ U = T ◦ φ((A ◦ U)(B ◦ U)||(A ◦ U)(C ◦ U)), we may absorb the
action of U into A, B, and C, and consider the public key to be of the form:

P (x) = T ◦ φ(AB||AC)(x).

Next, consider a trilinear form D2E in the band space generated by Bβ,γ .
Since the coefficients of D2E are products of coefficients of A and coefficients of
an element of Im(B||C), both of which are uniform i.i.d., there is a change of
basis M in which D2E has the form in Fig. 1 and the nonzero coefficients are
uniform i.i.d.

Consider D2E(x1) and D2E(x2) for x1,x2 in the band kernel corresponding
to Bβ,γ . Being maps from the same band space, there is a basis in which both
D2E(x1) and D2E(x2) have the form in Fig. 2. Thus, with high probability for
s ≥ 2, the kernels of both maps are contained in the corresponding band kernel,
Bβ,γ , and span(ker(D2E(x1) ∪ ker(D2E(x2)) = Bβ,γ .

Fig. 2. Structure of the bilinear forms induced by cubic maps in the same band space.

Remark 1. Here we have utilized a property which explicitly distinguishes dif-
ferential invariant structure from rank structure.

Given the basis for an s2 − s dimensional band kernel BK, we may choose a
basis {v1, . . . , vs} for the subspace of the dual space vanishing on BK. We can
also find a basis Ev1 , . . . , Evs

for the band space itself by solving the linear system
∑

Ei

τiD
2Ei(x11,x12,x13) = 0,

∑

Ei

τiD
2Ei(x21,x22,x23) = 0,

... =
...

∑

Ei

τiD
2Ei(xt1,xt2,xt3) = 0,

where t ≈ 2s2 and xij is in the band kernel.
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Since the basis Ev1 , . . . , Evs
is in a single band space, there exists an element

[
b′
1 · · · b′

s

]� ∈ ColSpace(B||C) and two matrices Ω1 and Ω2 such that

Ω1A

⎛

⎜
⎝Ω2

⎡

⎢
⎣

b′
1
...
b′
s

⎤

⎥
⎦

⎞

⎟
⎠ =: A′

⎛

⎜
⎝

⎡

⎢
⎣

v1
...
vs

⎤

⎥
⎦

⎞

⎟
⎠ =

⎡

⎢
⎣

Ev1

...
Evs

⎤

⎥
⎦ .

Solving the above system of equations over Fq[x1, . . . , xs2 ] uniquely determines
A′ in Fq[x1, . . . , xs2 ]/ 〈v1, . . . , vs〉. To recover all of A′, note that the above system
is part of an equivalent key

F = T ′ ◦ A′(B′||C ′)

where
[
v1 · · · vs

]� is the first column of B′.
Applying T ′−1 to both sides and inserting the information we know we may

construct the system
A′(B′||C ′) = T ′−1F (10)

Solving this system of equations modulo 〈v1, . . . , vs〉 for B′, C ′ and T ′−1 we
can recover a space of solutions, which we will restrict by arbitrarily fixing the
value of T ′−1. Note that the elements of T ′−1 are constant polynomials, and
therefore T ′−1(mod 〈v1, . . . , vs〉) is the same as T ′−1. Thus, for any choice of T ′−1

in this space, the second column of T ′−1F is a basis for a band space. Moreover,
the elements v′

s+1, . . . , v
′
2s of the second column of B′(mod 〈v1, . . . , vs〉) are the

image, modulo 〈v1, . . . , vs〉, of linear forms vanishing on the corresponding band
kernel. Therefore, the intersection

⋂s
i=1 ker(vi)∩

⋂2s
i=s+1 ker(v′

i) is the intersection
BK2 ∩ BK1 of the band kernels of our two band spaces.

We can reconstruct the full band kernel of this second band space using the
same method we used to obtain our first band kernel: We take a map E2 from
the second column of T ′−1F , and two vectors xa and xb from BK2 ∩ BK1, and
we compute BK2 = span(ker(D2E2(xa) ∪ ker(D2E2(xb)). We can now solve for
the second column of B′,

[
vs+1 · · · v2s

]�, uniquely over Fq[x1, . . . , xs2 ] (NOT
modulo 〈v1, . . . , vs〉) by solving the following system of linear equations:

vi ≡ v′
i(mod 〈v1, . . . , vs〉)

vi(x1) = 0
vi(x2) = 0

... =
...

vi(xs2−s) = 0

where i = s+1, . . . , 2s, and (x1, . . . ,xs2−s) is a basis for BK2. We can now solve
for A′ (again, uniquely over Fq[x1, . . . , xs2 ]) by solving:

A′

⎛

⎜
⎝

⎡

⎢
⎣

v1
...
vs

⎤

⎥
⎦

⎞

⎟
⎠ ≡

⎡

⎢
⎣

Ev1

...
Evs

⎤

⎥
⎦ (mod 〈v1, . . . , vs〉)
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A′

⎛

⎜
⎝

⎡

⎢
⎣

vs+1

...
v2s

⎤

⎥
⎦

⎞

⎟
⎠ ≡

⎡

⎢
⎣

Evs+1

...
Ev2s

⎤

⎥
⎦ (mod 〈vs+1, . . . , v2s〉)

where
[Evs+1 · · · Ev2s

]� is the second column of T ′−1F . This allows us to solve
Eq. 10 for the rest of B′ and C ′, completing the attack.

The primary cost of the attack involves finding the band space map. The
rest of the key recovery is additive in complexity and dominated by the band
space map recovery; thus, the total complexity of the attack is of the same
order as band space map recovery. Hence, the cost of private key extraction is
approximately q2s+6s2ω for characteristic 2, qs+3s2ω for characteristic 3, and
qs+2s2ω for higher characteristic. We note that with these parameters we can
break full sized instances of this scheme with parameters chosen for the 80-bit
and 100-bit security levels via the criteria presented in [13].

Specifically, our attack breaks CubicABC(q = 127, s = 7), designed for
80-bit security, in approximately 276 operations (or around 280 if one pessimisti-
cally uses ω = 3 as the linear algebra constant). More convincingly, our attack
completely breaks CubicABC(q = 127, s = 8), designed for 100-bit security, in
approximately 284 operations (or 288 for ω = 3). Furthermore, the attack is fully
parallelizable and requires very little memory; hence, the differential invariant
attack is far more efficient than algebraic attacks, the basis for the original secu-
rity estimation. Thus, the security claims in [13] are clearly unfounded; in fact,
the cubic version of the scheme, whose security was claimed to be closely related
to an NP-complete problem, is actually less secure than the quadratic case.

We can explain this dramatic discrepancy on the fact that the parameters in
[13] are derived by assuming that the algebraic attack is the most effective. In
the case of the quadratic ABC scheme, for the proposed parameters, the attack
of [12] was slower than the algebraic attack, though asymptotically faster. In the
case of the Cubic scheme, the attack is actually more efficient, in asymptotics
as well as for practical parameters.

7 Experiments

Using SAGE [14], we performed some minrank computations on small scale
variants of the Cubic ABC scheme. The computations were done on a computer
with a 64 bit quad-core Intel i7 processor, with clock cycle 2.8 GHz. We were
interested in verifying our complexity estimates on the most costly step in the
attack, the MinRank instance, rather than the full attack on the ABC scheme.
Given as input the finite field size q, and the scheme parameter s, we computed
the average number of vectors v required to be sampled in order for the rank of
the 2-tensor D2E(v) to fall to 2s. As explained in Sect. 5, when the rank falls to
this level, we have identified the subspace differential invariant structure of the
scheme and can exploit this structure to attack the scheme. Our results for odd
q are given in Table 1.
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Table 1. Average number of vectors needed for the rank to fall to 2s (for odd q)

s = 3 (q − 1)2qs s = 4 (q − 1)2qs s = 5 (q − 1)2qs

q = 3 14.75 108 333 324 952 972

q = 5 378 2000 9986 10000

q = 7 1688 12348 72951 86436

q = 9 606 46656

q = 11 13574 133100

For higher values of q and s the computations took too long to produce
sufficiently many data points and obtain meaningful results with SAGE. When
q is odd, our analysis predicted the number of vectors needed would be on the
order of (q − 1)2qs. Table 1 shows the comparison between our experiments and
the expected value. We see that for s = 3, the rank fell quicker than expected,
while for s > 3 the results are quite near the predicted value. This is because
when s = 3 our complexity estimates given in Sect. 5 are simply not accurate
enough, which happens for small values of q and/or s.

For even q, we also ran some experiments. We found that for s = 3 and
q = 2, 4, or 8, with high probability only a single vector was needed before the
rank fell to 2s. For s = 4 and s = 5, the computations were only feasible in
SAGE for q = 2. The average number of vectors needed in the s = 4 case was
244, with the expected value being (q − 1)2q2s = 256. With s = 5, the average
number in our experiments was 994 (although the number of trials was small),
with the expected value 1024. For higher values of q and s the computations
took too long to obtain meaningful results.

8 Conclusion

The ABC schemes are very interesting new ideas for multivariate public key
schemes. Essentially all of MPKC can be bisected into big field schemes, utilizing
the structure of an extension of the field used for public calculations, and small
field schemes which require no such extension. (For the purpose of this comment
we consider “medium” field schemes to be big field schemes.)

The ABC cryptosystems present a fundamentally new structure for the devel-
opment of schemes. In fact, if we consider the structure of simple algebras over
the public field (which are surely the only such structures we should consider
for secure constructions) then “big field” and “big matrix algebra” complete the
picture of possible large structure schemes.

It is interesting to note that the authors provide in [13] a heuristic security
argument for the scheme and, as reinforced in the first presentation of the scheme
at [15], suggest that with some work the scheme may be able to be shown prov-
ably secure. The idea behind their argument is at least somewhat reasonable,
if not precise. Their argument essentially amounts to the following: every cubic
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polynomial in the public key is in the ideal generated by the quadratic forms
in A under a certain basis; thus, one might expect the public key to contain a
subset of the information one would obtain by applying one step of a Gröbner
basis algorithm such as F4, see [16].

Unfortunately, this analysis is not very tight. In fact, we exploit the subspace
differential invariant structure inherent to the ABC methodology to show that for
odd characteristic the cubic scheme is less secure than its quadratic counterpart.
We may therefore conclude that any attempt at a secure cubic “big matrix
algebra” scheme must rely on the application of modifiers. The challenge, then,
is to construct such a scheme which is still essentially injective for the purpose
of encryption. Schemes such as this one can never compete with the secure
multivariate options for digital signatures we already know.

We are thus left with the same lingering question that has been asked for the
last two decades: Is secure multivariate encryption possible? Currently there is
a small list of candidates none of which has both been extensively reviewed and
has existed for longer than a few years. If we are to discover a secure multivariate
encryption scheme with a convincing security proof or some other security metric,
it will require some new techniques and new science. Only time will tell.
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