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Abstract. The broad application of service-oriented architecture (SOA) has
fueled the rapid growth of web and cloud services and service-based systems
(SBSs). Tremendous web and cloud services have been deployed all over the
world. Finding the right services becomes difficult and critical. Thus, service
recommendation has become of paramount research and practical importance.
Existing web service recommendation approaches employ utility functions or
skyline techniques. However, those approaches have not addressed a critical and
fundamental problem: how to recommend services according to a system engi-
neer’s quality constraints, e.g., response time, failure rate, etc. To address this
issue, we first propose two basic personalized quality centric approaches for
service recommendation, which employ the k-nearest neighbors and the dynamic
skyline techniques respectively. To overcome the respective limitations of the
two basic approaches, we propose two hybrid approaches, namely KNN-DSL
and DSL-KNN. Extensive experiments are conducted on a real-world dataset to
demonstrate the effectiveness and efficiency of our approaches.
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1 Introduction

The service-oriented architecture (SOA) allows complex software systems to be built
by composing loosely coupled web services [1, 2]. The component services of such a
service-based system (SBS) collectively realize the system functionality which is often
offered as SaaS (Software-as-a-Service) in the cloud environment.

Figure 1 shows the process for building an example travel booking SBS that
requires four services to perform four system tasks. As depicted, the process consists of
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two phases. The first phase is service
recommendation where representative
services are identified from the can-
didate services and recommended to
the system engineer [3, 4]. The second
phase is service selection where the
system engineer selects one service
from each set of recommended ser-
vices to build the target SBS that ful-
fils the multi-dimensional constraints
for the system quality, e.g., response
time, failure rate, etc., and in the
meantime achieves the optimization
goal for the system quality. This is an
NP-complete problem often referred to as quality-aware service selection [1, 2, 5, 6].

The development and popularity of e-business, e-commerce, especially the
pay-as-you-go business model promoted by cloud computing have fueled the rapid
growth of services, indicated by the statistics published by programmableweb.com, an
online web service repository. This makes the quality-aware service selection problem
intractable. In recent years, a lot of efforts have been devoted to reducing the com-
plexity of the problem of quality-aware service selection through service recommen-
dation [3, 4, 7–9]. Recommending appropriate services reduces the search space of the
NP-complete service selection problem. In this way, a system engineer does not have to
enumerate all candidate services and their possible combinations. The key issue here is
to identify appropriate candidate services that are most likely to fulfil the system
engineer’s quality constraints. Unfortunately, none of the existing web service rec-
ommendation approaches has properly addressed this issue. There are three major
categories of service recommendation approaches, utility-based, skyline-based [3, 4]
and collaborative filtering (CF) based [10, 11]. Utility-based and skyline-based
approaches do not properly take into account system engineers’ personalized quality
constraints. CF-based service recommendation aims to predict the quality of web
services. Thus, although labeled as a recommendation approach [10–14], CF-based
service recommendation is in fact a prediction approach, not a recommendation
approach.

In this paper, we first propose two basic approaches for personalized quality
centric service recommendation, one based on the KNN (k-nearest neighbors)
technique and the other based on the DSL (dynamic skyline) technique. The KNN
approach models the service recommendation problem as a nearest neighbor search
problem. Given a system engineer’s quality constraints, it finds a set of k suitable
services whose quality values are most similar to the quality constraints. The
DSL-based approach models the service recommendation problem as a dynamic sky-
line query problem. It attempts to find representative services that are not dominated by
any other services with respect to system engineer’s quality constraints.

The main contributions of this research are:
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1. It is the first attempt to model and solve the critical problem of personalized quality
centric service recommendation. The resolution of this problem naturally comple-
ments the existing quality-aware service selection approaches by recommending
appropriate and representative services to system engineers.

2. Two basic approaches are proposed for personalized quality centric service rec-
ommendation, one finding suitable services while the other finding representative
services.

3. Two hybrid approaches, KNN-DSL and DSL-KNN, are proposed to overcome the
limitations of the two basic approaches.

4. Extensive experiments are conducted to evaluate the effectiveness and efficiency of
the proposed approaches using a dataset that contains the quality information about
2,507 real-world web services.

The rest of this paper is organized as follows. Section 2 analyzes the research
problem. Section 3 describes the basic and the hybrid approaches. Section 4 evaluates
the proposed approaches. Section 5 reviews the related work. Section 6 concludes the
paper and points out future work.

2 Problem Analysis

This section analyzes the research problem with the travel booking SBS presented in
Fig. 1. For each of the four system tasks, i.e., t1, t2, t3 and t4, there is a set of candidate
services that can perform the system task but with potentially different quality values,
e.g., response time and failure rate. The system engineer needs to select one service
from each set of candidate services for building the SBS, i.e., Phase 2. The selected
services must collectively fulfil the quality constraints for the system. This problem is
commonly known as NP-complete. As the scenario scales up, it becomes intractable.
A promising approach for simplifying this problem is, from each set of candidate
services, to identify services that are more likely to fulfil the quality constraints for the
system, to recommend to the system engineer for selection, i.e., Phase 1. The search
space for the problem can be significantly reduced.

To facilitate service recommendation, the global quality constraints for the system
must be decomposed into local quality references for individual system tasks. Alrifai
et al. proposed an approach in [15] that is widely employed to decompose global
quality constraints for a system into local quality references. Given a set of quality
constraints for the system, e.g., 800 ms for response time and 1% for failure rate (at
least 99 out of 100 service requests must be handled properly), Alrifai et al.’s approach
can decompose it into four sets of local quality constraints, one for each of the four
tasks, e.g., 120 ms for the response time of performing t1 and 0.9% for its failure rate.

According to the local quality references for each system task, appropriate services
can be identified and recommended to the system engineer. A straightforward approach
is to model this problem as a nearest neighbors search problem, as presented in Fig. 2.
In Fig. 2, points s1, …, s8 represent the eight candidate services for t1 and point sr
represents the dummy reference service with quality references for the response time
and failure rate of this task. As indicated in Fig. 2(a), those services that are close
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(similar) to sr in both dimensions, e.g., s3, s6 and s8, are more suitable than those far
away from sr, e.g., s1, s2, s4, s5 and s7. Service s1, in particular, has lower response time
and failure rate than most services. Services with such outstanding quality advantages
are usually very expensive. The selection of s1 will most likely violate the cost con-
straint for the system. In a 3-dimensional space with cost as the third dimension, s1
might be one of the services most similar to sr. However, in Fig. 2(a), s1 is not
considered suitable with respect to sr.

Therefore, we can identify a set of k nearest neighbor services that are most similar
to sr in all quality dimensions. However, there is an inherent limitation to this approach
in certain scenarios – the services identified by this approach might not be represen-
tative in all quality dimensions. Take Fig. 2(a) for example. Suppose that s3, s6 and s8
are identified as the services most similar to sr. Services s6 has the lowest response time
and is thus considered the most representative service in terms of low response time
among s3, s6 and s8. Service s3 has the lowest failure rate and is thus considered the
most representative in terms of low failure rate among s3, s6 and s8. Now we take a look
at s8. It is not representative in either low response time or low failure rate. Therefore,
considering only response time and failure rate, s3 and s6, are more appropriate than s8.
According to the definition of skyline [3], s8 is dominated by s3 and s6 because s8 is no
better than s3 and s6 in any quality dimensions.

An approach for solving the above non-representativeness problem is to calculate
the skyline [3], as presented in Fig. 2(b). Given a set of services, the skyline calculation
identifies the set of services that are not dominated by any other services. In the case of
Fig. 2(b), the skyline services include s1, s5 and s7, which are superior to the other
services in terms of both low response time and low failure rate. They are represented
by light grey circles. Hence, they are considered more representative than the other
services. However, s1, s5 and s7 are not close to sr at all. In fact, they are further away
from sr compared to the other services. This is because the skyline calculation uses the
origin O as the reference point. As a result, the skyline services are not suitable with
respect to sr. To address this issue, we need to identify the dynamic skyline services
[16], as presented in Fig. 2(c). The dynamic skyline service calculation uses a given
point rather than the origin as the reference point and identifies the dynamic skyline
services with respect to the distances to the reference point. In Fig. 2(c), given sr as the
reference point, the dynamic skyline services include s3, s4, s6 and s7, represented by
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heavy dark circles. Among s3, s4, s6 and s7, s4 is the most representative in terms of
response time with respective to sr because its response time is the most similar to sr’s.
Similarly, s7 is the most representative in terms of failure rate. Services s3 and s6 are
two tradeoff services between s4 and s7 because they have a response time more similar
to sr than s4 and failure rate more similar to sr than s7.

The KNN-based approach (referred to as KNN in short hereafter) and the
DSL-based approach (referred to as DSL in short hereafter) attempt to identify services
with respect to sr from two different perspectives. The former identifies suitable ser-
vices that are most similar to sr and the latter finds the representative services that are
not dominated by any other services with respect to sr.

In this paper, we use response time and failure rate in the discussion. More quality
constraints can be taken into account in a similar manner, which will transform the
two-dimensional space into a multi-dimensional one.

3 Recommendation Approaches

3.1 Basic Approaches

In this section, we present the basic KNN and DSL approaches.

KNN Approach. Given a set of candidate services S ¼ s1; . . .; snf g, each with p-
dimensional quality values, and a reference service sr with p-dimensional quality ref-
erences, the candidate services and sr are first mapped to a p-dimensional space, one
dimension for each of the p quality dimensions. For numerical quality dimensions, such
as response time, failure rate, reliability, etc., the mapping process is straightforward.
To accommodate non-numerical quality dimensions, such as reputation that are
expressed by a rating selected from {high, medium, low}, the method discussed in [17]
is adopted in this research. Based on a pre-defined hierarchical structure of all possible
values, each level of the hierarchy is associated with a numerical value, for example, 3
for high, 2 for medium and 1 for low.

Given a k value, KNN identifies the top k services from S that are most similar to sr,
based on a measure of similarity in the p-dimensional space. To evaluate the similarity
between each of the candidate services, si 2 S; 1� i� n; and sr, we first normalize the
quality values of si, 1� i� n, as well as sr, with the min-max normalization technique,
which has also been employed by many other researchers [17, 18]:

~qp sið Þ¼
qmax
p Sð Þ�qp sið Þ

qmax
p Sð Þ�qmin

p Sið Þ if qmax
p Sð Þ 6¼ qmin

p Sð Þ
1 if qmax

p Sð Þ¼qmin
p Sð Þ

(
ð1Þ

where qp(si) is the pth dimensional quality value of si, qmax
p Sð Þ and qmin

p Sð Þ are the
maximum and minimum values, respectively, for the pth quality dimension among all
services in S.

After the normalization, the similarity between a candidate service si 2 S and the
reference service sr can be evaluated by the Euclidean distance between si and sr:
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d si; srð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

j¼1
qj sið Þ � qj srð Þ� �2r

ð2Þ

Based on Eq. (2), KNN employs Algorithm 1 to identify k services that are most
similar to sr. Algorithm 1 first calculates the Euclidean distance between each service in
S and sr (lines 3–5). It then sorts the services by their distances to sr in a descending
order (line 6). Finally, the algorithm returns the top k services from S as the recom-
mendation results.

KNN requires the k value to be pre-specified, which is a domain-specific parameter.
Different applications usually have their own characteristics, and hence inherit different
optimal k values. On one hand, an overly small k value cannot ensure that adequate
similar services be identified for recommendation. On the other hand, an overly large
k value will include dissimilar services in the final recommendation results and will
consequently decrease the recommendation accuracy. Therefore, the k value should be
set domain-specifically based on experiences and/or experiments. In Sect. 4, we
experimentally study the impact of k on recommendation accuracy.

The complexity of Algorithm 1 relies on the employed sorting algorithm. Here, we
use the complexity of comparison sort algorithms in the worst-case scenario, i.e.,
O nlognð Þ. Thus, Algorithm 1 runs in O npþ nlognð Þ.
DSL Approach. Given a set of points in a p-dimensional space, the skyline calcu-
lation is to find the points that are not dominated by any other points. A point si
dominates another point sj, if si is better than or equal to sj in all dimensions and strictly
better in at least one dimension. In the context of this research, the dominance relations
between two services is defined based on their p-dimensional quality values:

Definition 1. Dominance: Given two services, si; sj 2 S, characterized by p-dimen-
sional quality values, si dominates sj, denoted by si . sj, iff si is as good as or better than
sj in all quality dimensions and better in least one quality dimension, i.e., 8p 2 1; n½ � :
qp sið Þ� qp sj

� �
and 9p 2 1; n½ � : qp sið Þ\qp sj

� �
.

Based on Definition 1, we formally define
the concept of skyline services:

Definition 2. Skyline services: The skyline of
S, denoted by SSL, consists of the set of services
in S that are not dominated by any other ser-
vices in S, i.e., SSL ¼ si 2 S j :9sj : si . sj

� �
.

The services in SSL are referred to as skyline
services.

Generally, the skyline services have the best
quality according to their absolute quality val-
ues in each quality dimension. However, as
discussed in Sect. 2, given a reference service
sr, DSL needs to identify the dynamic skyline
services in S. This can be achieved in a new p-
dimensional space based on the original space.
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First, each service s 2 S is mapped to a service s0 ¼ f1 sð Þ; . . .; fp sð Þ� �
, where

fj sð Þ ¼ qj srð Þ� qj sð Þ�� ��; 1� i� n. Then, the dynamic skyline of S with respect to
functions f1; . . .; fp, is obtained by calculating the ordinary skyline in the transformed
p-dimensional space with sr as the origin. Accordingly, dynamic dominance is defined
as:

Definition 3. Dynamic dominance: Given two services, si; sj 2 S, characterized by p-
dimensional quality values, and a reference service sr, si dynamically dominates sj with
respect to sr, denoted by si � sj, iff 8p 2 1; n½ � : qp srð Þ�qp sið Þ�� ��� qp srð Þ�qp sj

� ��� �� and
9p 2 1; n½ � : qp srð Þ�qp sið Þ�� ��\ qp srð Þ�qp sj

� ��� ��.
Based on Definition 3, we formally define the concept of dynamic skyline services:

Definition 4. Dynamic skyline services: The dynamic skyline of S, denoted by SDSL,
consists the services that are not dynamically dominated by any other services, with
respect to a given reference service sr, i.e., SDSL ¼ si 2 S j :9sj : sj . si

� �
. The services

in SDSL are referred to as dynamic skyline services.
Figure 3 illustrates the calculation of the dynamic skyline based on Fig. 2(c). First,

the original space is transformed into a new one with sr as the new origin and the
absolute distances to sr as the mapping functions. Then, s1; s2; s3; s4; s5; s6; s7 are
mapped into the new space where they are denoted by s01; s

0
2; s

0
3; s

0
4; s

0
5; s

0
6 and s

0
7.

Service s8 is already in the first quadrant of the new space. After the mapping, the
location of s

0
8 is exactly the same as s8 and thus is omitted in Fig. 3. Having mapped all

the services into the new space, where they are collectively referred to as S’, the
calculation of SDSL is equivalent to the calculation of S

0
SL in the new space. DSL

employs Algorithm 2 to calculate the service skyline SSL of a set of candidate services
S. It iterates through all services in S (line 4). In each iteration, it selects one service
s from S and checks if any other services in S dominate s (lines 5–11). If none, the
algorithm includes s in the service skyline SSL (lines 12–14). After processing all the
services in S, it returns SSL, i.e., the service skyline that consists of all the skyline
services. As presented in Fig. 3, the algorithm returns S0SL ¼ s03; s
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skyline services in the new space. Accordingly, we can determine that
SDSL ¼ s3; s4; s6; s7f g. As discussed in Sect. 2, s3 and s7 are closest to sr in terms of
response time and failure rate respectively. In the meantime, s4 and s6 are considered
tradeoffs between s3 and s7.

Algorithm 2 contains two loops, one nested in the other. Let n be the number of
nodes in S. The time complexity of Algorithm 2 is O(n2).

3.2 Hybrid Approaches

KNN and DSL have respective limitations. This section presents two hybrid approa-
ches, KNN-DSL and DSL-KNN, that overcome those limitations.

KNN-DSL. Given a reference service sr, DSL identifies representative services.
However, it sacrifices the similarity between the identified services and sr. Take Fig. 3
for example, where SDSL ¼ s3;f s4; s6; s7g. In terms of standardized Euclidean distance,
s3 and s6 are the closest to sr. In addition, they both belong to the results returned by
KNN when k � 2, as shown in Fig. 2(a). Services
s4 and s7, on the other hand, are not the next services
that are closest to sr. Compared with s4 and s7, s8 is
closer to sr. In addition, s2 is closer to sr than s4.
Thus, some dynamic skyline services should not be
recommended as they are dissimilar to sr.

To address this issue, we propose KNN-DSL, an
approach that combines the advantages of KNN and
DSL. Given a set of candidate services S and a
reference service sr, it first employs KNN to identify
k services most similar to sr, denoted by SKNN. Then,
it calculates the dynamic skyline of SKNN, denoted
by SKNN-DSL, using DSL. In this way, KNN-DSL
identifies those services that are similar to sr and, in
the meantime, representative with respect to sr.
Figure 4 shows an example based on Fig. 2(a).
Suppose k = 3 for KNN. First, s3, s6 and s8 are
identified as the three services that are most similar
to sr. Then, from s3, s6 and s8, s3 and s6 are iden-
tified as the dynamic skyline services. The limita-
tion to this approach is that the number of services
eventually identified is lower than or equals to k,
i.e., |SKNN-DSL| � k. Thus, KNN-DSL does not
ensure a specific number of services in its recom-
mendation results.

DSL-KNN Approach. To tackle the limitation of KNN-DSL, we propose DSL-KNN,
which combines DSL and KNN to recommend services. Given S and sr, it first iden-
tifies the dynamic skyline services, denoted by SDSL. Then, from SDSL, it identifies
k services that are the closest to sr, denoted by SDSL–KNN. If |SDSL-KNN| < k, DSL-KNN
continues to find k - |SDSL-KNN| more services that are closest to sr to ensure a total of
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k services in its recommendation results. In this way, the dynamic skylines services are
always selected first to ensure the representativeness of some of the recommended
services. Figure 5(a) and (b) demonstrate this approach based on Fig. 3 with k = 3 and
k = 5 for KNN respectively. In Fig. 5, DSL-KNN first identifies the dynamic skyline
services with respect to sr, i.e., SDSL ¼ s3; s4; s6; s7f g. Then, given k = 3, it identifies s3,
s4 and s6 from SDSL as the services that are the most similar to sr. Given k = 5, the
approach will first select all the services in SDSL, and then select s8 as the fifth service in
addition to SDSL because it is the service that is the closest to sr among the rest of the
services, i.e., s1, s2, s5 and s8.

Both KNN-DSL and DSL-KNN employ KNN and DSL. Thus, their complexity are
both Oðn2 þ npþ nlognÞ ¼ Oðn2 þ npÞ.

4 Experimental Evaluation

This section evaluates the proposed approaches through comparison with three existing
representative approaches in their effectiveness (measured by recommendation accu-
racy) and efficiency (measured by computation time).

4.1 Experiment Setup

The experiments were conducted on a publicly available real-world dataset named
QWS [19], which has been widely used [6, 9, 17, 20]. We have implemented the four
personalized quality centric approaches for service recommendation proposed in
Sects. 3. For comparison, we have implemented three existing representative
non-personalized quality centric approaches for service recommendation:

• RS: This approach randomly selects k services from the candidate services.
• UF: This approach selects k services with the highest utility values, calculated with

the widely used utility function [1, 6, 15, 17].
• SL: This approach identify skyline services [3, 7, 8].
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Metrics for effectiveness. Given a system engineer’s quality preferences represented
by sr, personalized quality centric service recommendation aims to find services whose
quality is (1) similar to sr; and (2) representative with respect to sr. Accordingly, we
evaluate the recommendation accuracies of the comparing approaches, which are
measured by three metrics, Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE) and Non-Dominance Rate (NDR).

MAE is defined as:

MAE ¼
XjRj

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

j¼1
qj sið Þ � qj srð Þ� �2r

=jRj ð3Þ

where R is the set of services returned by the recommendation approach, qj(si) and
qj(sr) are the j

th dimensional quality value of si2R and sr. An MAE value indicates the
average difference between the recommended services and sr in their p-dimensional
quality. A low MAE value indicates high recommendation accuracy.

RMSE is defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXjRj

i¼1

Xp

j¼1
qj sið Þ � qj srð Þ� �2

=jRj
r

ð4Þ

During the calculation of RMSE, the individual differences between the recom-
mended services and sr are each squared and then averaged over R. Similar to MAE, a
low RMSE indicates high recommendation accuracy.

NDR is defined as:

NDR ¼ RDSLj j= Rj j ð5Þ

where RDSL is the set of dynamic skyline services in R. NDR measures the represen-
tativeness of the results. A high NDR indicates high recommendation accuracy.

Metric for efficiency. In order to evaluate the efficiency of the proposed approaches,
we measure their computational overheads.

To simulate different recommendation scenarios, we have conducted three series of
experiments, namely series A, B and C. Table 1 presents the parameter settings. In each
experiment, we randomly select n services from the QWS dataset as the candidate
services, and another one as sr. Then, we run the comparing approaches to identify the
services to recommend. All approaches are implemented in Java using JDK 1.8. All

Table 1. Experiment parameter settings.

Parameter Experiment series
A B C

Number of candidate services (n) 500 to 1000 1000 1000
Number of services to recommend (k) 5 5 to 12 5
Number of quality dimensions (q) 4 4 2 to 9
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experiments are conducted on a machine with Intel i7-4790 CPU 3.60 GHz and 16 GB
RAM, running Windows 10 x64 Professional.

4.2 Experimental Results

Effectiveness. Figure 6 shows the impact of the number of services in S (denoted
by n) on the recommendation accuracies obtained by the approaches. Figure 6(a) and
(b) show that KNN-DSL, KNN and DSL-KNN obtain the best recommendation
accuracies, measured by their MAE and RMSE values which are much lower than the
other four approaches. DSL obtains the fourth best recommendation accuracy overall.
This indicates the importance of considering sr during service recommendation.
Interestingly, we observe that UF achieves the worst recommendation accuracy. It finds
the services with the best overall quality, which however, are not necessarily preferable
to the system engineer, indicated by its extremely high MAE values. Figure 6(a) and
(b) also show that the increase in n increases the recommendation accuracies of our
approaches, i.e., DSL-KNN, KNN-DSL, KNN and DSL. As n increases, there are more
candidate services for the approaches to choose from, increasing the possibility of
finding suitable services. Figure 6(c) shows that the services recommended by
KNN-DSL and DSL are the most representative, with slight advantages over
DSL-KNN. The services recommended by the other four approaches, including KNN,
are significantly less representative. It clearly shows the effectiveness of the DSL
operator in finding representative services.

Figure 7 demonstrates the impact of the number of services to recommend (denoted
by k). Figure 7(a) and (b) show that KNN-DSL, again, achieves the best recommen-
dation results overall in experiment series B, KNN the second, DSL-KNN the third and
DSL the fourth. KNN-DSL is the winner because its KNN operator ensures the sim-
ilarity between the selected k services and sr with its KNN operator, and then further
prunes some of the k services whose quality are relatively dissimilar to sr with its DSL
operator. KNN seconds to KNN-DSL because the non-dynamic-skyline services in its
recommendation results lower its recommendation accuracy. Similar to KNN-DSL,
DSL-KNN also employs two operators, DSL then KNN. Its DSL operator selects the
dynamic skyline services, which are representative however not necessarily very
similar to sr. Thus, its MAE values are not as low as KNN and DSL-KNN. RS, UF and
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Fig. 6. Impact of parameter n on accuracy (experiment series A)
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SL are again no match for our approaches, demonstrated by their significantly higher
MAE and RMSE values. Figure 7(a) and (b) also show that the increase in the k value
leads to slight increases in the MAE and RMSE values obtained by KNN-DSL,
DSL-KNN and SL. As k increases, services that are not quite similar to sr are also
included in the recommendation results, which lowers the recommendation accuracy.
The increase in k has no impact on DSL because DSL recommends only the dynamic
skyline services which are irrelevant to the k value. Figure 7(c) shows that the rec-
ommendation results of KNN-DSL and DSL are all representative. This is because they
both employ the DSL operator to ensure the representativeness of the recommendation
results. DSL-KNN achieves the third highest representativeness in the recommendation
results. Its DSL operator selects only the representative services, i.e., the dynamic
skyline services. However, as k increases and exceeds the number of dynamic skyline
services identified by its DSL operator, its KNN operator has to include some
non-dynamic-skyline services in the recommendation results. These services reduce the
overall representativeness of its recommendation results.

Figure 8 shows the impact of the number of quality dimensions (denoted by q).
Figure 8(a) and (b) show that KNN-DSL, for the third time, achieves the best rec-
ommendation accuracy, outperforming KNN and DSL-KNN, which achieve the sec-
ond best and third best recommendation accuracy respectively. DSL achieves the fourth
highest - however significantly lower - recommendation accuracy. We can also observe
that the increase in q decreases the recommendation accuracies achieved by our
approaches, indicated by their increasing MAE and RMSE values. The increase in
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q mainly impacts the skyline calculation and dynamic skyline calculation. A large
q makes it harder for one service to dominate or dynamically dominate the other,
resulting in a large number of skyline services and dynamic skyline services. As
q increases, KNN-DSL manages to maintain its slight advantage over KNN and
DSL-KNN in most cases. Its KNN operator ensures that the quality of the selected
k services are the closest to sr. KNN achieves the second best recommendation accu-
racy because it also ensures the similarity between the recommendation results and sr.
DSL-KNN loses to KNN-DSL and KNN on average because some services that are
similar to sr are pruned by its DSL operator for being dominated by other services.
Figure 8(c) shows that KNN-DSL and DSL consistently obtain highly representative
recommendation results. DSL-KNN also obtains representative recommendation
results except when q = 2. We investigated this interesting phenomenon and found out
that when q = 2, its DSL identified only a few dynamic skyline services, requiring its
KNN operator to find some services that are similar to sr but are not representative.
This lowers the overall representativeness of its recommendation results.

Efficiency. Figure 9 shows the computation times taken by the approaches in exper-
iment series A. As demonstrated, the seven
approaches can be categorized into two groups
according to their scalability to n, the slow
approaches, including SL, DSL and DSL-KNN, and
the fast approaches, including RS, KNN, KNN-DSL
and UF. The slow approaches share one thing in
common - they have to identify the skyline services
or the dynamic skyline services from a large number
of candidate services, which is not required for the
fast approaches. KNN-DSL, which also employs a
DSL operator like DSL and DSL-KNN, takes much
less time to complete. It is because its KNN operator
selects only k services for its DSL operator to
process further. Given that k is usually a small
number, its DSL operator does not need take long
to finish. The slow approaches take significantly
more time than the fast approaches. However, they
are in fact not quite slow - they require slightly
more than 70 ms to process 1,000 candidate ser-
vices. In addition, their computation times are
roughly linear to n, which indicates high scalability.
We believe their efficiency are acceptable in most,
if not all, real-world applications.

Figure 10 shows the computation times taken
by different recommendation approaches in exper-
iment series C. We observe differences in their
computation times similar to Fig. 9 between the slow and fast approaches. The fast
approaches take less than 10 ms on average to complete. Their computation times are
not significantly impacted by the increase in q, which demonstrates their high
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scalability to q. On the other hand, the slow approaches taking 60 ms to 100 ms to
complete, much longer than fast approaches, are still fast enough for most, if not all,
real-world applications.

Please note that the computation times of the recommendation approaches in
experiment series B, where k varies, are not presented. The k value means to select
k services from the processed candidate services. For example, the KNN operator,
which employs Algorithm 1 introduced in Sect. 3.1, simply picks the top k services
from a set of services sorted by their distance to sr. UF selects k services in a similar
way. Such operations have a complexity of O(1) and do not impact the computation
times of the approaches.

4.3 Discussion

Table 2 presents the average MAE, RMSE and NDR values obtained by the recom-
mendation approaches in each experiment series. The lowest and second lowest MAE,
RMSE, as well as the highest and the second highest DNR, achieved in each experi-
ment series are highlighted by dark grey and light grey respectively. We can see that on
average, KNN-DSL outperforms the other approaches. This indicates that KNN-DSL
obtains the most suitable and most representative recommendation results with respect
to sr. In the meantime, KNN-DSL is also highly efficient, as illustrated by Figs. 9 and
10. Thus, KNN-DSL is the best approach for service recommendation in most
real-world applications. However, KNN-DSL has a limitation - it does not ensure a
certain number of services in its recommendation results. It might eventually finds
fewer than k services. Thus, if a number of k services in the recommendation results is
mandatory, KNN-DSL is not a proper choice. In those cases, DSL-KNN and KNN are
preferable. Table 2 shows that KNN achieves the second lowest MAE and RMSE
values, indicating that its recommendation results are close to sr. However, its
advantage over DSL-KNN is only marginal. In addition, its NDR values are much
lower than those of DSL-KNN, meaning that its recommendation results are not as
representative. Therefore, in most cases, DSL-KNN is a better choice than KNN
k services are mandatory. DSL achieves the highest NDR in all three experiment series.
However, its MAE and RMSE values are much higher than KNN-DSL, DSL-KNN and
KNN. In addition, it does not guarantee the number of services in its recommendation
results. As a result, DSL is not the first choice in any envisaged real-world applications.

Table 2. Average performance (MAE/RMSE/NDR)

Experiment series A B C

KNN-DSL 0.03 0.03 1.00 0.03 0.03 1.00 0.061 0.06 1.00
DSL-KNN 0.05 0.06 0.99 0.07 0.08 0.97 0.08 0.08 0.94
KNN 0.04 0.04 0.06 0.04 0.04 0.50 0.064 0.07 0.65
DSL 0.16 0.21 1.00 0.15 0.20 1.00 0.28 0.33 1.00
RS 0.41 0.46 0.65 0.41 0.47 0.54 0.48 0.52 0.76
UF 0.68 0.69 0.68 0.66 0.67 0.55 0.69 0.69 0.81
SL 0.54 0.58 0.75 0.55 0.59 0.76 0.56 0.58 0.71
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5 Related Work

Quality-aware service recommendation is a critical issue in service-oriented computing.
Utility-based recommendation [1, 3, 6, 15, 17] and skyline-based recommendation
[3] are currently the two most popular approaches for quality-aware service
recommendation.

Utility-based recommendation is very straightforward. The utility value of a service
indicates how good its overall p-dimensional quality is in comparison with the other
candidate services in S - the higher, the better. The utility calculation for a service si
goes through two phases. First, a utility value is calculated for each of its quality
dimensions. Then, the utility of service si is calculated by summing its utility values in
all p quality dimensions. Given a set of candidate services, utility-based recommen-
dation selects the services with the highest utility values. This approach has been
widely employed [1, 3, 6, 15, 17].

The other popular approach for service recommendation is the skyline-based ser-
vice recommendation. Its process can be found in Sect. 2. It was first employed by
Alrifai et al. to select representative services that are not dominated by any other
candidate services [3]. Since then, many researchers have attempted to improve the
skyline-based service recommendation approach to accommodate more sophisticated
environments. To name few, Benouaret et al. propose a concept named alpha-dominant
service skyline to address two issues in the approach proposed by Alrifai et al. [7].
First, it treats services with a bad compromise between different quality dimensions in a
fairer manner. Second, it improves the efficiency of skyline calculation. Benouaret et al.
have also proposed an improved skyline-based approach for service recommendation
that handles services’ probabilistic quality values [8].

The common and critical limitation of the utility-based and the skyline-based service
recommendation is the lack of consideration for system engineers’ quality constraints,
which have always been a fundamental and critical issue in quality-aware service
selection [1, 2, 6, 9, 17, 20], as well as skyline-based service composition [21–23]. This
renders the utility-based and skyline-based service recommendation obsolete. As
demonstrated in Sect. 4, their recommendation results are neither suitable nor
representative.

There is a large body of approaches labeled service recommendation approaches
[10–14]. However, aiming to predict the quality values of services, those approaches
are not designed for service recommendation.

Our approaches address the limitation of existing recommendation approaches by
centering system engineers’ quality constraints in the recommendation. By combining
the KNN and DSL techniques, our approaches can efficiently recommend suitable and
representative services with respect to system engineers’ quality preferences.

6 Conclusion and Future Work

In this paper, we first proposed two basic approaches, named KNN and DSL, for
personalized quality centric service recommendation, based on k-nearest neighbors and
dynamic skyline techniques, respectively. Then, to overcome their limitations, we
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proposed two hybrid approaches, named KNN-DSL and DSL-KNN. Finally, we pre-
sented extensive experiment results to demonstrate their effectiveness and efficiency.

In the future, we will combine the proposed approaches with approaches for service
compositions to facilitate an effective and efficient personalized quality centric process
for building service-based systems.
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