Skip to main content

Overview of Vibration Energy Harvesting

  • Chapter
  • First Online:
Piezoelectric Vibration Energy Harvesting
  • 1612 Accesses

Abstract

The purpose of this chapter is to present a comprehensive overview of the previous research published relevant to the book’s aims and objectives introduced in Chap. 1. Due to the interdisciplinary nature of the field, the chapter begins with a short background highlighting the necessity of energy harvesting with brief surveys of power generation capabilities of some potential ambient sources and power requirements by some modern electronic devices. This is then followed by a critical review of PVEH techniques and its application to vibration control . In this chapter, it is endeavoured to build the fundamental understanding of the readers in order to comprehend the more complex modelling concepts of piezoelectric electromechanical energy harvesting systems developed in the later chapters of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paradiso, J., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4(1), 18–27.

    Article  Google Scholar 

  2. Anton, S. R., & Sodano, H. A. (2007). A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures, 16(3), R1–R21.

    Article  Google Scholar 

  3. Roundy, S., Leland, E. S., Baker, J., Carleton, E., Reilly, E., Lai, E., et al. (2005). Improving power output for vibration-based energy scavengers. IEEE Pervasive Computing, 4(1), 28–36.

    Article  Google Scholar 

  4. Cook-Chennault, K. A., Thambi, N., & Sastry, A. M. (2008). Powering MEMS portable devices—A review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Materials & Structures, 17(4).

    Google Scholar 

  5. Knight, C., Davidson, J., & Behrens, S. (2008). Energy options for wireless sensor nodes. Sensors, 8(12), 8037–8066.

    Article  Google Scholar 

  6. Harrop, P., & Das, R. (2009). Energy harvesting and storage for electronic devices 2009-2019 (p. 333) (IDTechEx report).

    Google Scholar 

  7. Raju, M., & Grazier, M. (2010). Energy harvesting ULP meets energy harvesting: A game-changing combination for design engineers (p. 8). Dallas, Texas: Texas Instruements.

    Google Scholar 

  8. Priyantha, B. L., Lymberopoulos, D., & Liu, J. (2010). Energy efficient responsive sleeping on mobile phones. Redmond, WA 98052: Microsoft Research.

    Google Scholar 

  9. Semitec, A. (2011). [cited 2011 07 July]. Thermal controls to the electrical and electronics industries. http://www.atcsemitec.co.uk.

  10. Farnell. (2011). [cited 2011 July]. http://www.uk.farnell.com.

  11. Williams, C. B., & Yates, R. B. (1996). Analysis of a micro-electric generator for microsystems. Sensors and Actuators, A: Physical, 52(1–3), 8–11.

    Article  Google Scholar 

  12. Beeby, S. P., Torah, R. N., Tudor, M. J., Glynne-Jones, P., Saha, C. R., O’Donnell, T., et al. (2007). A micro electromagnetic generator for vibration energy harvesting. Journal of Micromechanics and Microengineering, 17(7), 1257–1265.

    Article  Google Scholar 

  13. Roundy, S., Wright, P. K., & Rabaey, J. (2003). A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 26(11), 1131–1144.

    Article  Google Scholar 

  14. Miyazaki, M., Tanaka, H., Ono, G., Nagano, T., Ohkubo, N., Kawahara, T., & Yano, K. (2003). Electric-energy generation using variable-capacitive resonator for power-free LSI: Efficiency analysis and fundamental experiment. In International Symposium on Low Power Electronics and Design.

    Google Scholar 

  15. Beeby, S. P., Tudor, M. J., & White, N. M. (2006). Energy harvesting vibration sources for microsystems applications. Measurement Science & Technology, 17, 175–195.

    Article  Google Scholar 

  16. Galayko, D., Guillemet, R., Dudka, A., & Basset, P. (2011). Comprehensive dynamic and stability analysis of electrostatic vibration energy harvester (E-VEH). In Solid-State Sensors Actuators and Microsystems Conference (TRANSDUCERS) (pp. 2382–2385).

    Google Scholar 

  17. Sidek, O., Khalid, M. A., Ishak, M. Z., & Miskam, M. A. (2011). Design and simulation of SOI-MEMS electrostatic vibration energy harvester for micro power generation. In Electrical, Control and Computer Engineering (INECCE) (pp. 207–212).

    Google Scholar 

  18. Dayal, R., & Parsa, L. (2011). Low power implementation of maximum energy harvesting scheme for vibration-based electromagnetic microgenerators. IEEE Applied Power Electronics Conference and Exposition—APEC.

    Google Scholar 

  19. Priya, S. (2007). Advances in energy harvesting using low profile piezoelectric transducers. Journal of Electroceramics, 19(1), 165–182.

    MathSciNet  Google Scholar 

  20. Du, S., Jia, Y., & Seshia A., (2016). Piezoelectric vibration energy harvesting: A connection configuration scheme to increase operational range and output power. Journal of Intelligent Material Systems and Structures, 28(14), 1905–1915.

    Google Scholar 

  21. Kundu, S., & Nemade, H. B. (2016). Modeling and simulation of a piezoelectric vibration energy harvester. Procedia Engineering, 144, 568–575.

    Article  Google Scholar 

  22. Erturk, A., & Inman, D. J. (2009). An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Materials and Structures, 18(2), 025009–025009.

    Article  Google Scholar 

  23. Roundy, S., Paul K. W., & Rabaey, J. M. (2004). Energy scavenging for wireless sensor networks with special focus on vibrations (1st ed.). Kluwer: Kluwer Academic Publishers.

    Google Scholar 

  24. DuToit, N., & Wardle, L. (2007). Experimental verification of models for microfabricated piezoelectric vibration energy harvesters. AIAA Journal, 45(5), 1126–1137.

    Article  Google Scholar 

  25. Rafique, S., & Bonello, P. (2010). Experimental validation of a distributed parameter piezoelectric bimorph cantilever energy harvester. Smart materials and structures, 19(9).

    Google Scholar 

  26. Erturk, A., & Inman, D. J. (2008). Issues in mathematical modeling of piezoelectric energy harvesters. Smart materials & structures, 17(6).

    Google Scholar 

  27. Bonello, P., & Rafique, S. (2011). Modeling and analysis of piezoelectric energy harvesting beams using the dynamic stiffness and analytical modal analysis methods. Journal of Vibration and Acoustics, 133(1), 011009.

    Article  Google Scholar 

  28. Erturk, A., & Inman, D. J. (2008). Mechanical considerations for modeling of vibration-based energy harvesters. In Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.

    Google Scholar 

  29. Erturk, A., & Inman, D. J. (2008). On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. Journal of Intelligent Material Systems and Structures, 19(11), 1311–1325.

    Article  Google Scholar 

  30. Ajitsaria, J., Choea, S., Kimb, D., & Shenb, D. (2007). Modeling of bimorph piezoelectric cantilever beam for voltage generation. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2007. San Diego, California: SPIE.

    Google Scholar 

  31. Roundy, S. (2005). On the effectiveness of vibration-based energy harvesting. Journal of Intelligent Material Systems and Structures, 16(10), 809–823.

    Article  Google Scholar 

  32. Sodano, H. A., Park, G., & Inman, D. J. (2004). Estimation of electric charge output for piezoelectric energy harvesting. Strain, 40(2), 49–58.

    Article  Google Scholar 

  33. Cornwell, P. J., Goethal, J., & Kowko, J. (2005). Enhancing power harvesting using a tuned auxiliary structure. Journal of Intelligent Material Systems and Structures, 16(10), 825–834.

    Article  Google Scholar 

  34. DuToit, N., Wardle, L. W., & Kim, S. (2005). Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integrated ferroelectrics, 71, 121–160.

    Article  Google Scholar 

  35. Sodano, H. A., Lloyd, J., & Inman, D. J. (2006). An experimental comparison between several active composite actuators for power generation. Smart Materials and Structures, 15(5), 1211–1216.

    Article  Google Scholar 

  36. Shu, Y. C., & Lien, I. C. (2006). Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures, (6).

    Google Scholar 

  37. Ng, T. H., & Liao, W. H. (2004). Feasibility study of a self-powered piezoelectric sensor. Proceedings of SPIE—The International Society for Optical Engineering, 5389, 377–388.

    Google Scholar 

  38. Han, J., Annette, V. H., Triet, L. Mayaram, K., & Fiez, T. (2004). Novel power conditioning circuits for piezoelectric micropower generators IEEE. In Applied Power Electronics Conference & Exhibition (APEC).

    Google Scholar 

  39. Ottman, G. K., Hofmann, H. F., & Lesieutre, G. A. (2003). Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Transactions on Power Electronics, 18(2), 696–703.

    Article  Google Scholar 

  40. Erturk, A., & Inman, D. J. (2008). Distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. Journal of Vibration and Acoustics, 130(4), 041002–041002.

    Article  Google Scholar 

  41. Park, C. H. (2003). Dynamics modelling of beams with shunted piezoelectric elements. Journal of Sound and Vibration, 268(1), 115–129.

    Article  Google Scholar 

  42. Flotow, V. B., & Bailey, D. (1994). Adaptive tuned vibration absorbers: Tuning laws, tracking agility, sizing, and physical implementations. In Proceedings of National Conference on Noise Control Engineering. Progress in Noise Control for Industry.

    Google Scholar 

  43. Sodano, H. A., Inman, D. J., & Park, G. (2004). A review of power harvesting from vibration using piezoelectric materials. The Shock and Vibration Digest, 36(3), 197–205.

    Article  Google Scholar 

  44. Lesieutre, G. A., Ottman, G. K., & Hofmann, H. F. (2004). Damping as a result of piezoelectric energy harvesting. Journal of Sound and Vibration, 269(3), 991–1001.

    Article  Google Scholar 

  45. Sodano, H. A., & Inman, D. J. (2005). Generation and storage of electricity from power harvesting devices. Journal of Intelligent Material Systems and Structures, 16(1), 67–75.

    Article  Google Scholar 

  46. Sodano, H. A., Inman, D. J., & Park, G. H. (2005). Comparison of piezoelectric energy harvesting devices for recharging batteries. Journal of Intelligent Material Systems and Structures, 16(10), 799–807.

    Article  Google Scholar 

  47. Zhu, D., Tudor, M. J., & Beeby, S. P. (2010). Strategies for increasing the operating frequency range of vibration energy harvesters: A review. Measurement science & technology, 21(2).

    Google Scholar 

  48. Lu, F. (2004). Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Materials and Structures, 13(1), 57–63.

    Article  Google Scholar 

  49. Chen, S., Wang, G., & Chien, M. (2006). Analytical modeling of piezoelectric vibration-induced micro power generator. Mechatronics, 16(7), 379–387.

    Article  Google Scholar 

  50. Elvin, N. G., & Elvin, A. A. (2009). A general equivalent circuit model for piezoelectric generators. Journal of Intelligent Material Systems and Structures, 20(1), 3–9.

    Article  MathSciNet  Google Scholar 

  51. Chen, Y. H., & Sheu, J-Ts. (1996). Beam length and dynamic stiffness. Computer Methods in Applied Mechanics and Engineering, 129(3), 311–318.

    Article  MATH  Google Scholar 

  52. Eisenberger, M. (1995). Dynamic stiffness matrix for variable cross-section Timoshenko beams. Communications in Numerical Methods in Engineering, 11(6), 507–513.

    Article  MATH  Google Scholar 

  53. Henshell, R. D., & Warburton, G. B. (1969). Transmission of vibration in beam systems. International Journal for Numerical Methods in Engineering, 1(1), 47–66.

    Article  Google Scholar 

  54. Chen, Y. H. (1987). General dynamic stiffness matrix of a Timoshenko beam for transverse vibrations. Earthquake Engineering and Structural Dynamics, 15, 391–402.

    Article  Google Scholar 

  55. Roundy, S., & Zhang, Y. (2005). Toward self-tuning adaptive vibration-based microgenerators. Proceedings of SPIE—The International Society for Optical Engineering, 5649(1), 373–384.

    Google Scholar 

  56. Wu, W.-J., Chen, Y., Lee, B., He, J., & Peng, Y. (2006). Tunable resonant frequency power harvesting devices. Proceedings of SPIE—The International Society for Optical Engineering, 6169, 61690–61690.

    Google Scholar 

  57. Bonello, P., & Brennan, J. (2001). Modelling the dynamic behaviour of a supercritical rotor on a flexible foundation using the mechanical impedance technique. Journal of Sound and Vibration, 239(3), 445–466.

    Article  Google Scholar 

  58. Baker, J., Roundy, S., & Wright, P. (2005). Alternative geometries for increasing power density in vibration energy scavenging for wireless sensor networks. In Collection of Technical Papers—3rd International Energy Conversion Engineering Conference.

    Google Scholar 

  59. Cho, J., Anderson, M., Richards, R., Bahr, D., & Richards, C. (2005). Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment. Journal of micromechanics and microengineering, 15(10), 1804–1809.

    Article  Google Scholar 

  60. Cho, J., Anderson, M., Richards, R., Bahr, D., & Richards, C. (2005). Optimization of electromechanical coupling for a thin-film PZT membrane: I. Modeling. 15(10), 1797–1803.

    Google Scholar 

  61. Goldschmidtboeing, F., & Woias, P. (2008). Characterization of different beam shapes for piezoelectric energy harvesting. Micromechanics and Microengineering, 18.

    Google Scholar 

  62. Brusa, E., Zelenika, S., Morob, L., & Benasciuttib, D. (2009). Analytical characterization and experimental validation of performances of piezoelectric vibration energy scavengers. Proceedings of SPIE—The International Society for Optical Engineering, 7362.

    Google Scholar 

  63. Kidner, M., & Brennan, M. J. (1999). Improving the performance of a vibration neutraliser by actively removing damping. Journal of Sound and Vibration, 221(4), 587–606.

    Article  Google Scholar 

  64. Bonello, P., & Groves K. H. (2009). Vibration control using a beam-like adaptive tuned vibration absorber with an actuator-incorporated mass element. Mechanical Engineering Science, 223(7).

    Google Scholar 

  65. Lesieutre, G. (1998). Vibration damping and control using shunted piezoelectric materials. The Shock and Vibration Digest, 30(3), 187–195.

    Article  Google Scholar 

  66. Sodano, H. (2003). Model of piezoelectric power harvesting beam. In Proceedings of the ASME Aerospace Division—2003, AD.

    Google Scholar 

  67. Yabin, L., & Henry, A. S. (2010). Piezoelectric damping of resistively shunted beams and optimal parameters for maximum damping. Journal of Vibration and Acoustics, 132(4), 041014.

    Article  Google Scholar 

  68. Hagood, N. W., & Von Flotow, A. (1991). Damping of structural vibrations with piezoelectric materials and passive electrical networks. Journal of Sound and Vibration, 146(2), 243–268.

    Article  Google Scholar 

  69. Davis, C. L., & Lesieutre, G. A. (1995). A modal strain energy approach to the prediction of resistively shunted piezoceramic damping. Journal of Sound and Vibration, 184(1), 129–139.

    Article  MATH  Google Scholar 

  70. Fleming, A. J., Behrens, S., & Moheimani, S. O. R. (2001). Innovations in piezoelectric shunt damping. In Smart Structures and Devices, Proceedings of SPIE.

    Google Scholar 

  71. Liang, J. R. (2009). Piezoelectric energy harvesting and dissipation on structural damping. Journal of Intelligent Material Systems and Structures, 20(5), 515–527.

    Article  Google Scholar 

  72. Hollkamp, J., & Starchville, T. F. (1994). Self-tuning piezoelectric vibration absorber. Journal of Intelligent Material Systems and Structures, 5(4), 559–566.

    Article  Google Scholar 

  73. Law, H. H. (1996). Characterization of mechanical vibration damping by piezoelectric materials. Journal of Sound and Vibration, 197(4), 489–513.

    Article  Google Scholar 

  74. Shiyou, X., Yong, S., & Sang-Gook, K. (2006). Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology, 17(17), 4497.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajid Rafique .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rafique, S. (2018). Overview of Vibration Energy Harvesting. In: Piezoelectric Vibration Energy Harvesting. Springer, Cham. https://doi.org/10.1007/978-3-319-69442-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69442-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69440-5

  • Online ISBN: 978-3-319-69442-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics