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Abstract. Until quite recently, anonymous credentials systems were
based on public key primitives. A new approach, that relies on alge-
braic Message Authentication Codes (MACs) in prime-order groups, has
recently been introduced by Chase et al. at CCS 2014. They proposed
two anonymous credentials systems referred to as “Keyed-Verification
Anonymous Credentials (KVAC)” as they require the verifier to know
the issuer secret key. Unfortunately, both systems presentation proof, for
n unrevealed attributes, is of complexity O(n) in the number of group
elements. In this paper, we propose a new KVAC system that provides
multi-show unlinkability of credentials and is of complexity O(1) in the
number of group elements while being almost as efficient as Microsoft’s
U-Prove anonymous credentials system (which does not ensure multi-
show unlinkability) and many times faster than IBM’s Idemix. Our cre-
dentials are constructed based on a new algebraic MAC scheme which is
of independent interest. Through slight modifications on the verifier side,
our KVAC system, which is proven secure in the random oracle model,
can be easily turned into a public-key credentials system. By implement-
ing it on a standard NFC SIM card, we show its efficiency and suitability
for real-world use cases and constrained devices. In particular, a creden-
tial presentation, with 3 attributes, can be performed in only 88 ms.

Keywords: MAC · Anonymous credentials · Attributes · Multi-show
unlinkability · Java Card SIM card

1 Introduction

Introduced by Chaum [16], anonymous credentials systems allow users to obtain
a credential from an issuer and then, later, prove possession of this credential, in
an unlinkable way, without revealing any additional information. This primitive
has attracted a lot of interest as it complies with data minimization principles
that consist in preventing the disclosure of irrelevant and unnecessary informa-
tion. Typically, an anonymous credentials system is expected to enable users to
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reveal a subset of the attributes associated to their credentials while keeping the
remaining ones hidden. For instance, a service provider only needs to know that
a user is legitimate (i.e. he is authorized to access the service) without yet being
able to collect personal information such as address, date of birth, etc.

Potential applications of anonymous credentials systems are numerous,
including e-cash [21], public transport and electronic toll (for authentication pur-
poses). In such applications, the system efficiency is an important requirement
especially as it is usually deployed on constrained environments like smart cards.

Furthermore, it is desirable that an anonymous credentials system provides
multi-show unlinkability. That is, one can prove possession of the same credential
several times in an unlinkable manner. However, when it is intended for eCash
applications, credentials should be one-show to prevent double spending of coins.

Related Work. One of the most prevalent anonymous credentials systems is
Microsoft’s U-Prove [23,24] which is based on a blind signature scheme due to
Brands [6]. It is quite efficient, as it works in prime-order groups, and supports
the selective disclosure of attributes. Nevertheless, U-Prove does not provide
multi-show unlinkability unless the user uses a different credential at each proof
of possession. Besides, to date, its security has not been formally proven.

A slightly less efficient anonymous attribute-based credentials system has
been proposed by Baldimsti and Lysyanskaya [3]. Their proposal, which relies on
an extension of Abe’s blind signature scheme [1], is proven secure in the Random
Oracle Model (ROM) under the DDH assumption. Recently, Fuchsbauer et al.
[19] introduced another anonymous credentials system that is proven secure in
the standard model. However, similarly to U-Prove, both systems are one-show
(i.e. credential presentations are linkable if a credential is used more than once).

IBM’s Identity Mixer, commonly known as Idemix [22], is built on
Camenisch-Lysyanskaya (CL) signature scheme [10,11]. Unlike previously
reviewed credentials systems, Idemix credentials provide multi-show unlinka-
bility but at the cost of a less efficient proof of possession. Indeed, the used CL
signatures are based on the Strong RSA assumption [4]. This implies large RSA
parameters which make Idemix unsuitable for constrained devices. Despite this,
Vullers and Alpár focused in [27] on the implementation of Idemix on MULTOS
smart cards. Using a 1024-bit modulus, their implementation enables the pre-
sentation of a credential with three attributes, one of which is undisclosed, in
1 s. Moreover, de la Piedra et al. [25] addressed smart cards limited Random
Access Memory (RAM) issues by proposing a RAM-efficient implementation of
Idemix. Thereby, smart cards can support Idemix credentials with more than 5
attributes. Unfortunately, even with these implementation improvements, tim-
ing results far exceed the time constraints of some use cases, which limits the
use of Idemix in practice.

Camenisch and Lysyanskaya introduced in [12] an efficient signature scheme
defined in bilinear groups and used it to construct an anonymous creden-
tials system. Shortly afterwards, Akagi et al. [2] provided a more effective
Boneh Boyen-based anonymous credentials system. Recently, Camenisch et al. [9]
proposed a Universally Composable (UC) secure anonymous credentials system
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that provides multi-show unlinkability and whose presentation proof is of con-
stant size. Nevertheless, these three proposals require the prover to compute
pairings and/or perform computations in G2. Thus, they cannot be implemented
on SIM cards as the latter cannot handle such heavy computations.

Recently, Chase et al. [15] have opted for the use of symmetric key primitives,
instead of digital signatures, so as to achieve better performances. More precisely,
they used algebraic Message Authentication Codes (MACs), that relies on group
operations rather than block ciphers or hash functions, as the main building block
of their credentials system. Their two proposals, denoted MACGGM and MACDDH,
assume that the issuer of the credential and the verifier share a secret key. In such
a setting, the anonymous credentials system is referred to as Keyed-Verification
Anonymous Credentials (KVAC). Unfortunately, their presentation proofs, for n
unrevealed attributes, are of complexity O(n) in the number of group elements.
Moreover, when credential blind issuance is required, their KVAC systems do not
provide perfect anonymity as they rely on ElGamal encryption to hide attributes.

As pointed out in [15], one can switch between the use of public-key and
keyed-verification anonymous credentials which are more efficient. For that,
whenever interacting with a new entity, the user proves the possession of a pub-
licly verifiable credential (such as a driving license anonymous credential issued
by a government on a set of attributes) and gets back a keyed-verification cre-
dential on the same attributes without disclosing them. Thus, during subsequent
interactions with that entity, the user will use the keyed-verification credential
for better efficiency.

Contributions. In this paper, we aim to design an anonymous credentials system
that provides multi-show unlinkability while being both efficient and suitable for
resource constrained environments like SIM cards (that cannot handle pairing
computations). To this end, following Chase et al. approach [15], we first build
a new algebraic MAC scheme that relies on a pairing-free variant of the Boneh
Boyen signature scheme. We prove the security of our proposal, which is of
independent interest, under the q−SDH assumption. Then, we use it to construct
a practical Keyed-Verification Anonymous Credentials (KVAC) system whose
presentation proof is of complexity O(1) in the number of group elements and
linear in the number of scalars. Our KVAC system is proven secure in the ROM
under classical assumptions. Furthermore, it can be easily turned into an efficient
publicly verifiable anonymous credentials system through the use of pairings
solely on the verifier side. To show its efficiency and suitability for constrained
environment, we implemented our system on a standard NFC SIM card. The
proof of possession of a credential on three attributes, with one unrevealed,
takes just 88 ms. This confirms its suitability for real world applications.

Organization. The paper is structured as follows. Section 2 introduces our main
notation and necessary building blocks. Then, Sect. 3 presents a novel algebraic
MAC scheme based on a pairing-free variant of the Boneh Boyen signature
scheme. Next, Sect. 4 describes our keyed-verification anonymous credentials sys-
tem as well as the way it can be turned into a traditional public-key anonymous
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credentials system. Finally, Sect. 5 provides efficiency and complexity evaluations
as well as implementation benchmarks of our KVAC system.

2 Preliminaries

2.1 Classical Tools

Notation. To state that x is chosen uniformly at random from the set X, we
use one of the two following notations x

R←− X or x ∈R X. In addition,
→
m and

{gi}l
i=1 respectively denote the vector (m1, . . . ,mn) and the set {g1, g2, . . . , gl}.

Zero-Knowledge Proof of Knowledge. Zero-Knowledge Proofs of Knowl-
edge (ZKPKs) allow a prover P to convince a verifier V that he knows some
secrets verifying a given statement without revealing anything else about them.
Following the usual notation introduced by Camenisch and Stadler [13], they
are denoted by π = PoK{α, β : statements about α, β} where Greek letters cor-
respond to the knowledge of P.

A ZKPK should satisfy three properties, namely (1) completeness (i.e. a
valid prover should be able to convince an honest verifier with overwhelming
probability), (2) soundness (i.e. a malicious prover should be rejected with over-
whelming probability), (3) zero-knowledge (i.e. the proof reveals no information
about the secret(s)).

In addition to classical ZKPKs (such as a proof of knowledge of a discrete log-
arithm [26], a proof of knowledge of a representation [8], or a proof of equality of
discrete logarithms [17]), our KVAC system relies on a ZKPK that a committed
value is non-zero. Such a proof has been introduced by Brands [7].

Indeed, a prover P may sometimes have to convince the verifier V that the
value x committed in C = gxhw is non-zero, where g and h are two random
generators (i.e. the discrete logarithm of g in the base h is unknown). To do so, P
has to prove the knowledge of the representation of g in the bases C and h. That
is, P has to build a ZKPK π defined as π = {α, β, γ, δ : C = gαhβ ∧ g = Cγhδ}.

Computational Hardness Assumptions. The security of our MAC scheme
and KVAC system relies on a set of computational hardness assumptions. In
what follows, G denotes a cyclic group of prime order p.

Discrete Logarithm (DL) Assumption. The Discrete Logarithm assumption states
that, given a generator g ∈R G and an element y ∈R G, it is hard to find the
integer x ∈ Zp such that y = gx.

Decisional Diffie-Hellman (DDH) Assumption. The Decisional Diffie-Hellman
assumption states that, given a generator g ∈R G, two elements ga, gb ∈R G

and a candidate X ∈ G, it is hard to decide whether X = gab or not. This is
equivalent to decide, given g, h, ga, gb, whether a = b or not.
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q-Strong Diffie-Hellman (q − SDH) Assumption. The q-Strong Diffie-Hellman
assumption holds in G if, given a generator g ∈R G and (gy, gy2

, . . . , gyq

) ∈ G
q

as input, it is hard to output a pair (x, g
1

y+x ) ∈ Z
∗
p × G.

This assumption is believed to be hard even in gap-DDH groups, i.e. groups
in which there is an efficient test to determine, with probability 1, on input
(g, h, gx, hy) if x = y mod p or not. Moreover, it has been proven in [20] that the
hardness of the q − SDH assumption in gap-DDH groups implies the hardness of
the gap q − SDH − III assumption defined as follows1.

Gap q-Strong Diffie-Hellman-III (gap q − SDH − III) Assumption. The q-Strong
Diffie-Hellman-III assumption states that, given (g, h, gy) ∈ G

3 and q distinct
triples (xi,mi, (gmih)

1
y+xi ) ∈ Z

2
p ×G and having access to a DDH oracle (which

indicates whether a given quadruple (g, h, gx, hy) ∈ G
4 is a DH quadruple or

not), it is hard to output a new triple (x,m, (gmh)
1

y+x ) where (x,m) ∈ Z
2
p.

2.2 Message Authentication Codes (MACs)

A Message Authentication Code (MAC) is an authentication tag computed using
a secret key that is shared between the issuer and the verifier. More formally, a
MAC scheme consists of the following four algorithms:

Setup(1k) creates the public parameters pp, given a security parameter k.
KeyGen(pp) generates the secret key sk that is shared between the issuer and

the verifier.
MAC(pp, sk,m) takes as input a message m and a secret key sk. It outputs a

MAC, also known as a tag and denoted by τ , on the message m.
Verify(pp, sk,m, τ) is a deterministic algorithm which outputs either 1 or 0

depending on the validity of the MAC τ with respect to the message m and
the secret key sk.

UF-CMVA Security. Usually, a probabilistic MAC scheme is considered
secure if it is unforgeable under chosen message and verification attack (UF-
CMVA). In other words, the adversary A can query two oracles: OMAC and
OVerify. OMAC provides him with a valid MAC on any message of his choice
whereas OVerify enables him to check the validity of any (message, MAC) pair.
Such an adversary should not be able to compute a pair (m′, τ ′) where τ ′ is a valid
MAC on the message m′ that has not already been queried to the OMAC oracle.
A yet stronger security notion for probabilistic MACs, denoted sUF-CMVA,
exists. In such a variant, the adversary wins even if m′ has already been queried to
the OMAC oracle, provided that the oracle did not output the pair (m′, τ ′). More
formally, Fig. 1 details the sUF-CMVA experiment ExpsUF-CMVA

A (1k) between a
challenger C and an adversary A. The adversary’s success probability, denoted
by AdvsUF-CMVA

A (1k), is defined as Pr[ExpsUF-CMVA
A (1k) = 1].

1 For this reason, we will sometimes simply refer to the gap q − SDH − III assumption
as the q − SDH assumption.
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ExpsUF-CMVA
A (1k)

1. pp ← Setup(1k)
2. sk ← KeyGen(pp)
3. (m′, τ ′) ← AOMAC,OVerify(pp)
4. If (m′, τ ′) was obtained following a call to the OMAC oracle, then

return 0.
5. Return Verify(pp, sk, m′, τ ′)

Fig. 1. sUF-CMVA security

3 An Algebraic MAC Scheme Based on Boneh-Boyen
Signatures

Based on a pairing-free variant [14] of the Boneh-Boyen signature scheme [5], we
design a new algebraic MAC scheme. In this section, we detail our construction
which can be applied to both a single message as well as a block of messages.

3.1 MACBB

Our algebraic MAC scheme for a single message m, referred to as MACBB, is
defined as follows:

Setup(1k) creates the system public parameters pp = (G, p, h, g0, g1, g) where
G is a cyclic group of prime order p, a k-bit prime, and h, g0, g1, g are four
random generators of G.

KeyGen(pp) selects a random value y ∈R Zp as the issuer’s private key and
optionally computes the corresponding public key Y = gy

0 .
MAC(m, y) picks two random values r, s ∈R Zp and computes A = (gm

1 gsh)
1

y+r .
The MAC on the message m consists of the triple (A, r, s).

Verify(m,A, r, s, y) checks the validity of the MAC (A, r, s) with respect to the
message m. The MAC is valid only if (gm

1 gsh)
1

y+r = A.

Theorem 1. Our MACBB scheme is sUF-CMVA secure under the gap q −
SDH − III assumption2.

3.2 MACn
BB

Our algebraic MAC scheme can be generalized to support a block of n messages
(m1, . . . ,mn). This extension is referred to as MACn

BB and works as follows:

Setup(1k) creates the system public parameters pp = (G, p, g1, g2, . . . ,
gn, h, g0, g) where G is a cyclic group of prime order p, a k-bit prime, and
h, g, g0, g1, . . . , gn are random generators of G.

2 The proof is detailed in Appendix A.1.
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KeyGen(pp) selects a random value y ∈R Zp as the issuer’s private key and
optionally computes the corresponding public key Y = gy

0 .
MAC(

→
m, y) takes as input a block of n messages

→
m = (m1, . . . ,mn) and computes

A = (gm1
1 gm2

2 . . . gmn
n gsh)

1
y+r where r, s ∈R Zp. The MAC on

→
m consists of

the triple (A, r, s).
Verify(

→
m,A, r, s, y) checks the validity of the MAC with respect to the block

of messages
→
m. The MAC is valid only if (gm1

1 gm2
2 . . . gmn

n gsh)
1

y+r = A.

Theorem 2. Our MACn
BB scheme is sUF-CMVA secure under the assumption

that MACBB is sUF-CMVA3.

One particular feature of our algebraic MAC scheme is that anyone can verify
the validity of a given MAC by himself (i.e. without neither knowing the private
key y nor querying the Verify algorithm). Indeed, a MAC on

→
m = (m1, . . . ,mn)

consists of the triple (A, r, s) such that A = (gm1
1 gm2

2 . . . gmn
n gsh)

1
y+r . This

implies that Ay+r = gm1
1 gm2

2 . . . gmn
n gsh and hence, B = gm1

1 gm2
2 . . . gmn

n gsh ·
A−r = Ay. Therefore, if the issuer of the MAC also provides a ZKPK defined as

π = PoK{γ : B = Aγ ∧ Y = gγ
0 },

then its receiver will be convinced that the MAC is valid.
Furthermore, unlike both algebraic MAC schemes due to Chase et al. [15],

the issuer does not have to hold as many private keys as messages but rather a
sole private key regardless of the number of messages.

4 A Keyed-Verification Anonymous Credentials System
Based on MACn

BB

In this section, we first define Keyed-Verification Anonymous Credentials
(KVAC) systems as well as their requirements. Next, we detail our new KVAC
system that is built upon our MACn

BB scheme.

4.1 Overview on KVAC Systems

A keyed-verification anonymous credentials system is defined through the follow-
ing algorithms which involve three entities: a user U , an issuer I and a verifier V.

Setup(1k) creates the system public parameters pp, given a security parameter k.
CredKeyGen(pp) generates the issuer’s private key sk, which is shared with V,

and computes the corresponding public key pk.
BlindIssue(U(

→
m, s), I(sk)) is an interactive protocol between a user U who

wants to get an anonymous credential on a set of attributes
→
m = (m1, . . . ,mn)

and a secret value s, without revealing them, and the issuer I who holds the
private key sk. If the protocol does not abort, the user gets a credential σ.

3 The proof is detailed in Appendix A.2.
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Show(U(s, σ,
→
m,φ),V(sk, φ)) is an interactive protocol between U , who wants to

prove that he holds a valid credential on attributes
→
m satisfying a given set

of statements φ, and V, holding the private key sk, whose goal is to check
that it is actually true.

Security Requirements. In addition to the usual correctness property, a
KVAC system should satisfy four security properties, namely unforgeability,
anonymity, blind issuance and key-parameter consistency. Roughly speaking,
they are defined as follows (formal definitions are provided in [15]):

– Unforgeability: it should be infeasible for an adversary to generate a valid
ZKPK that convinces a verifier that he holds a credential satisfying a given
statement, or a set of statements, when it is not actually true;

– Anonymity: the presentation proof produced during the protocol Show reveals
nothing else aside from the statement φ being proven;

– Blind issuance: BlindIssue is a secure two-party protocol for generating
credentials on the user’s attributes;

– Key-parameter consistency : an adversary should not be able to find two secret
keys that correspond to the same issuer’s public key.

4.2 Our Keyed-Verification Anonymous Credentials System

Based on the designed MACn
BB scheme, we construct a KVAC system involving a

user U , an issuer I and a verifier V. Our KVAC system consists of the following
four phases. The two main phases (BlindIssue and Show) are depicted in Fig. 2.

Setup. Generate the public parameters pp = (G, p, g1, g2, . . . , gn, g, h, g0, f)
where G is a cyclic group of prime order p, a k-bit prime, and (h, g, g0, {gi}n

i=1, f)
are random generators of G where DDH is hard. For i ∈ {1, . . . , n}, gi is asso-
ciated with a specific type of attributes (e.g. age, gender, etc.). This allows us
to differentiate attributes and avoid any ambiguity. Note that, in the sequel, all
computations on exponents are computed modulo p (i.e. mod p).

Key Generation. Choose a random value y ∈R Zp as the issuer’s private key
and compute the corresponding public key Y = gy

0 . Each user U is also provided
with a private key sku and the associated public key pku which may be used to
authenticate the user during the issuance of his credentials.

Blind Issuance. To issue a credential on the attributes (m1, . . . ,mn), the issuer
and the user (who has already been authenticated) engage in the following proto-
col. First, the user U builds a commitment Cm = gm1

1 . . . gmn
n gs on his attributes,

where s ∈R Z
∗
p. Then, he sends it to the issuer I along with a ZKPK π1 defined as

π1 = PoK{α1, . . . , αn+1 : Cm = gα1
1 gα2

2 . . . gαn
n gαn+1}. If the proof is valid, I ran-

domly picks r, s′ ∈R Zp and computes A = (Cm ·gs′ ·h)
1

y+r which corresponds to
a MACn

BB on (m1, . . . ,mn). He may also build a ZKPK π2 ensuring that the cre-
dential is well-formed. Such a proof is defined as π2 = PoK{γ : B = Aγ∧Y = gγ

0 }
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where B = Cm · gs′ · h · A−r = Ay. Then, he provides U with the triple (A, r, s′)
along with the proof π2. Upon receiving them, U first verifies the validity of π2,
then computes C̃m = Cm gs′

h as well as su = s+ s′, which is a secret value only
known to U . Finally, he sets his anonymous credential σ as σ = (A, r, su, C̃m).

Note that in case where U does not mind revealing his attributes (or a subset
of them), he just sends them without using any commitment (respectively, only
commits to the attributes that he does not want to reveal).

Fig. 2. Our keyed-verification anonymous credentials system

Credential Presentation. To anonymously prove that he holds a credential
on the attributes (m1, . . . ,mn), the user engages in an interactive protocol with
the verifier V. First, he randomly selects l, t ∈R Z

∗
p and computes B0 = Al, a

randomized version of his credential. He also computes C = C̃l
mB−r

0 as well as
E = C

1
l f t.

Note that by definition, Ay+r = Cm gs′
h = gm1

1 gm2
2 . . . gmn

n gsuh. Thus, we
have (Al)y+r = glm1

1 glm2
2 . . . glmn

n glsuhl. Hence, C is simply equal to Aly = By
0 .

U also builds a ZKPK π3 to prove that he really holds a valid credential
(i.e. he knows the associated attributes/secrets and the value committed in E
is different from zero). π3 is defined as π3 = PoK{α, β, λ, δ1, . . . , δn+1, γ, θ : E =
Cαfβ ∧ E · h−1 = gδ1

1 . . . gδn
n gδn+1 · Bλ

0 · fβ ∧ C = Eθfγ}. Once the required
values have been computed, U provides V with B0, C and E along with π3

4.

4 π3 is detailed in Appendix C.
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Upon their receipt, V first computes C ′ = By
0 , then verifies that C = C ′. If

so, he checks that π3 is valid. V is convinced that U really holds a valid credential
on attributes (m1, . . . ,mn) if, and only if, both checks succeed.

Theorem 3. Our KVAC system is unforgeable under the assumption that
MACn

BB is sUF-CMVA, perfectly anonymous and ensures blind issuance as well
as key-parameter consistency in the Random Oracle Model5.

4.3 From Keyed-Verification to Public Key Anonymous Credentials

In this section, we explain how to turn our KVAC system into a public key
anonymous credentials system. Thereby, a user would be able to prove possession
of a credential to any entity (i.e. even if the issuer’s private key is unknown).

For that, our system should be defined in bilinear groups. Let us first recall
that bilinear groups are a set of three cyclic groups G1, G2 and GT of prime
order p along with a bilinear map e : G1 × G2 → GT satisfying the following
properties:

– For all g ∈ G1, g̃ ∈ G2 and a, b ∈ Zp, e(ga, g̃b) = e(g, g̃)a.b;
– For g �= 1G1 and g̃ �= 1G2 , e(g, g̃) �= 1GT

;
– e is efficiently computable.

In such a case, the system public parameters are defined as pp =
(G1,G2,GT , p, e, g1, . . . , gn, g, h, g0, f, g̃0) where G1, G2 and GT are three cyclic
groups of prime order p, (h, g, g0, {gi}n

i=1, f) are random generators of G1 and
g̃0 is a random generator of G2. The other phases are updated as follows.

Key Generation. The issuer publishes a second public key W = g̃y
0 associated

with his private key y.
Blind Issuance. This phase does not require any changes.
Credential Presentation. As the verifier V does not hold the private key y,

some changes are required on his side. More precisely, he must compute two
pairings e(C, g̃0) and e(B0,W ). V is convinced that the user really holds a
valid credential on (m1, . . . ,mn) only if e(C, g̃0) = e(B0,W ) and π3 is valid.

5 Efficiency Comparison and Performance Assessment

We first compare the efficiency of our KVAC system to that of the main existing
anonymous credentials schemes (i.e. U-Prove, Idemix, Bilinear CL, MACGGM and
MACDDH) both in terms of credential size and computational cost related to the
creation of a presentation proof since it is the most time-critical phase. Next,
we focus on the complexity, in the number of group elements, of KVAC systems
presentation proofs. Finally, we provide timing results of the implementation of
our Credential presentation protocol on a standard NFC SIM card.

5 Proofs are detailed in Appendix B.
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Presentation Proof Computational Cost. We compare in Table 1 the esti-
mated cost of creating a presentation proof in terms of total number of multi-
exponentiations. We use the same notation as [15] where l-exp denotes the com-
putation of the product of l powers and l − exp(b1, . . . , bl) corresponds to the
computation of the product of l powers with exponents of b1, . . . , bl bits (for
Idemix). The number of multi-exponentiations depends on three parameters:
n, r and c which respectively denote the number of attributes in a credential,
the number of revealed attributes and the number of attributes kept secret.

Table 1 shows that our KVAC system is competitive with U-Prove (which
does not provide multi-show unlinkability) and MACGGM (which requires the
verifier to know the issuer’s private key and thus does not allow public verifia-
bility). When most of the attributes are not disclosed, our proposal outperforms
MACGGM.

Table 1. Comparison of credential sizes (for s unlinkable shows) and presentation
proof generation cost (for a credential on n attributes, c of which are not disclosed).
Note that all schemes use a 256-bit elliptic curve group, except Idemix which uses a
2048-bit modulus.

Schemes Credential size
(in bits)

Number of exponentiations

U-Prove [23,24] 1024s 2c 2-exp and 1 (n − r + 1)-exp

Idemix [22] 5369 1 1-exp(2048), c 2-exp(256, 2046), c
2-exp(592, 2385) and 1 (n − r + 2)-exp (456,
3060, 592, . . ., 592)

Bilinear CL [12] 512n + 768 (3 + n) 1-exp, 2c 2-exp and 3 + n pairings

MACGGM [15] 512 3 1-exp, 2(n − r) 2-exp and 1 (n − r + 1)-exp

MACDDH [15] 1024 6 1-exp, 2(n − r + 1) 2-exp and 2
(n − r + 1)-exp

MACn
BB 1024 1 1-exp, 4 2-exp and 1 (n − r + 3)-exp

Complexity in the Number of Group Elements. As it only requires a
multi-commitment to all undisclosed attributes, our presentation proof is of com-
plexity O(1) in the number of group elements. This makes our KVAC system
more efficient than Chase et al. systems (i.e. MACGGM and MACDDH [15]) whose
presentation proof is of complexity O(c). Indeed, both of their proposals presen-
tation proof needs c commitments (one for each unreavealed attribute).

Implementation Results. Table 2 gives timing results of the implementation
of our Show protocol on a Javacard 2.2.2 SIM card, Global Platform 2.2 com-
pliant, embedded in a Samsung galaxy S3 NFC smartphone. Compared to the
javacard specifications, the only particularity of our card is some additional API
provided by the card manufacturer enabling operations in modular and ellip-
tic curve arithmetic. To be able to handle asymmetric cryptography on elliptic
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curves, the used card is equipped with a cryptoprocessor. This makes it more
powerful than most cards. It is, however, worth to emphasize that such SIM
cards are already widely deployed by some phone carriers to provide NFC based
services.

The implementation uses a 256-bit prime “pairing friendly” Barreto-Naehrig
elliptic curve. In our implementation, the protocol is split into two parts: an
off-line part that can be run in advance by the card (during which all the val-
ues necessary for an execution of the Show protocol in the worst case scenario,
i.e. no revealed attributes, are computed) and an on-line part that needs to be
performed on-line as it depends on the verifier’s challenge. Indeed, in our imple-
mentation, the proof π3 is made non-interactive: the verifier sends to the prover
a challenge Ch which is included in the computation of the hash value c. Timings
are given for n = 3, r = 2 and c = 1.

Table 2. Timings in ms ((min-max) average) of the implementation of the protocol
Show

Off-line part (card) Battery-On: (1352–1392) 1378ms

On-line part

Presentation proof (card) Proof verification (PC)

Battery-On Battery-Off y known y unknown

(81–86) 83ms (123–124) 123.4 ms (3–14) 5 ms (5–17) 10 ms

Total On-line part

Battery-On Battery-Off

y known y unknown y known y unknown

(84–100) 88ms (86–103) 93 ms (126–137) 128 ms (128–141) 133 ms

The presentation proof by the card actually refers to the total time, from the
applet selection to the proof reception, including the sending of the challenge by
the verifier, but excluding the proof verification. Communication between the SIM
card in the smartphone and the PC (Intel Xeon CPU 3.70 GHz), acting as the
Verifier, was done in NFC using a standard PC/SC reader (an Omnikey 5321).
“Battery-Off” denotes a powered-off phone either by the user, or because its bat-
tery is flat. In such a situation, as stated by NFC standards, NFC-access to the
SIM card is still possible, but with degraded performances. Off-line computations
are assumed to be automatically launched by the smartphone (battery-On) after a
presentation proof, in anticipation for the next one. It is noteworthy that all com-
putations are entirely done by the card: the smartphone is only used to trigger the
Show protocol and to power the card. On-line computations refer to computations
of Ri values and the hash c involved in the proof π3 (see Appendix C), and can be
potentially carried out even by a battery-Off phone. On average, the On-line part
of the presentation proof is very fast even when the phone is powered-off. Actually,
data exchange is the most time-consuming task.
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6 Conclusion

In this paper, our contribution is twofold. First, we proposed a new algebraic
MAC scheme that relies on a pairing-free variant of the Boneh Boyen signature
scheme. Then, based on it, we designed a keyed-verification anonymous cre-
dentials (KVAC) system whose presentation proof is efficient both in terms of
presentation cost and complexity (in the number of group elements). Our KVAC
system provides multi-show unlinkability and requires the issuer to hold a single
private key regardless of the number of attributes. Through slight modifications
(solely on the verifier side), our KVAC system can be easily turned into a quite
efficient public key anonymous credentials system. Thereby, it can also be used
even if the verifier does not hold the issuer’s private key. Finally, implementation
results confirm its efficiency and suitability for delay sensitive applications, even
when implemented on a standard NFC SIM card.

A MAC Security

A.1 Security Proof of MACBB (Theorem1)

Let A be an adversary who breaks the sUF-CMVA security of our MACBB scheme
with non-negligible probability. Using A, we construct a reduction B against the
q − SDH assumption in gap-DDH groups (which implies the gap q − SDH − III
assumption). A can ask for tags on any message of his choice and receives the
corresponding tags (Ai, ri, si) for i ∈ {1, . . . , q} where q denotes the number of
requests to the OMAC oracle. Eventually, A outputs his forgery (A, r, s) for the
message m. We distinguish two types of forgeries:

– Type-1 Forger: an adversary that outputs a valid tag (A, r, s) on m such
that (A, r) �= (Ai, ri) for all i ∈ {1, . . . , q}.

– Type-2 Forger: an adversary that outputs a valid tag (A, r, s) on m such
that (A, r) = (Aj , rj) for some j ∈ {1, . . . , q} and (m, s) �= (mj , sj).

We show that, regardless of their type, both adversaries can be used to break the
gap q −SDH assumption. However, the reduction works differently for each type
of forger. Consequently, B initially chooses a random bit cmode ∈ {1, 2} which
indicates its guess for the type of forgery that A will output.

• If cmode = 1: B receives on input from its q−SDH challenger, denoted by C,
the public parameters (g0, g1, h) and the public key Y = gy

0 as well as q random,
and distinct, triples (Ai, ri,mi) such that Ai = (gmi

1 h)
1

ri+y for i ∈ {1, . . . , q}.
As it is against the gap q −SDH − III assumption, B has access to a DDH oracle,
denoted by ODDH, that decides whether a given quadruple (g, h, gx, hy) is a valid
Diffie-Hellman quadruple (i.e. whether x

?= y mod p) or not. B also randomly
chooses v ∈R Zp and computes g = gv

1 . Thereby, it can provide A with the public
parameters (g0, g1, h, g, Y ) and answer his requests as follows:
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– OMAC requests: given m as input, B first computes si such that m+vsi = mi.
Then, it provides A with the triple (Ai, ri, si) which is a valid MAC on m
(i.e. Ay+ri

i = gm
1 gsih). The simulation of this oracle is perfect.

– OVerify requests: given a quadruple (A, r, s,m), B first verifies that A �= 1
and computes B = A−rgm

1 gsh. Then, it provides the quadruple (g0, A, Y,B)
as input to the ODDH oracle so as to know if it is valid or not. B forwards the
oracle’s answer to A, thus perfectly simulating OVerify.

Eventually, after q queries to OMAC and qv queries to OVerify, A outputs his
forgery (A, r, s) on m such that it breaks the sUF-CMVA security of our MACBB

scheme. Using these values, B computes m̃ = m + sv and outputs his forgery
(A, r, m̃) thus breaking the q − SDH assumption with the same advantage as A.

• If cmode = 2: A Type-2 adversary A is rather used, as a subroutine, to
construct a reduction B against the DL problem. In such a case, B receives on
input from its DL challenger, denoted by C, the challenge (g1,H = gv

1). Its goal
is to find the value v. For this purpose, it first randomly chooses (y, g0, h) ∈R

Zp × G
2 and computes Y = gy

0 . B also sets g as g = H. Thereby, it can provide
A with the public parameters (g1, g0, h, g, Y ) and answer his requests as follows:

– OMAC requests: as it holds y, B can generate a valid MAC (A, r, s) on any
queried message m. To do so, it computes A = (gm

1 gsh)
1

y+r where r, s ∈ Z
∗
p.

– OVerify requests: given a quadruple (A, r, s,m), B computes Ã =
(gm

1 gsh)
1

y+r . To check its validity, and answer A’s query, B verifies whether
Ã

?= A.

Eventually, after q queries to OMAC and qv queries to OVerify, A outputs his
forgery (A, r, s) on m such that it breaks the sUF-CMVA security of our MACBB

scheme. By assumption, (A, r) is equal to one of the (Aj , rj) pairs output by the
OMAC oracle following A’s request for some j ∈ {1, . . . , q}. Since (A, r) = (Aj , rj),
then Ay+rj = g

mj

1 gsj h = Ay+r = gm
1 gsh and so g

mj

1 gsj = gm
1 gs. We therefore

necessarily have sj �= s, otherwise this would imply that m = mj (contradicting

the fact that we have supposed (m, s) �= (mj , sj)). Thereby, g = (g1)
m−mj
sj−s . Using

the values (m,mj , s, sj), B can recover v, hence breaking the DL problem. If B
can break the DL problem, then it can break the q − SDH problem (by finding
the discrete logarithm y of gy in the base g).

B can guess which type of forgery a particular adversary A will output with
probability 1/2. So, B can break the gap q − SDH problem with probability ε/2
where ε is the probability that A breaks the sUF-CMVA security of our MACBB

scheme. Therefore, under the gap q − SDH assumption, our MACBB scheme is
sUF-CMVA secure.

A.2 Security Proof of MACn
BB (Theorem2)

Let A be an adversary who breaks the unforgeability of our MACn
BB with non-

negligible probability. Using A, we construct an algorithm B against the unforge-
ability of MACBB. A can ask for tags on blocks of messages

→
m1 = (m1

1, . . . ,m
1
n),
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→
m2 = (m2

1, . . . ,m
2
n), . . . ,

→
mq = (mq

1, . . . ,m
q
n) and receives the corresponding tags

(Ai, ri, si) for i ∈ {1, . . . , q}. Eventually, A outputs his forgery (A, r, s) for the
block of messages

→
m = (m1, . . . ,mn). We differentiate two types of forgers:

– Type-1 Forger: an adversary that outputs a forgery where (A, r, s) �=
(Ai, ri, si) for i ∈ {1, . . . , q}.

– Type-2 Forger: an adversary that outputs a forgery where (A, r, s) =
(Ai, ri, si) for some i ∈ {1, . . . , q} and (m′

1, . . . ,m
′
n) �= (mi

1, . . . ,m
i
n).

We show that any forger can be used to forge MACBB tags. The reduction
works differently for each forger type. Therefore, B initially chooses a random
bit cmode ∈ {1, 2} that indicates its guess for the type of forgery that A will
emulate.

• If cmode = 1: B receives on input from its MACBB challenger, denoted by
C, the public parameters (g0, g1, g, h) as well as the public key Y = gy

0 . Then, B
constructs the public parameters for A as follows: for i ∈ {2, . . . , n}, B chooses
αi ∈R Z

∗
p and computes gi = gαi

1 . The parameters g0, g1, g, h and Y are the same
as those sent by C. B can answer A’s requests as follows:

– OVerify requests: when A sends a verify request to B on (A, r, s) and a block
of messages (m1, . . . ,mn), B computes M = m1 +α2m2 + . . .+αnmn. Then,
it queries its MACBB Verify oracle on (A, r, s,M) and outputs the oracle’s
answer to A.

– OMAC requests: when A sends a tag request to B on the block of messages
(m1, . . . ,mn), B asks the MACBB oracle on M = m1 + α2m2 + . . . + αnmn.
Thus, B obtains the tag (Ai, ri, si). It sends back (Ai, ri, si) to A which is a
valid MACn

BB tag on (m1, . . . ,mn).

Eventually, A outputs his forgery (A, r, s) on the block of messages (m1, . . . ,mn).
Using these values, B directly outputs its MACBB forgery (A, r, s) on M ′ =
m1 +α2m2 + . . .+αnmn. Therefore, B breaks the unforgeability of MACBB with
the same advantage as A.

• If cmode = 2: In this case, A is rather used as a subroutine to construct a
reduction B against the DL problem. B receives as input from its DL challenger,
denoted by C, the challenge (g,H = gv). The goal of B consists in finding v.
For that purpose, it first randomly chooses (y, g0, h) ∈R Zp × G

2 and computes
Y = gy

0 . Then, it chooses I ∈ {1, . . . , n} and (n − 1) random values αi ∈ Z
∗
p. It

computes, for i �= I, gi = gαi and defines gI = H. B can answer A’s requests as
follows:

– OVerify requests: when A sends a verify request to B on (A, r, s) and a block
of messages

→
m = (m1, . . . ,mn), B computes Ã = (gm1

1 . . . gmn
n gs · h)

1
y+r . It

can thus check the validity of the quadruple (A, r, s,
→
m) by verifying whether

Ã
?= A;

– OMAC requests: as it holds y, B can generate a valid MAC (A, r, s) on any
queried block of messages (m1, . . . ,mn). Indeed, it chooses r, s ∈R Z

∗
p and

computes A = (gm1
1 . . . gmn

n gs · h)
1

y+r .
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Eventually, A outputs his forgery (A, r, s) on a block of messages
→
m =

(m1, . . . ,mn). By assumption, (A, r, s) is equal to one of A’s requests, let
say (Ai, ri, si), but it is a forgery on a new block of messages. Therefore,
(mi

1, . . . ,m
i
n) �= (m1, . . . ,mn) (one can easily show that there is at least one

difference in the two blocks of messages). So with probability 1
n ,mi

I �= mI . Thus,

since (A, r, s) = (Ai, ri, si), we have gm1
1 gm2

2 . . . gmn
n = g

mi
1

1 g
mi

2
2 . . . g

mi
n

n . So, the

discrete logarithm v of H = gI in the base g is equal to: v =
∑n

j �=I αj
(mj−mi

j)

mi
I−mI

.
Therefore, B can find v with probability ε

n where ε is the probability that A
breaks the unforgeability of MACn

BB. If B can break the DL problem then, it can
break the MACBB scheme (by finding the discrete logarithm of Y in the base g0).

We can guess which of the two forgers a particular adversary A is with
probability 1/2. So, assuming the most pessimistic scenario (case 2), B can break
the unforgeability of MACBB with probability ε/2n.

B Security Proofs of Theorem3

Relying on the KVAC security model provided in [15], we focus in this appendix
on the security proofs of our KVAC system. Owing to the lack of space, we only
detail the proofs of unforgeability and anonymity.

Unforgeability. Here, we prove unforgeability when A is given credentials gen-
erated by the BlindIssue protocol. We have shown (see Theorem 2) that MACn

BB

is unforgeable under the gap q − SDH assumption.
Suppose there exists an adversary A who can break the unforgeability prop-

erty of our anonymous credentials system. We will show that A can be used to
construct an algorithm B that breaks the unforgeability of MACn

BB. B receives
pp = (G, p, g1, . . . , gn, g, h, g0) from its MACn

BB challenger along with Y , the
issuer’s public key. It sends pp and Y to A and answers his requests as follows:

– When A queries the OBlindIssue oracle: A sends Cm and gives a proof π1. If
π1 is invalid, B returns ⊥. Otherwise, B runs the proof of knowledge extractor
to extract {mi}n

i=1 and s. B then queries its MACn
BB oracle on {mi}n

i=1 which
returns a tag (A, r, su) to B. Finally, B simulates the corresponding proof6 π2

and forwards the tag (A, r, su − s) along with π2 to A.
– When A queries the OShowVerify oracle: A sends B0, C,E along with a

proof π3. If the proof π3 is invalid, B returns ⊥. Otherwise, B runs the proof
of knowledge extractor to extract α, β, λ, δ1, δ2, . . . , δn+1, γ and θ. If α = 0,
B returns 0 to A. Otherwise, B computes A = Bα

0 , r = − λ
α and s = δn+1.

Finally, it queries its Verify oracle with ((δ1, δ2, . . . , δn), (A, r, s)) as input
and returns the result to A.

In the final Show protocol, B again extracts α, β, λ, δ1, δ2, . . . , δn+1, γ, θ and out-
puts ((δ1, δ2, . . . , δn), (Bα

0 ,− λ
α , δn+1)) as its forgery.

6 Such a proof can be easily simulated in the ROM, using standard techniques.
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First, note that B’s response to OBlindIssue queries are identical to the
ones of the honest OBlindIssue algorithm. Then, we argue that its response
to ShowVerify queries are also, with overwhelming probability, identical to the
output of a real ShowVerify algorithm. To see this, note that the proof of knowl-
edge property guarantees that the extractor succeeds in producing a valid wit-
ness with all but negligible probability. Furthermore, if the extractor gives valid
(α, β, λ, δ1, δ2, . . . , δn+1), we have from E = Cαfβ = gδ1

1 . . . gδn
n gδn+1 · h · Bλ

0 · fβ

that

Cα = gδ1
1 . . . gδn

n gδn+1 · h · Bλ
0 =⇒ CαB−λ

0 = gδ1
1 . . . gδn

n gδn+1 · h

If the MACn
BB Verify oracle outputs 1 on input ((δ1, δ2, . . . , δn), (Bα

0 ,− λ
α , δn+1)),

this implies that

(Bα
0 )y− λ

α = gδ1
1 . . . gδn

n gδn+1 · h

⇔ (Bα
0 )y · B−λ

0 = gδ1
1 . . . gδn

n gδn+1 · h

⇔ (Bα
0 )y · B−λ

0 = CαB−λ
0

⇔ (Bα
0 )y = Cα

⇔ By
0 = C

Note that α is necessarily different from 0, otherwise Bα
0 = 1 and would have

been rejected by the MACn
BB Verify oracle.

Thus, the honest verifier algorithm accepts, if and only if, (Bα
0 ,− λ

α , δn+1)
would be accepted by the MACn

BB Verify algorithm for message (δ1, . . . , δn).
Similarly, we can argue that B can extract a valid MAC from the final Show
protocol whenever α �= 0 and ShowVerify would have output 1. Thus, if A can
cause ShowVerify to accept for some statement φ that is not satisfied by any of
the attributes sets queried to OBlindIssue, then B can extract a new message
(δ1, . . . , δn) and a valid tag for that message.

Anonymity. Suppose the user is trying to prove that he has a credential for
attributes satisfying some statement φ. We want to show that there exists an
algorithm SimShow that, for the adversary A, is indistinguishable from Show but
that only takes as input the statement φ and the secret key sk.

Let φ ∈ Φ and (m1, . . . ,mn) ∈ U be such that φ(m1, . . . ,mn) = 1. Let pp
be the system public parameters, Y the issuer’s public key and σ be such that
CredVerify(sk, σ, (m1, . . . ,mn)) = 1. So, σ consists of a quadruple (A, r, su, C̃m)
∈ G × Zp × Zp × G satisfying Ay+r = gm1

1 . . . gmn
n gsuh.

SimShow(sk, φ) behaves as follows: it chooses a random value l′ ∈R Z
∗
p as

well as a random generator E ∈R G. It then computes B0 = gl′
0 and C = Y l′ .

It runs A with the values (B0, C,E) as the first message, simulates the proof of
knowledge π3 and outputs whatever A outputs at the end of the proof.

Let us first show that the values B0, C and E are distributed identically to
those produced by Show. Note that since A �= 1, there exists x ∈ Zp such that
A = gx

0 . For a random value l ∈R Zp, B0 = Al = glx
0 = gl′

0 for l′ = lx. Therefore,
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we also have C = Aly = Y l′ . Moreover, there exists t such that E = C1/lf t.
Then, the values computed by SimShow are identical to those that the normal
Show protocol would have produced. Owing to the zero-knowledge property of
the proof of knowledge, we conclude that the resulting view is indistinguishable
from that produced by the adversary interacting with Show.

C ZKPK π3 - Proof of Possession of a Credential

We describe an instantiation of our presentation protocol using non-interactive
Schnorr-like proofs. As in [15], our protocol does not include proofs of any addi-
tional predicates φ, but outputs a commitment H on the attributes which may
be used as input to further proof protocols.

Hereinafter, we detail the ZKPK π3 = PoK{α, β, λ, δ1, . . . , δn+1, γ, θ : E =
Cαfβ∧H = gδ1

1 . . . gδn
n gδn+1Bλ

0 fβ∧C = Eθfγ} where E = C1/lf t, H = E·h−1 =
gm1
1 gm2

2 . . . gmn
n gsuB

−r/l
0 f t and C = Elf−tl.

Prover Verifier

Private Input:
→
m = (m1, . . . , mn), l, t

su and r

Choose a1, a2, . . . , an+6
R← Z

∗
q

Compute t1 ← Ca1fa2

t2 ← g
a3
1 g

a4
2 . . . g

an+2
n gan+3B

an+4
0 fa2

t3 ← Ean+5fan+6

Compute c = H(Ch, t1, t2, t3)
Ch←−−−−−−−−−− Choose Ch ∈R Z

∗
p

Compute R1 ← a1 + c/l, R2 ← a2 + ct
c,R1,...,Rn+6−−−−−−−−−−→ Compute t′

1 = CR1fR2E−c

for i∈{1, . . . , n}, Ri+2 ← ai+2 + cmi t′
2=g

R3
1 . . . g

Rn+2
n gRn+3B

Rn+4
0 fR2H−c

Rn+3 ← an+3 + csu, Rn+4 ← an+4 − cr
l t′

3 = ERn+5fRn+6C−c

Rn+5 ← an+5 + cl, Rn+6 ← an+6 − ctl Check if c = H(Ch, t′
1, t′

2, t′
3)

Proof. Let us prove that, when C = By
0 , π3 is a ZKPK of a MACn

BB (A, r, su)
on a block of messages (m1, . . . ,mn). The completeness of the protocol fol-
lows by inspection. The soundness follows from the extraction property of the
underlying proof of knowledge7. In particular, the extraction property implies
that for any prover P∗ that convinces V with probability ε, there exists an
extractor which interacts with P∗ and outputs (α, β, λ, δ1, . . . , δn+1, γ, θ) with
probability poly(ε). Moreover, if we assume that the extractor inputs consists
of two transcripts i.e. (G, g, h, f,B0, C,E, c, c̃, R1, . . . , Rn+6, R̃1, R̃2, . . . , R̃n+6),
the witness can be obtained by computing α = R1−R̃1

c−c̃ ; β = R2−R̃2
c−c̃ ; δi =

Ri+2−R̃i+2
c−c̃ ,∀i ∈ {1, . . . , n}; δn+1 = Rn+3−R̃n+3

c−c̃ ; λ = Rn+4−R̃n+4
c−c̃ ; θ = Rn+5−R̃n+5

c−c̃ ,

γ = Rn+6−R̃n+6
c−c̃ ; (all the computations are done mod p). The extractor succeeds

when (c−c̃) is invertible in Zp. We know that H = E ·h−1 = gδ1
1 . . . gδn

n gδn+1Bλ
0 fβ

7 For concurrent security, we could use the D̊amgard protocol [18] which converts any Σ
protocol into a three-round interactive ZKPK secure under concurrent composition.
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so E = gδ1
1 . . . gδn

n gδn+1Bλ
0 fβh. We also know that E = Cαfβ so Cαfβ =

gδ1
1 . . . gδn

n gδn+1Bλ
0 fβh and then

Cα = gδ1
1 . . . gδn

n gδn+1Bλ
0 h. (1)

Since C = By
0 , we have Bαy

0 = gδ1
1 . . . gδn

n gδn+1Bλ
0 h and

Bαy−λ
0 = gδ1

1 . . . gδn
n gδn+1h. (2)

If α �= 0, (2) implies that

(Bα
0 )y− λ

α = gδ1
1 . . . gδn

n gδn+1h. (3)

Let A = Bα
0 , r = − λ

α , su = δn+1 and mi = δi for i ∈ {1, . . . , n}.
If α �= 0, (3) implies that the prover knows a valid MACn

BB, (A, r, su) on a
block of messages (m1, . . . ,mn). Note that y− λ

α �= 0, otherwise this would imply
that the prover knows y which would be equal to λ

α .
Let us now prove that α �= 0. We know that

C = Eθfγ = (Cαfβ)θfγ = Cαθfβθ+γ =⇒ 1 = Cαθ−1fβθ+γ (4)

• If the prover does not know the discrete logarithm of C in the base f , this
implies that it only knows one representation (0, 0) of 1 in the base (C, f) [8].
Therefore, αθ = 1 which implies that α �= 0.

• Suppose now that the prover knows the discrete logarithm χ of C in the
base f (i.e. C = fχ) and that α = 0. Since C = By

0 , we have By
0 = fχ and then

B0 = f
χ
y (since Y = gy

0 �= 1, this implies that y �= 0 mod p). From (1) and since
α is supposed to be equal to 0, we have that h = g−δ1

1 g−δ2
2 . . . g−δn

n g−δn+1f−λ χ
y .

So, the issuer could use the prover as a subroutine to compute a representa-
tion of h in the base (g1, g2, . . . , g, f). As (g1, g2, . . . , g, f) are random generators
of G, this is impossible under the DL assumption [8]. Therefore, this means that
either P∗ does not know the discrete logarithm of C in the base f or α �= 0. Both
cases imply that α �= 0. We therefore conclude that α �= 0 and so the prover
knows a valid MACn

BB (A, r, su) on a block of messages (m1, . . . ,mn).
Finally, to prove (honest-verifier) zero-knowledge, we construct a simulator

Sim that will simulate all interactions with any (honest verifier) V∗.

1. Sim randomly chooses l′ ∈R Z
∗
p and a random generator E ∈R G and then

computes B0 = gl′ and C = Y l′ .
2. Sim randomly chooses c,R1, . . . , Rn+6 ∈R Z

∗
p and computes t1 = CR1fR2E−c,

t2 = gR3
1 . . . g

Rn+2
n gRn+3B

Rn+4
0 fR2H−c and t3 = ERn+5fRn+6C−c.

3. Sim outputs S = {B0, C,E, c,R1, R2, . . . , Rn+6}.

Since G is a prime-order group, then the blinding is perfect in the first
step. Indeed, there exists x ∈ Zp such that for a valid MACn

BB (A, r, su) on
(m1, . . . ,mn): A = gx

0 .
For a random value l ∈ Z

∗
p, we therefore have B0 = Al = glx

0 = gl′
0 for

l′ = lx. This also implies that C = Aly = Y l′ . Moreover, there exists t such
that E = C

1
l f t. Therefore S and V∗’s view of the protocol are statistically

indistinguishable.
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