
Cloud Certification Process Validation Using
Formal Methods

Maria Krotsiani(B), Christos Kloukinas, and George Spanoudakis

City, University of London, London, UK
{Maria.Krotsiani,C.Kloukinas,G.E.Spanoudakis}@city.ac.uk

Abstract. The importance of cloud-based systems is increasing con-
stantly as they become crucial for completing tasks in an effective and
affordable manner. Yet, their use is affected by concerns about the secu-
rity of the data and applications provisioned through them. Security
certification provides a means of increasing confidence in such systems,
by establishing that they fulfil certain security properties of interest. Cer-
tification processes involve security property assessments against specific
threat models. These processes may be based on self-assessment, testing,
inspection or runtime monitoring of security properties, and/or combina-
tions of such methods (hybrid certification). One important question for
all such processes is whether they actually deliver what they promise.
This question is open at the moment and is the focus of our work.
To address it, we have developed an approach that formalises certifica-
tion processes, by translating them in the language of the Prism model-
checker and uses Prism to verify properties of interest on the model of
the certification process, under specific environmental assumptions.

Keywords: Cloud certification · Validation · Probabilistic model
checking

1 Introduction

Certification of cloud systems security is important for increasing confidence in
cloud service provision. Security certification has traditionally been based on
standards and certification schemes (e.g., ISO27001 [22], ISO27002 [22], Com-
mon Criteria [9]), which define the security controls that a system should imple-
ment to be secured under specific threat models. Certification processes tend to
be lengthy and costly, reducing their use [14]. A number of certification schemes
focusing on cloud systems and services has also emerged. Some of these schemes
are based on self-assessment [12,15,16]. Other certification processes use test-
ing [13] or a combination of formal analysis and testing [8]. Most current cer-
tification schemes do not involve a continuous assessment of security, leading
to proposals incorporating continuous monitoring of cloud systems and services
security, as for example in the CUMULUS project [19,20]. In CUMULUS, secu-
rity properties are expressed in Event Calculus [27] and are continuously moni-
tored using the EVEREST [28] monitoring platform.
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 65–79, 2017.
https://doi.org/10.1007/978-3-319-69035-3_5



66 M. Krotsiani et al.

In this paper, we present an approach that enables the analysis and valida-
tion of cloud certification processes themselves – a necessity for both certifiers
and those seeking certification, so that they can better understand what they
are committing to when agreeing to a particular certification process. It is based
on formalising the process, in order to enable the formal analysis of its conse-
quences under different environment assumptions, i.e., different probabilities for
the occurrence of specific environment events (e.g., monitoring results and/or
outcomes of the testing process).

Our approach allows a Certification Authority (CA), i.e., the stakeholder,
who establishes and oversees the operation of a certification scheme, to define a
Certification Model (CM) as an input for the certification process. These CMs are
specified in an XML-based language and then translated into probabilistic timed
automata, in the language of the probabilistic model-checker PRISM [4,21].
Thus, one can verify different properties, e.g., find the probability of issuing
a certificate after monitoring a cloud system for a given period of time, or the
probability of revoking a certificate within a given period time after it was issued.

In the following, Sect. 2 presents the overall framework and Sect. 3 gives a
running example of a CM. Section 4 presents the certification process and how
this is mapped at a high-level into a PRISM model. In Sect. 5 we present the
translation from our CM language to PRISM. Section 6 presents the outcomes
of experiments that we have conducted, while Sect. 7 reviews related work and,
finally, Sect. 8 provides concluding remarks and future directions.

2 Framework Overview

A certification process starts when a Certification Authority (CA) submits a
Certification Model (CM) to the CUMULUS Certification Platform. The Certi-
fication Platform in Fig. 1 has three main components. The CM2Monitor Trans-
lator component translates the CM into an executable format for the platform.
It also extracts the operational monitoring specification (i.e., monitoring rules)
for the Monitor to check against the systems events. The Certification Manager
component manages the overall certification process. It receives the translated
CM and it communicates with the monitor (sending rules and receiving moni-
toring results). Finally, the Anomaly Manager component detects anomalies by
using the monitoring results. Monitoring rules in CUMULUS are divided into
anomaly and assertion rules, i.e., soft constraints requiring further inspection
(anomalies) and hard constraints that must be met always (assertions).

The Deployment Infrastructure builds on a general-purpose monitoring archi-
tecture [17], and it consists of event sensors, a monitor, and a CM2Monitor
Translator. This infrastructure automates the certification process at run-time,
but since CMs and system behaviours can be complex, CMs themselves must be
validated. For this purpose, we have extended the framework with a tool-chain
for formal validation of CMs. We have also re-implemented the Certification
Manager execution engine to follow the formal semantics. Validation is based on
translating CMs to the Prism model-checker’s language [4,21]. In order to explore



Cloud Certification Process Validation Using Formal Methods 67

Fig. 1. Overall Architecture (Color figure online)

the CM consequences for specific systems, it also produces a formal model of its
environment. This environment is inside the light blue shaded area in Fig. 1,
comprising the Anomaly Manager, the system itself, and the system’s monitor.
Since the environment is too complex to be described formally in details, it is
abstracted away and represented as a source of stochastic monitoring results. By
using Prism, involved parties can check for properties such as:

– Is the CM respecting the high-level certificate life cycle?
– What is the probability of having to revoke an issued certificate?
– How is this probability affected by other parameters through time?

The outcomes of this validation are passed back to the responsible CA to adapt
the CM accordingly, e.g., adjust terms to reduce the possibility of a revocation.

3 Running Example

Figure 2 presents an example to demonstrate the different aspects of our app-
roach. In this example, a certificate starts in the sInit state. The transi-
tion issue to the state sAccept occurs when guardI is satisfied. This guard
states that: (i) violated assertion rules should not be excessive (Violated-
Assertions() < TooManyVio); (ii) unresolved anomalies should be below their
threshold; (iii) accumulated evidence should be at least EnoughEvents; and (iv)
the cloud service should be monitored for at least the defined monitoringTime.

The satisfaction of the guardRf in the state sInit fires the refuse transition
that leads to the final state sFinal. The satisfaction of the guardRv in the
sAccept state fires the revoke transition, which also leads to the sFinal state.
Finally, the satisfaction of the guardE in the sAccept state fires the expire
transition that leads back to the sInit state, where the whole process starts
again.



68 M. Krotsiani et al.

Fig. 2. Example Certification

4 Certification Process and Prism Model

4.1 Certification Model

Schema. The certification model is specified in XML, with its BNF equivalent as
produced by the K Framework [26] shown in Fig. 3. The top element of the model
of interest to this paper is the LifeCycle. LifeCycle declares the unit of time
that is assumed for the certification process and a list of typed parameters (i.e.,
constants) of interest to the specifier “Ps”, such as the TooManyVio in Fig. 2.
Parameters can be of four different types: boolp, intp, floatp, and durationp (i.e.,
integers associated with a time unit). LifeCycle also declares typed variables
“Vs”. These can be of one of the following five types: bool, int, duration, enu-
meration, and clock. Variables cannot be of type float as Prism does not support
such a type [4]. Parameters and variables have a name and an initial value. In
addition, int and duration variables have min and max values, e.g.,usedevents
in Fig. 2. Finally, LifeCycle declares a list “Ts” of model transitions Each tran-
sition has a type, a guard, and a sequence of variable assignments. Type can be
a user-defined one (other) or a fixed one (issue, expire, refuse, and revoke).
The guard is a predicate (Pred in Fig. 3) over variables and parameters and the
predefined Certification Manager functions (SeenEvents, etc.– cf. next section).

A certification model also contains other XML elements of use to the frame-
work that we omit here as they are of no relevance to this paper (e.g., the Target
of Certification defining the service to be certified, etc.).



Cloud Certification Process Validation Using Formal Methods 69

Fig. 3. BNF representation of the Certification Model XML Schema (fragment)

Semantics. The overall model comprises the certification process manager that
receives events from its environment, which is represented by five parameters:

AnomalyP : Probability of an event to be an anomaly and not an assertion
rule;

ViolationP : The (conditional) probability of an assertion rule to be violated;
UnresolvedP : The (conditional) probability of an anomaly to not be resolved;
minRuleTime : Minimum time it takes for a new rule event; and
maxRuleTime : Maximum time it takes for a new rule event.

Using these parameters, the environment produces anomaly and assertion events
with a temporal distance in [minRuleTime, maxRuleTime]. Moreover, it updates a
set of model variables representing the Certification Manager counter functions:

SeenEvents : Events produced since the beginning of time, t = 0;
DetectedAnomalies : Anomaly events produced since t = 0;
ResolvedAnomalies : Anomaly events resolved since t = 0;

UnresolvedAnomalies : Anomaly events not resolved since t = 0;
SatisfiedAssertions : Satisfied assertion events since t = 0;
ViolatedAssertions : Violated assertion events since t = 0;

Formal Modelling Framework. As we require probabilities and time to represent
the environment and express the properties of interest for validating a certifica-
tion process, our model uses Probabilistic Timed-Automata (PTA) [25], as sup-
ported by the Prism model checker [21]. A PTA is a tuple P = (Locs , l0,Clocks,
Act , Inv ,EnabConds ,ProbTrans,Lab), where [25]:

– Locs is a finite set of locations, and l0 ∈ Locs;
– Clocks is a finite set of clocks, and Act a finite set of action names;
– Inv is an invariant on Locs and clock constraints – Inv : Locs → CC (Clocks);



70 M. Krotsiani et al.

Listing 1.1. Environment in Prism
1 formula SeenEvents =

2 min(MaxInteger , SatisfiedAssertions + ViolatedAssertions + ResolvedAnomalies +

UnresolvedAnomalies);

3 formula DetectedAnomalies = min(MaxInteger , ResolvedAnomalies + UnresolvedAnomalies);

4 timeToNextRuleResult : clock; // Clock used for the environment events .
5 // Functions .
6 ViolatedAssertions : [0 .. MaxInteger] init 0; UnresolvedAnomalies: [0 .. MaxInteger

] init 0;

7 SatisfiedAssertions: [0 .. MaxInteger] init 0; ResolvedAnomalies : [0 .. MaxInteger]

init 0;

8 invariant (timeToNextRuleResult <= maxRuleTime) endinvariant

9 // The stochastic behaviour of the environment :
10 [event] (timeToNextRuleResult >= minRuleTime)

11 -> AnomalyP *(1- UnresolvedP): (timeToNextRuleResult ’=0)

12 & (ResolvedAnomalies ’ = min(MaxInteger ,ResolvedAnomalies +1))

13 + AnomalyP * UnresolvedP : (timeToNextRuleResult ’=0)

14 & (UnresolvedAnomalies ’ = min(MaxInteger ,UnresolvedAnomalies +1))

15 + (1-AnomalyP)*(1- ViolationP) : (timeToNextRuleResult ’=0)

16 & (SatisfiedAssertions ’ = min(MaxInteger ,SatisfiedAssertions +1))

17 + (1-AnomalyP)* (ViolationP) : (timeToNextRuleResult ’=0)

18 & (ViolatedAssertions ’ = min(MaxInteger ,ViolatedAssertions +1));

– EnabConds are clock conditions – EnabConds : Locs × Act → CC (Clocks);
– ProbTrans is a partial probabilistic transition function, which given a location

and an action name, gives a probability distribution over the next states
(defined by a subset of clocks that are reset to zero by the transition named
with action that leads to a new location, and that location) – ProbTrans :
Locs × Act → Dist(2Clocks × Locs); and

– Lab labels each location with a set of atomic propositions – Lab : Locs → 2AP

Clock constraints over a set of Clocks, CC (Clocks), are defined by the syntax
χ :: = true|x ≤ d|c ≤ x|x + c ≤ y + d|¬χ|χ ∧ χ, where x, y ∈ Clocks and c, d ∈
N [25]. A PTA is well-formed when all enabled transitions take the automaton
to states satisfying the clock invariant – see [25].

Environment Model. Listing 1.1 shows the environment part of the Prism model.
It uses the clock variable timeToNextRuleResult (in line 4) to produce events
between minRuleTime and maxRuleTime time units. The clock invariant (line 8)
imposes the upper bound, while the clock guard (line 10) imposes the lower
bound. Each time an event is produced we have a probabilistic choice between
four possible alternative new states – two relating to anomalies (so conditioned on
AnomalyP) and two to assertions (conditioned on (1−AnomalyP)). In each case
the event is marked as negative (with probability UnresolvedP or ViolationP)
or positive (with their complements), and we update the respective counter
function.

Environment transitions are followed by transitions encoding the CM process.
Process transitions in the Prism model correspond one-to-one to the actions in
the process definition. Thus, for each action in the definition, there is a new
transition with the same guard as the action and the same assignments. The
transition name is the same as the name of the action. An action can be one
of the standard ones: issue, refuse, expire, and revoke. For non-standard
actions, the transition name is prefixed with “u ”, to highlight it as non-standard.



Cloud Certification Process Validation Using Formal Methods 71

Fig. 4. High-level Certificate Life Cycle

Similarly, all user variables have the same prefix to avoid clashes with the con-
stants, variables, and formulæ that we use for book-keeping, e.g., MaxInteger,
SatisfiedAssertions, SeenEvents. In this way, non-standard actions, e.g.,
“notify”, and user-specified variable assignments cannot alter the model seman-
tics.

Listing 1.2. Lifecycle Observer Module
1 module HighLevelLifecycle

2 error : bool init false;

3 active: bool init true;

4 issued: bool init false;

5 [issue] active & !issued & !error

6 -> (issued ’=true);

7 [issue] !( active & !issued & !error)

8 -> (error ’=true);

9 [refuse] active & !issued & !error

10 -> (issued ’= false) & (active ’= false);

11 [refuse] !( active & !issued & !error)

12 -> (error ’=true);

13 [expire] active & issued & !error

14 -> (issued ’= false);

15 [expire] !( active & issued & !error)

16 -> (error ’=true);

17 [revoke] active & issued & !error

18 -> (issued ’= false) & (active ’= false);

19 [revoke] !( active & issued & !error)

20 -> (error ’=true);

21 endmodule//

Semantics of the High-Level Certificate Life Cycle. The semantics also include
the definition of the high-level certificate life cycle as shown in Fig. 4. A certificate
starts at the state NotIssued, where it can be either refused or issued. If it is
issued (Issued), then it can be either expired or revoked. Actions refuse and
revoke end the certificate life cycle, while action expire changes the abstract
certificate state back to the NotIssued state. The high-level certificate life cycle
does not consider any user-defined actions. The HighLevelLifecycle module
in Listing 1.2 observes whether one of the standard actions is taken in a state
where it is not applicable. In this case it sets the variable error to true and
refuses to take any more standard actions (all guarded by !error). The Prism
property “Pmax=? [F (error)]|” verifies that this life cycle is respected, by
asking for the maximum probability of eventually (F) reaching a state where
error is true – this should be zero.

5 Code and Prism Model Generator

As shown in Fig. 1, there are two components that translate the Certifica-
tion Model (CM) – the CM2Prism Translator and the CM2Monitor Translator.



72 M. Krotsiani et al.

Listing 1.3. Pseudo-code for Combining Types (fragment)
1 conv combineAdd(type tpA , type tpB) {

2 bool swapd=false; type tp1=tpA , tp2=tpB;

3 if (tpA > tpB) {tp1=tpB; tp2=tpA; swapd=true;}

4 switch (tp1) {

5 case INT:

6 switch (tp2) {

7 case INT: return INT;

8 case FLOAT: return FLOAT;

9 }

10 case SECONDS:

11 switch (tp2) {

12 case SECONDS: return SECONDS;

13 case MINUTES:

14 return conv(SECONDS ,

15 swapd ? 60 : 1, swapd ? 1 : 60);

16 default: // ask MINUTES

17 conv r=combineAdd(MINUTES , tp2);

18 return conv(SECONDS ,

19 (swapd? 60*r.scale1 :r.scale0),

20 (swapd? r.scale0 :60*r.scale1 ));

21 }

22 // ... other types

23 }

24 return NONE;

25 }

The former component is responsible for producing a formal Prism model for
analysing the CM and deciding whether it is fit for purpose. The latter compo-
nent produces a set of monitoring rules that are passed to the runtime monitor
(work described in [17]) and at the same time produces an executable version of
the CM for the Certification Manager. As the translation happens at runtime,
we translate to Lisp, as it can execute code produced dynamically.

The translations to the Prism model and Lisp code are done by the same piece
of code – a decision taken to make it easier to track both artefacts and increase
our confidence that they follow the same logic. The translator traverses the XML
structure of the CM using a reflective Java visitor and applies a method visitX
to each element X. Each method visitX updates certain global information (e.g.,
names and types of variables), calls the appropriate visitors for the sub-elements
of the element X and produces one string for the Prism model and another one
for the Lisp code. We keep a (hash) Map of IDs to type information (a name
and a type pair). Thus, a variable definition “bool foo false” will insert into
the symbol map the mapping “foo” → (“u foo”, BOOL). The abstract syntax
tree node for each XML element X contains the type of X, its representation in
Prism, and its representation in Lisp. So for a declaration like “int bar min (3
* 6) max (100 - 7) init (40 + 2)”, which declares an integer variable with
min/max values and an initial value, we create a node of type INT with the
following two strings: (i) “u bar : [(3 + 6)..(100 - 7)] init (40 + 2);”
for Prism, and (ii) “(defparameter u bar (+ 40 2) )” for the Lisp interpreter
(which does not need any type information, nor min/max values for the variable).

Type Conversions. The translation is mostly straightforward – what makes it
more interesting is the type-checking and type promotion that is performed,
e.g., when we add a float to an integer the result is a float, in particular for



Cloud Certification Process Validation Using Formal Methods 73

Listing 1.4. Life-cycle Execution Loop Body
1 (defun lifecycle-loop ()

2 (progn

3 (update-time) ;; used by guard and actions

4 (let ((tr (find-if (lambda (x)

5 (funcall (transition-guard x)))

6 *** transitions ***)))

7 (when tr

8 (funcall (transition-action tr))))))

duration expressions. Expressions involving durations are being transformed into
the lowest unit used, e.g.,adding seconds to minutes results in seconds. Listing
1.3 shows the pseudo-code for type conversion when we have an additive expres-
sion. We see that INT+INT produces an INT, INT+FLOAT a FLOAT, and
SECONDS+MINUTES produces SECONDS with scaling factors of 1 for the
first expression and 60 for the second one. When the first type is SECONDS and
the other is not MINUTES, we call the same function recursively pretending
that the first type was MINUTES, so as to see if we can convert to MINUTES
first and then to SECONDS. The recursion terminates at type WEEKS, the last
duration type, that knows only how to add itself to another type WEEKS – it
is always the smaller type that knows how to convert the type that is one level
up. Similar functions exist for multiplication and division, as one can multiply
two INTs to get an INT, an INT and a DURATION to get a DURATION but
cannot multiply two DURATIONs, and can divide two DURATIONs but not an
INT and a DURATION. Type translation is needed for both the Prism formal
model and the Lisp code we generate, as otherwise we would not be able to have
duration expressions where units are mixed. For the Lisp code all durations are
eventually converted to nano-seconds, as that is the smallest unit supported by
its system clock.

Lisp Interpreter. The Lisp code that is called continuously at run-time is shown
in Listing 1.4. It first updates the time of the clocks by storing the current time in
global variable ***now***. It then selects the first transition (based on the order
defined in the CM), whose guard is true. If there is such a transition, it executes
its actions. Listing 1.5 shows the code corresponding to the issue transition of
the example in Fig. 2. We use ABCL, a Java-based Common Lisp, to execute
the CM, as this allows smooth interfacing with the rest of the framework.

Language Constraints. As aforementioned in Sect. 4, our XML schema permits
FLOAT parameters but not FLOAT variables, as the Prism modelling language
does not support the latter – see the on-line Prism Manual [4]. Another inherited
constraint has to do with the treatment of clock variables. While PTAs allow
comparisons between clocks and both strict (e.g., <) and non-strict (e.g., ≤)
comparisons, currently Prism only supports non-strict ones in all the analysis
engines it has. For this reason we decided to also include this constraint, which
may make it somewhat harder to express some guards, as now one needs to be
careful to not introduce strict comparisons, e.g., through negation.



74 M. Krotsiani et al.

Listing 1.5. Transition Definition in Lisp
1 (make-transition :name "issue"

2 :guard (lambda ()

3 (and (= u_state u_sInit)

4 (< (*** ViolatedAssertions ***) u_TooManyVio)

5 (< (*** UnresolvedAnomalies ***)

6 u_TooManyUnresolved)

7 (>= (- (*** SeenEvents ***) u_usedevents)

8 u_EnoughEvents)

9 (>= (- ***now*** u_localClock)

10 (* 1000000000 u_monitoringTime))))

11 :action (lambda ()

12 (progn

13 (assert (= *lstate* *slPreIssued *) ()

14 "*lstate*�is�~S" *lstate *)

15 (setq *lstate* *slIssued *)

16 (setq u_state u_sAccept)

17 (setq u_localClock ***now ***)

18 (setq u_usedevents (*** SeenEvents ***)))))

5.1 Differences Between Prism Model and Code

Variable types & limits. We have already seen that variable names in Lisp do not
have types, as they do in the Prism model, and integers do not have min/max
values either, as they are actually bignums, i.e., arbitrary length integers. But
these are not the only differences between the two artefacts we produce.

Clock resets. By comparing the issue transition in Fig. 2 and in Listing 1.5, we
can see that instead of resetting the clock variable localClock to zero, as it is
done in the Prism model, we assign to it the current time of the global clock
***now***. A similar change is also in the guard – instead of comparing the
clock against the duration monitoringTime directly, we compare its distance
from ***now*** (after converting the duration to nano-seconds).

Time granularity. In the implementation, all clocks and durations are expressed
in nano-seconds. In the Prism model, clocks do not have a unit, so all durations
are transformed to the same unit (that needs to be provided in the CM as Time-
Unit). Dividing a duration expression by TimeUnit should produce a natural
number, since clocks in PTAs can be compared against natural numbers only.

Tracking of the high-level life cycle state. The model and the implementation
track the high-level life cycle state differently. In the Prism model we use an
additional module called HighLevelLifecycle (see Listing 1.2), which synchro-
nises with the main model module and checks if there are erroneous transitions.
Instead, in the Lisp code each transition assigns an internal variable *llstate*
to keep track of the current high-level life cycle state of the certificate – see line
15 in Listing 1.5. It uses this variable to assert the correct state of the certificate,
before performing any of the transition assignments – see line 13 in Listing 1.5.

Continuous vs discrete execution points. In the Prism model, a transition like
the issue one (Listing 1.2) can fire at any time point that satisfies its guard.
In the Lisp code, the respective transition (Listing 1.5) will only be considered



Cloud Certification Process Validation Using Formal Methods 75

every d seconds, where d depends on implementation issues, e.g., the delay we
have introduced in the main evaluation loop to avoid constant re-evaluation of
transitions.

Non-deterministic vs deterministic behaviour and eager execution. The most
important difference is that the Prism model has a non-deterministic behaviour
– whenever multiple transitions are enabled it can execute any of them. It can
actually elect to not execute any transition at all and instead simply let the
time pass – Prism does not support urgent transitions [25] that must be taken
immediately when they are enabled without allowing time to advance. The code
we produce on the other hand, will always choose the first enabled transition
and will execute it in an eager manner, without allowing time to pass.

Due to the last difference (and the one before it), the Lisp code that we
produce simulates the behaviour of the Prism model, i.e., exhibits only one
possible behaviour among the behaviours that it can have. This is the usual
case with all implementations of some formal model – the model is by definition
more general, both because it has abstracted a number of implementation details
away (e.g., the execution speed of the system), and because it needs to describe a
family of implementations and not a single one. For example, another reasonable
implementation may choose to execute the last enabled transition. Yet another
may choose a transition “non-deterministically”, by evaluating the guards of
the transitions in parallel and choosing the one whose guard evaluates to true
first. This is something that will depend heavily not only on the expression each
guard has to evaluate, but also on the current system state when evaluating
these expressions, such as the current memory usage, the CPU load, etc.

6 Experimental Results

We have performed a number of experiments with the CM example of Sect. 3.

Experiment 1 – Respecting the high-level certificate life-cycle. Prism establishes
that there is no error in the defined life-cycle of the CM, by calculating that
the maximum probability of “Pmax=? [F (error)]” is zero (in 197.063 s). In a
previous version of the CM, the result of this probability was non-zero, as we had
mistakenly guarded the refuse action, with the certificate being at the sAccept
instead of the sInit state.

Experiment 2 – Establish the maximum probability of revoking an issued cer-
tificate. Given the “Pmax=? [F (revokeGuard)]”, Prism reports that Pmax is
0.262144 (in 209.7 s), which is too high – revoking a certificate is undesirable,
since we have certified something as trustworthy, when in fact it is not.

Experiment 3 – Explore the system behaviour. We need to explore the system
behaviour to understand why revocations can occur with such a high proba-
bility. One can analyse the probability of having an assertion or an anomaly



76 M. Krotsiani et al.

Fig. 5. Violations of
assertions vs anomalies

Fig. 6. [F (revokeGuard)]

vs monitoringTime

Fig. 7. [F (revokeGuard)]

vs EnoughEvents

rule violation within T time units, as in Fig. 5. Anomaly rule violations start
with a probability of 0.19 at time point 10 and reach a probability of 0.64 at
time point 50. Assertion violations are more probable – they start with 0.58 and
reach 0.99, so it is almost certain to have observed an assertion violation by time
point 50.

Experiment 4 – Identify parameters that should be modified. We need to identify
parameters that are too lax and discover better values for them to exclude this
undesirable behaviour. A primary target is monitoringTime – maybe increas-
ing it will render revocations improbable. Figure 6 shows the results (maximum
probability for revocation) when monitoringTime ranges in [20, 100] with a step
of 10 (each point calculated in between 241.859 s and 694.947 s). The maximum
probability drops constantly as the minimum monitoring time is increased. For
a duration of 90 it drops to 0.00154 and for 100 to practically zero (6.33 ∗ 10−4).

Another interesting parameter is EnoughEvents – the minimum number of
monitoring results we wish to observe before issuing a certificate. Exploring the
behaviour of the system for values of this variable in the range [2, 6] with a step
of 1, produces the results in Fig. 7 (calculated in between 6.928 s and 237.929 s).
The maximum probability for revoking the certificate stays constant at 0.262144
until we ask to observe at least 6 monitoring results, in which case it drops to
exactly zero. So the parameter EnoughEvents offers better control. It also leads
to models that can be analysed much faster than those that depend on the
monitoringTime – this is because temporal constraints are far more expensive
to analyse in PTAs than constraints involving discrete variables.

Experiment 5 – Re-validating chosen parameter values. The maximum probabil-
ity of revoking a certificate when the probability of violation ranges in [0.01, 0.35]
(with a step of 0.02) validates setting EnoughEvents to 6 as a good choice. All
cases report a zero probability, in between 6.372 and 8.201 s for each case.

7 Related Work

There is substantial work in validating and verifying cloud service providers or
cloud services. Extensive work concerns the way evidence is collected to verify



Cloud Certification Process Validation Using Formal Methods 77

security properties of cloud services. Evidence collection can be based on (i)
assessments regarding specific standards or regulations, performed by either the
cloud providers or third party authorities, known as self-assessment; (ii) trusted
platform modules (TPM); (iii) performing tests; or (iv) continuous monitoring.

In self-assessment one either completes a specific questionnaire, as in the case
of CSA STAR Level 1 and Level 2 [12], or completes reports regarding specific
national or international standards, such as the CIF Guidance [10], COBIT [2],
the compliance framework FISMA [16], or TRUSTe [6].

Trusted computing targets the integrity of software, processes, or data by
collecting evidence through TPMs and related hardware. Muñoz and Maña [24]
combine software and hardware-based cloud certification, aiming to bridge the
gap between cloud certification and trusted computing. Another approach is
MyCloud by Li et al. [23]. MyCloud is an architecture used for privacy protection
based on traditional encryption mechanisms. It aims to allow clients to configure
their own privacy protection, by decreasing as much as possible the trusted
computing base and the cloud providers’ ability to modify privacy settings.

With test-based evidence collection, research has mostly focused on the prob-
lem of testing web services. Damiani et al. [13] use security certificates based on
signed test cases for assessing and certifying web services. A first step in the area
of web service certification was done by SEI in 2008, which defined a web service
certification and accreditation process for the US Army CIO/G-6 [5]. Anisetti
et al. [7] provided a test-based security certification solution for services and a
first approach to its integration within the SOA environment. The ASSERT-
4SOA EU project also focused on formal and test-based service certification [8].

Finally, monitoring and dynamic collection of evidence for cloud services is
a more recent development, due to its additional complexity. It requires unin-
terrupted monitoring services, even though the monitoring capabilities available
in a service-based system change due to the dynamic nature of cloud services.
To address these needs the SLA@SOI EU project has developed a dynamically
configurable monitoring infrastructure for dynamically checking SLA monitora-
bility, which runs on cloud systems and adapts automatically to changes in the
available monitoring capabilities in service based systems [17,18]. Monitoring has
also been used at the hypervisor layer to provide incident detection even when
the guest OS experiences critical conditions and monitoring agents are unable
to communicate with monitoring systems. Amazon’s CloudWatch is a system of
this category [1]. Moreover, Cloud Security Alliance’s Cloud Trust Protocol [11]
provides interfaces for extracting monitoring data from cloud systems.

Thus, most of the work in cloud certification focuses so far mainly on verifying
and validating security properties of cloud providers and cloud services. To the
best of our knowledge, our approach is the first one focusing on the exploration
and validation of the certification process itself, prior to employing it.

8 Conclusion and Future Work

In this paper, we have presented an approach for analysing and validating
cloud certification processes based on formal method techniques. This approach



78 M. Krotsiani et al.

translates a certification model (CM) into a model for the Prism model checker
and into an executable version of it, in Lisp code.

For the Prism model, the environment of the certification process is mod-
elled with probabilistic timed automata. The actions of the environment are
abstracted by the probability of their occurrence. This probability is either esti-
mated, obtained from historical data, or obtained by observing the system at
run-time. This formal model enables analysing the process for different proper-
ties, from adherence to the expected high-level certificate life cycle, to min/max
probabilities of revoking an issued certificate, etc. This allows one to explore
whether the CM behaves as desired and can be used to certify cloud services.

At the same time, we translate the CM to code to be executed at run-time
for certifying the cloud service in question. This code is produced alongside the
Prism model and follows its behaviour, so that the analysis results remain valid.

In the future we plan to extend our framework so that it can also con-
sider additional constraints on the expected behaviour of a cloud service and
sufficiency conditions on this behaviour that must be met in order to issue a
certificate. Currently our approach considers only the monitoring results for the
properties we check on the cloud service, while the extended version would also
observe the primitive execution events of the service. This capability would allow
to observe a particular set of primitive event patterns for issuing a certificate.

Acknowledgments. This work was partly supported by the EU-funded project
CyberSure [3] (grant no 734815).

References

1. Amazon CloudWatch, http://aws.amazon.com/cloudwatch/
2. COBIT, http://www.isaca.org
3. CyberSure (CYBER Security inSURancE), http://cybersure.eu/
4. Prism Model Checker, http://www.prismmodelchecker.org/
5. Securing Web services for army SOA, www.sei.cmu.edu/solutions/softwaredev/

securing-web-services.cfm
6. TRUSTe, http://www.truste.com/
7. Anisetti, M., Ardagna, C.A., Damiani, E.: Defining and matching test-based cer-

tificates in open SOA. In: 2011 IEEE Fourth International Conference on Soft-
ware Testing, Verification and Validation Workshops (ICSTW), pp. 520–522. IEEE
(2011)

8. Anisetti, M., Ardagna, C.A., Guida, F., Gürgens, S., Lotz, V., Maña, A., Pandolfo,
C., Pazzaglia, J.-C., Pujol, G., Spanoudakis, G.: ASSERT4SOA: toward security
certification of service-oriented applications. In: Meersman, R., Dillon, T., Herrero,
P. (eds.) OTM 2010. LNCS, vol. 6428, pp. 38–40. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-16961-8 11

9. Ccdb, USB Working Group: Common Criteria (CC) for Information Technology
Security Evaluation (2012), http://www.commoncriteriaportal.org

10. Cloud Industry Forum: CIF Guidance, www.cloudindustryforum.org/about-us
11. CSA: Cloud Trusted Protocol, https://cloudsecurityalliance.org/research/ctp/
12. CSA: CSA Security, Trust and Assurance Resigtry (STAR), https://cloudsecurity

alliance.org/star/

http://aws.amazon.com/cloudwatch/
http://www.isaca.org
http://cybersure.eu/
http://www.prismmodelchecker.org/
www.sei.cmu.edu/solutions/softwaredev/securing-web-services.cfm
www.sei.cmu.edu/solutions/softwaredev/securing-web-services.cfm
http://www.truste.com/
http://dx.doi.org/10.1007/978-3-642-16961-8_11
http://www.commoncriteriaportal.org
www.cloudindustryforum.org/about-us
https://cloudsecurityalliance.org/research/ctp/
https://cloudsecurityalliance.org/star/
https://cloudsecurityalliance.org/star/


Cloud Certification Process Validation Using Formal Methods 79

13. Damiani, E., Ardagna, C.A., El Ioini, N.: Open Source Systems Security Certifi-
cation. Springer, US (2008)

14. ENISA: Security Certification Practice in the EU: Information Security Manage-
ment Systems - A Case Study (2013), https://www.enisa.europa.eu/

15. FedRAMP Office: Guide to Understanding FedRAMP (2013), www.gsa.gov/
portal/mediaId/170599/fileName/Guide to Understanding FedRAMP 042213

16. FISMA: Federal Information Security Management, https://www.dhs.gov/federal-
information-security-management-act-fisma

17. Foster, H., Spanoudakis, G.: Advanced service monitoring configurations with SLA
decomposition and selection. In: Proceedings of ACM Symposium on Applied Com-
puting, pp. 1582–1589. ACM (2011)

18. Foster, H., Spanoudakis, G.: Smart: A workbench for reporting the monitorability
of services from SLAs. In: Proceedings of 3rd International Workshop on Principles
of Engineering Service-Oriented Systems, pp. 36–42. ACM (2011)

19. Katopodis, S., Spanoudakis, G., Mahbub, K.: Towards hybrid cloud service certifi-
cation models. In: IEEE International Conference on Services Computing, SCC, pp.
394–399. IEEE Computer Society (2014), http://dx.doi.org/10.1109/SCC.2014.59

20. Krotsiani, M., Spanoudakis, G., Mahbub, K.: Incremental certification of cloud ser-
vices. In: SECURWARE 2013–7th International Conference on Emerging Security
Information, Systems and Technologies, pp. 72–80 (2013)

21. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 585–591. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 47

22. Lagazio, M., Barnard-Wills, D., Rodrigues, R., Wright, D.: Certification schemes
for cloud computing. EU Commission Report, http://dx.doi.org/10.2759/64404

23. Li, M., Zang, W., Bai, K., Yu, M., Liu, P.: MyCloud: Supporting user-configured
privacy protection in cloud computing. In: Proceedings of 29th Annual Computer
Security Applications Conference, pp. 59–68. ACM (2013)

24. Muñoz, A., Maña, A.: Bridging the gap between software certification and trusted
computing for securing cloud computing. In: Ninth World Congress on Services,
pp. 103–110. IEEE (2013)

25. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Formal Methods Syst. Des. 43(2), 164–190 (2013), http://dx.doi.org/
10.1007/s10703-012-0177-x

26. Rosu, G., Serbanuta, T.: An overview of the K semantic framework. J. Log. Algebr.
Program. 79(6), 397–434 (2010), http://dx.doi.org/10.1016/j.jlap.2010.03.012

27. Shanahan, M.: The event calculus explained. In: Wooldridge, M.J., Veloso, M.
(eds.) Artificial Intelligence Today. LNCS, vol. 1600, pp. 409–430. Springer,
Heidelberg (1999). doi:10.1007/3-540-48317-9 17

28. Spanoudakis, G., Kloukinas, C., Mahbub, K.: The SERENITY runtime monitor-
ing framework. In: Kokolakis, S., Gómez, A.M., Spanoudakis, G. (eds.) Security
and Dependability for Ambient Intelligence. AIDS, vol. 45, pp. 213–237. Springer,
Boston (2009), http://dx.doi.org/10.1007/978-0-387-88775-3 13

https://www.enisa.europa.eu/
www.gsa.gov/portal/mediaId/170599/fileName/Guide_to_Understanding_FedRAMP_042213
www.gsa.gov/portal/mediaId/170599/fileName/Guide_to_Understanding_FedRAMP_042213
https://www.dhs.gov/federal-information-security-management-act-fisma
https://www.dhs.gov/federal-information-security-management-act-fisma
http://dx.doi.org/10.1109/SCC.2014.59
http://dx.doi.org/10.1007/978-3-642-22110-1_47
http://dx.doi.org/10.2759/64404
http://dx.doi.org/10.1007/s10703-012-0177-x
http://dx.doi.org/10.1007/s10703-012-0177-x
http://dx.doi.org/10.1016/j.jlap.2010.03.012
http://dx.doi.org/10.1007/3-540-48317-9_17
http://dx.doi.org/10.1007/978-0-387-88775-3_13

	Cloud Certification Process Validation Using Formal Methods
	1 Introduction
	2 Framework Overview
	3 Running Example
	4 Certification Process and Prism Model
	4.1 Certification Model

	5 Code and Prism Model Generator
	5.1 Differences Between Prism Model and Code

	6 Experimental Results
	7 Related Work
	8 Conclusion and Future Work
	References




