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Abstract. Cloud-based systems are prone to be attacked because they share the
same cloud infrastructure, where there may exist hackers and malicious users.
As a result, cloud system owners need an on-going security risk assessment
mechanism to monitor the risk of their systems so that they can be mitigated in a
timely manner to ensure the business continuity. Existing methods of cloud
system risk assessment usually do not fully consider the dependencies of the
system’s cloud resources or the conflictions of the threats on the system. In this
paper we propose an application-aware cloud system risk assessment method,
called ARA-Assessor, for performing security risk assessment for cloud sys-
tems. ARA-Assessor includes a cloud system model used to specify the sig-
nificance value of each system component and their dependencies. With this
application-aware model, the cloud system owners are able to continuously
assess the risk of their systems. We evaluate ARA-Assessor with three typical
cloud systems on AWS. The experimental results show that our method is
capable of continuously assessing the runtime risk for multiple types of cloud
systems.

Keywords: Cloud security + Cloud risk * Risk management - Risk assessment

1 Introduction

Cloud computing is widely adopted by businesses and governments, and a large
number of them prefer to deploy and run their software applications and enterprise
systems on the cloud platform [1, 2]. Since the cloud is a multi-tenancy environment
shared by multiple users, a significant concern about cloud systems is their security [2,
3]. A survey from the research firm Gartner in 2015 found that around 95% of the
consumers of cloud computing reported cloud security issues [4]. A survey conducted

The acronym “ARA” is short for “Application-Aware Risk Assessment”.
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by the Cloud Security Alliance (CSA) in 2016 indicated that at least 35% of the
business owners did not trust the security of cloud as much as internal IT systems [5].
Cloud security has become a significant concern for ensuring business continuity [3].

In order to address the security issues of cloud systems and ensure the business
continuity despite potential attacks, a useful procedure is to perform security risk
assessment for cloud systems at runtime [6, 7]. Existing methods of cloud risk
assessment [6, 8—10] largely focus on individual system components. They are con-
cerned with either the application-level attacks that have an impact on service avail-
ability [10] or the intrinsic vendor-level risks of the cloud providers themselves [6, 8],
and some of them do not fully leverage the risks that result from the on-demand nature
of cloud [6, 8, 10]. Another problem with existing cloud risk assessment mechanisms is
that they do not consider the complete dependencies of the cloud resources of the cloud
system or the full conflictions of the cloud system’s threats [9, 10].

As such, in this paper we propose a novel cloud risk assessment framework, called
ARA-Assessor, for determining the runtime risk value of the cloud system provided by
the system owner. ARA-Assessor is application-aware, which means that the risk
assessment leverages the system specification model provided by the system owner.
ARA-Assessor relies on the infrastructure-level threats of the cloud system to calculate
the risk. We implement ARA-Assessor and evaluate it with three representative types
of cloud systems on AWS cloud. The experimental results show that our proposed
method is able to continuously and quantitatively assess the runtime risk of cloud
systems in an automated way and it is generalizable for multiple cloud systems.

The research contributions of this paper are: (1) we propose a generalizable cloud
runtime risk assessment method; (2) we propose a generic cloud system modelling
approach and a generic cloud system threats modelling approach; (3) we propose a
cloud resource dependencies propagation mechanism and a recursive mechanism for
resolving the threats conflictions issue for analyzing cloud system risk.

The remainder of this paper is organized as follows: Sect. 2 describes a motivating
example; Sect. 3 discusses cloud system modelling; Sect. 4 discusses cloud system
threats modelling; Sect. 5 illustrates our risk assessment method; Sect. 6 presents our
experimental evaluation; Sect. 7 discusses the validity and general applicability of our
model; Sect. 8 discusses the related work; Sect. 9 provides the conclusion and our
future work.

2 A Motivating Example

We use a sample cloud system, as shown in Fig. 1, to discuss the risk management.
This cloud system follows the typical 2-tier architecture [11]. The E-Business service
and the report generation service run in the web instances. These two services are
auto-scaled by the auto-scaling service provided by the Auto Scaling Group (ASG),
and the workload requests on these two services are dispatched by the load balancing
service provided by the Elastic Load Balancer (ELB). The E-Business service triggers
the production database service running inside the production database instance, and
the report generation service triggers the report database service running inside the
reporting database instance. There is periodical synchronization from the production
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database store to the reporting database store. A number of potential cloud
infrastructure-level threats could occur to this sample cloud system. We categorize
these threats into the following categories: (1) threats on the cloud login credentials;
(2) threats on the ASG; (3) threats on the LC; (4) threats on web instances; (5) threats
on database instances; (6) threats on the ELB; (7) threats on each instance’s Amazon
Machine Image (AMI); (8) threats on the security group. To study the occurrence
frequency of the threats on the cloud system, we analyzed the cloud security report
from Alert Logic [12], and obtained the month-to-month attack spread for real-world
cloud systems in 2014, as shown in Fig. 2. How to accurately determine the system’s
risk is a question.
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Fig. 1. 2-tier cloud system. Fig. 2. Attacks for real cloud systems in 2014 [12].

3 Generic Modelling of Cloud Systems

A cloud system is deployed on a set of allocated cloud resources. Each cloud resource
has a resource id, belongs to a cloud resource type (e.g. ELB), and has a significance
value which reflects the importance of the resource. Some cloud resources in the
system have dependencies, i.e. the attacks on such a resource can affect its dependent
cloud resources. Hence, we can use DAG (Directed Acyclic Graph) to model the cloud
system resources. The cloud system model, denoted as S, is represented as:

§=(RE) (1)

where R refers to the set of cloud resources, and E refers to the set of cloud resource
dependencies. Each element of R, denoted as R; (1 < i < |R|), is represented as:

R = (N,V,W) (2)

where N denotes resource id, V denotes resource type, and W denotes resource sig-
nificance value. Each element of E, denoted as E; (1 < i < |E|), is denoted as:

E; = (R, Rn), R € R,R,, €R (3)
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Instructions:

R; : (N = auto-scaling group, V = ASG, W = 3)

R;: (N = elasticload balancer, V = ELB, W= 3)

R3: (N = launch configuration, V= LC, W = 2)

O R4: (N =web instance AMI, V = AMI, W = 4)
Rs

Rs:(N=webinstancel, V=VM, W=5)

Rs: (N =webinstance2, V=VM, W=5)

R;: (N = production DB instance, V=VM, W = 5)

Rg: (N = production DB instance AMI, V = AMI, W = 4)
Ry : (N =report DB instance, V=VM, W =5)

Rio Ryo: (N =report DB instance AMI, V= AMI, W =4)

Fig. 3. DAG graph for the sample cloud system.

where Ry refers to any cloud resource that can affect another cloud resource, and R,
refers to R,’s affected cloud resource. Taking the cloud system mentioned in Sect. 2 as
an example, its system model is shown in Fig. 3. The resources are represented as R; to
R;o. The id, type and significance value of each cloud resource are presented. The cloud
resource dependencies are represented by the directed arrows.

4 Generic Modelling of Cloud System’s Threats

A cloud system’s threats refer to all the potential infrastructure-level cloud threats that
can occur to the system. Each cloud threat consists of the following information:
(1) threat name; (2) threat feature which specifies the types of cloud resources that can
be directly affected by the threat; (3) threat’s directly attacked cloud resources;
(4) threat’s overall affected cloud resources propagated from the dependencies of the
directly attacked resources; (5) threat impact value; (6) threat occurrence probability.
Some threats have conflictions with each other, i.e., they are unable to occur at the
same time. For example, terminating the database instance and changing database
instance type cannot occur simultaneously. Hence, we can model the cloud system’s
threats as a graph. The cloud system threats model, denoted as Ty, is represented as:

where T refers to the set of cloud system threats, and E refers to the set of cloud system
threats conflictions. Each element of T, denoted as 7; (1 < i < |T)), is represented as:

T; = (N,F,Rp,Rs,1,P) (5)

where N denotes each threat’s name, F denotes threat’s feature, Ry, denotes each
threat’s directly attacked cloud resources set and each element in Rp, follows the model
defined in Formula (2) in Sect. 3, R4 denotes each threat’s overall affected cloud
resources set and each element in R4 follows the model defined in Formula (2) in
Sect. 3, I denotes each threat’s impact value, and P denotes each threat’s occurrence
probability. Each element of E, denoted as E; (1 < i < |E]|), is denoted as:
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E; = (Tk,Tm), T, €T, T, €T (6)

where T refers to any threat that conflicts with another threat, and T, refers to T}’s
conflicted threat. Taking the sample cloud system mentioned in Sect. 2 as an example,
the threats graph of the system is shown in Fig. 4. The threats are T, to T,,. The threats
conflictions are represented by the undirected edges. 7; and T, cannot occur simulta-
neously (7'; conflicts with 75); T; and T, cannot occur simultaneously (73 conflicts with
T,); Ts and T4 cannot occur simultaneously (7’5 conflicts with 7).

-

Ts : Change report DB instance type
T;... : Other threats for the system

9 G G Instructions:
T, : Terminate the web instance
T,: Change web instance type
T3 : Terminate production DB instance
a 0 Q 4 : Change production DB instance type
Ts : Terminate report DB instance

Fig. 4. Threats graph for the sample cloud system.

5 Our Risk Assessment Method

In order for ARA-Assessor to assess the runtime risk for a cloud system, it requires two
inputs: (1) the cloud system model S and (2) the cloud full threats model T (T = (T, E)).
S is manually provided by the cloud system owner who has enough system domain
knowledge. The significance value of each cloud resource ranges from 1 to 5. It is
determined according to the importance of the internal service. Resource dependencies
are determined according to the interactions of the services inside the resources and the
dependencies specified in cloud resources documentations [17]. For example, a web
instance interacts with a database instance because the web service inside the web
instance triggers the database service inside the database instance. For another example,
an elastic load balancer (ELB) or an auto-scaling group (ASG) contains multiple web
instances. T resembles the threats model defined in Sect. 4. We assume T is manually
prepared by the system owner. The threats set and threats conflictions set of it can be
determined by analyzing and understanding the domain knowledge on cloud threats and
published dataset [1, 18-21]. The threats in T include the threats related to all types of
cloud resources, e.g. cloud web instance related threats, cloud database instance related
threats, ASG/ELB related threats, etc.

Since attacks on a cloud system are usually unpredictable and can occur at any
time, ARA-Assessor periodically assesses the cloud system’s risk. We implement
ARA-Assessor as a dedicated service, which embodies the concept of “Security as a
Service” [16]. Prior to performing a periodical risk assessment, ARA-Assessor first
conducts the one-off procedure, which consists of five activities: (1) ARA-Assessor
automatically determines the system’s threats subset model T using the inputs of cloud
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system model S and full cloud threats model Tr; (2) ARA-Assessor obtains the initial
occurrence probability of each threat Ty — T; (1 < i < |Ts — T|); (3) ARA-
Assessor automatically determines the affected cloud resources for each threat
Tg — T (4) the impact value of each threat T¢ — T; is calculated; (5) the cloud
consumer specifies the frequency of performing risk assessment, e.g. every minute.
Then four activities are conducted upon each time tick: (1) ARA-Assessor relies on
external attack detection services [13—15] to detect the runtime threats and events that
occur to the system, denoted as Txz; (2) we derive a threats sub-model from 75, denoted
as Tg (Tg = (T', E'), where T’ removes all the conflicted threats of each runtime
threat in Tgy from Ty — T, and E' removes all the conflictions with regard to each
runtime threat in Tgr from Ts — E); (3) the occurrence probability of each threat in T
is updated based on Txr; (4) ARA-Assessor uses the threats sub-model T to calculate
the system’s risk value for the time tick, denoted as Rls, as below:

RIs = Max (ZJ,MfTéW' (M(T[] — TU) = 1) x (M(TQ[E] — Tl — P)) (7

where M(T) refers to an array of threats sub-models derived from T, each threats
sub-model M(T)[i] (i ranges from 1 to |[M(T%)|) represents a case of threats model that
contains all the threats from T§ which are independent of each other and do not conflict
with each other, and this array enumerates complete cases of such threats models for
Tg. For each case, the risk value is calculated, and the maximum of the calculated risk
values is the quantified risk of the cloud system for that time tick.

5.1 Determination of Cloud System’s Threats Subset Model

The cloud infrastructure-level threats that can occur to the cloud system are a subset of
all cloud infrastructure-level threats that can occur to all cloud resources. When we rely
on external attack detection tools to detect threats, we should only subscribe the sys-
tem’s threats subset in order to save cost. Hence, we need to determine the cloud
system’s threats subset. Using the two inputs of cloud system model S and full cloud
threats model T, the cloud system’s threats subset model T is determined as below:

where T is a subset of T — T, and E is a subset of T — E. Each threat in T, denoted
as Ts — T;, satisfies such a condition: (T — T; — F) N V(S — R) # @, where V
(S — R) represents the cloud system’s overall resources types set.

Taking the sample cloud system mentioned in Sect. 2 as an illustrating example,
the determined threats subset model is the one represented in Fig. 4 in Sect. 4.

5.2 Determination of Threats Initial Occurrence Probabilities

The initial occurrence probabilities of the cloud system’s threats can be determined by
analyzing cloud attacks historical data such as the security reports from Symantec
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Fig. 5. Threats probabilities for cloud [23].

Corporation [22]. Based on the research on cloud security threats analysis done by the
University of Tunis [23], we are able to obtain the threats probabilities as shown in
Fig. 5. According to the research, the probability of no cloud threats occurring is 0.97,
so the upper bound probability for each cloud threat is 0.03. For simplicity, we assume
that the occurrence probabilities of all the threats for the cloud system are 0.03.

5.3 Determination of Cloud Resources Affected by System Threats

The affected cloud resources for a threat refer to the system cloud resources that are
affected either directly or indirectly by the threat. The indirectly affected resources are
propagated from the directly attacked resources. A challenge with the resource prop-
agation is that the resource dependencies can be multi-layer, which means that a cloud
resource’s dependent resources can further have dependent resources, and so on. We
address this challenge and design the affected resources determination mechanism, as
illustrated in Algorithm 1. For each threat, we first determine its directly attacked cloud
resources by mapping the feature of the threat with the cloud resources in the system
model (DetermineDirectlyAffectedResources(T — F, S — R)); second, for each
directly attacked resource of the threat R, we add it into the threat’s affected resources
set, and then we use a recursive function to add its overall propagated dependent
affected resources into the threat’s affected resources set (RecursivelyDeter-
mineAffectedResources(R, T — R,)). Inside the recursive function, we first get R’s
dependent affected cloud resources set (GetAffectedResources(R, S — E)). If this set is
empty, we exit the recursion; otherwise, for each of R’s dependent affected resources,
R', we add it into the threat’s affected resources set, and then we further add its overall
propagated dependent resources into the threat’s affected resources set.
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Algorithm 1: System Threats Affected Cloud Resources Determination

Input: Cloud System Model S, System’s Threats Subset Model T
Output: The System’s Threats Model 7 with Affected Resources Determined
1 Function DetermineThreatsAffectedResources(S, Ts) {

2 Foreach (T in 5 — T) {

3 T — Rp = DetermineDirectlyAffectedResources(7—F, S—R);
4 Foreach (Rin T — Rp) {

5 T—R,=RU (T— Ry);

6 RecursivelyDetermineAffectedResources(R, 7 — Ry); }}

7 Return T;

8 §

9

10 Void Function RecursivelyDetermineAffectedResources(R, R ) {
11 If (GetAffectedResources(R, S — E) == Q) {

12 Return; }

13 Foreach (R’ in GetAffectedResources(R, S — E)) {

14 R,=R’UR,;

15 RecursivelyDetermineAffectedResources(R’, R4); }

16 }

Taking the sample cloud system mentioned in Sect. 2 as an illustrating example, its
system model is represented by Fig. 3 in Sect. 3. One of its threats is “Attack the web
instance AMI”. This threat’s attacking point is R,. R, affects R;, R; further affects R;,
and R; further affects Rs and Ry, and hence the overall affected cloud resources of this
threat are R;, R3, R;, Rs and Rg.

5.4 Calculation of Threats Impact Values

For each threat in the cloud system’s infrastructure-level threats set, with its affected
cloud resources determined, we are able to compute its impact value based on the
significance value of each affected cloud resource. The impact value of each threat in
the cloud system’s threats subset, denoted as Ts — T; — [ (1 < i < |[Tg — T)), is
calculated as below:

[Ts—T;—Ra4|

Ty =T — I = (Ts — T; — Ry[j] — W) )

=1
where Ty — T; — R4 denotes the overall affected cloud resources set of each threat,
and Tg — T; — R4[j] — W denotes the significance value of each affected cloud
resource of each threat.
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Taking the sample cloud system mentioned in Sect. 2 as an illustrating example,
according to Sect. 5.4, the threat of “Attack the web instance AMI” affects the cloud
resources of R;, R;, R4, Rs, and R, and hence the impact value of this threat is
calculated tobe 19 B3 +2 +4 + 5 +5).

5.5 Threats Sub-model Derivation

Upon a time tick, the detected the runtime threats and events are denoted as Tgz; and
the threats sub-model derived from the system’s threats set T is denoted as T, which
removes all the threats in Tgy from Ts. If Try is empty, T is equal to Ts. We define
GetConflictedThreats(7, E) as the function to get the conflicted threats set of threat 7,
and define GetConflictions(7, E) as the function to get the set of conflictions with
regard to threat T. Then, Tg is determined as below:

T, = (T',E)) (10)
T'=Ts—T-Y """ GetConflictedThreats(Tar — T, Ts — E) (11
E =T —E-Y " " GetConflictions(Tyr — T}, Ts — E) (12)

5.6 Updating of Latest Occurrence Probabilities of Threats

Now, ARA-Assessor needs to perform probability updating for each threat in T based
on the detected runtime threats and events, denoted as Tx7. The runtime threats detected
are those threats that are factually occurring to the cloud system. The runtime events
consist of two attacks: (1) CPU-intensive user requests explosion, which means that the
attackers send excessive workload requests that significantly affect the CPU utilization
of cloud instances to the cloud system; (2) data-intensive user requests explosion,
which means that the attackers send excessive workload requests that significantly
affect the database to the cloud system. Cloud systems are not necessarily faced with
both of the two runtime events. If the cloud system only contains web servers (e.g. web
instances running Tomcat service), then it can only have the runtime event of
“CPU-intensive user requests explosion”; if the cloud system contains both web servers
and database servers, then it can have both runtime events.

For the runtime threats detected upon a time tick, the updated occurrence proba-
bility of each detected runtime threat is set to be 1 because it has factually occurred to
the cloud system and is causing certain negative consequence on the cloud system.

When either of the two runtime events happens upon a time tick, the probability of
the correspondent threat must be updated, and we argue that the updated probability
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(denoted as P') is relevant to the number of CPU-intensive user requests or
data-intensive user requests at that time tick (denoted as W), the threshold number of
CPU-intensive user requests or data-intensive user requests for the cloud system (de-
noted as Wiy, esnoia), and the initial occurrence probability of the correspondent threat
(denoted as P). P' must satisfy three requirements: (1) P’ is greater than P; (2) P’
increases with W; (3) P' converges to 1. Hence, we calculate P' as below:

l-p
/ f— e —
pP=1 a(W*thmrmzd) <13>
where a is a constant greater than 1, in order to make P’ an increasing function (i.e. P’
increases with W). The value of the constant a (a > 1) is determined as below:

10000 + W, —_ 10000—W, y
= (0000 Wieshold 114 1712 _ S elald (14)
R
1 2

5.7 The System Risk Determination Mechanism

The mechanism of calculating the risk based on T§ is shown in Algorithm 2. We first
derive a list of threats models each of which only contains the threats that do not
conflict with each other (GetValidThreatsModelsList(T%)), then we calculate the risk
value for each threats model in the list, and we return the maximum risk value as the
final risk for the system. The function of GetValidThreatsModelsList(T%) utilizes the
recursive mechanism in order to enumerate all the cases where the threats in the threat
model of the system are able to occur simultaneously. Inside this function, we first
obtain all the threats that do not conflict with any other threats (GetThreatswith-
outConflictions(7s)). If the number of such threats is equal to the overall threats
number, we return such threats as the output of the function; otherwise, if the number
of such threats is greater than 0, we first divide the threats model into threats with
conflictions (TSubModel) and threats without conflictions (7y), and then we
recursively call the same function (GetValidThreatsModelsList(TSubModel)) using
TSubModel as the input; otherwise, if the number of threats without conflictions is 0,
we loop through each threat and divide the threats model into each threat and the
threats that do not conflict with it, and then we recursively call the same function to
obtain the output (GetValidThreatsModelsList(7¢)) and merge it into the final output
(TMList).
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Algorithm 2: Risk Assessment Algorithm of ARA-Assessor
Input:  Cloud System’ Threats Model T’ upon a Time Tick
Output: System’s Risk R for the Time Tick

1 Function ComputeSystemRisk (7s") {

2 List<ThreatsModel> validTMList = GetValidThreatsModelsList(7s’);

3 List<Double> riskValues = new List<Double>();

4 Foreach (ThreatsModel 7, in validTMList) {

5 riskValuesAdd( Y M T (Tyy = T[i] » 1) X (Tyy — T[i] = P)); }

6 Double Ry = Max(riskValues);

8 Return Rg; }

9

10 List<ThreatsModel> Function GetValidThreatsModelsList(ThreatsModel 75’) {
11 ThreatsModel 7), = GetThreatswithoutConflictions(7s’);

12 (T — T)==|Ts' — 1)) {

13 List<ThreatsModel> TMList = new List<ThreatsModel>();

14 TMList. Add(Ty);

15 Return TMList; }

16 Else if (|7 — T]>0) {

17 ThreatsModel 7SubModel = Ts’ - Ty,

18 List<ThreatsModel> TMList = GetValidThreatsModelsList(7SubModel);
19 Foreach (ThreatsModel 7, in TMList) {

20 Ty +=Ty; §

21 Return TMList; }

22 Else {

23 List<ThreatsModel> TMList = new List<ThreatsModel>();

24 Foreach (Threat Tin 7' — T) {

25 ThreatsModel 7= T’ — GetConflictedThreats(7, Ty’ — E);

26 List<ThreatsModel> temp7MList = GetValidThreatsModelsList(7¢);
27 TMList += tempTMList;}

28 Return 7MList ; }}

6 Experimental Evaluation

We implemented the prototype of ARA-Assessor and evaluated it with three typical
cloud systems deployed on AWS EC2 [21]. They are: (1) the “all services in one
instance” cloud system; (2) the 2-tier cloud system with a production database; (3) the
2-tier cloud system with a production database and a reporting database. Each of them
is a simplified version of the real-world cloud system. These three cloud systems are a
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good representation of all types of cloud systems because they consider a variety of
cloud resources composition scenarios of different cloud systems, so they are complete
enough to verify the feasibility and generalizability of ARA-Assessor. The experi-
mental environment is shown in Fig. 6. Since we assume we rely on external attack
detection services to detect threats and events, we simulate the detection of runtime
threats and events. ARA-Assessor triggers the attack detection services by simulation
to obtain the simulated detection results, using the generated cloud system model as the
input. The output is the cloud system’s quantified ongoing runtime risk.

Threats & Cloud System

Events A >
........... 2 Attack

> \\ " ;i < Detection

Services

Our Implementation

: Generates . E
H 2 Triggers Continuous Runtime Risk !
: 40 i
' 1
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Fig. 6. Experimental environment.
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6.1 Experimental Procedure

For each of the three cloud systems, the frequency of performing risk assessment is set
to be 1 min. This is in accordance with the monitoring frequency of the CloudWatch
function provided by AWS [24]. We simulate the running of each system for 60 min
and dynamically inject one or more infrastructure-level threats and events at random
time points during each system’s running by simulation. The infrastructure-level threats
randomly injected are able to occur simultaneously. The events can be injected by
using an open source tool named Httperf [25], which is used for generating user
workload requests from the client side. Since we use the free-tier cloud resources in our
experiments, the allowed maximum number of CPU-intensive workload requests and
the allowed maximum number of data-intensive workload requests should follow the
requests number threshold of a free-tier instance. Based on our previous empirical
study [26], we know that the requests threshold for a free-tier instance is 360 simul-
taneous requests per machine, including both CPU-intensive requests and
data-intensive requests. As such, for the first cloud system, we determine that the
CPU-intensive requests threshold is 180 and the data-intensive requests threshold is
180. For the second cloud system, there are initially eight free-tier web instances
attached to an ASG and registered with an ELB, and one free-tier database instance
shared by the web instances. So, the overall requests number threshold for the system is
2880, so the CPU-intensive requests threshold is 1440 and the data-intensive requests
threshold is 1440. For the third cloud system, there are initially six free-tier web
instances attached to an ASG and registered with an ELB, six free-tier reporting
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instances attached to another ASG and registered with another ELB, one free-tier
production database instance shared by the web instances, and one free-tier reporting
database instance shared by the reporting instances. So, the overall requests number
threshold for the system is 4320, and hence the CPU-intensive requests threshold is
2160 and the data-intensive requests threshold is 2160. In the real-world case, the
values of the two thresholds of a real industry system should be determined by the
system owner. Since we rely on external attack detection tools, we simulate the
detection results of threats and events and perform risk assessment. For each of the
three cloud systems we run the experiment 50 times and obtain the ongoing risk values
and the average execution time of performing risk assessment. The hardware config-
uration of the ARA-Assessor server is: CPU-Dual Core 2.6 GHz and RAM-8 GB.

6.2 Experimental Results

The assessed risk values and the average execution time for the three cloud systems are
shown in Figs. 7, 8 and 9. The results are based on 50 runs.

The risk threshold for each cloud system is determined to be 10.7, 20.5 and 36.3,
respectively. Where the risk value is greater than the threshold, it is considered to be

s Risk Value Execution Time (ms)
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Fig. 7. Risk assessment results for the first cloud system.
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Fig. 8. Risk assessment results for the second cloud system.
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Fig. 9. Risk assessment results for the third cloud system.

high risk and appropriate responses such as performing system recovery should be
considered. The average execution time of performing risk assessment for each time
point for each cloud system is less than 1300 ms, which is well below the risk
assessment time frequency set by the system owner (60000 ms). This also buffers
enough time to perform threats and events detection for the systems. The maximum
relative standard deviation for the execution time of performing risk assessment for
each time point for each cloud system is 1.9%.

7 Validity and Applicability of the Model

First, while the cloud threats concerned by ARA-Assessor are only cloud
infrastructure-level, we assume that the business stakeholders and the system owners
are capable of figuring out the full set of all infrastructure-level cloud threats. In the
implementation of our proposed method, we only consider certain types of
infrastructure-level cloud threats when constructing the full cloud threats set, and we
argue that by doing this it does not influence our method’s validity.

Second, the determination of the initial occurrence probabilities of a cloud system’s
threats is only based on a limited study of existing research work, and hence the
determined probabilities might not be comprehensive enough. We expect the busi-
nesses to figure out the probabilities in a more sophisticated manner.

Third, for evaluating the generalizability of ARA-Assessor, we only used three
types of cloud systems. Although we argue that these three systems are a good rep-
resentation of all cloud systems, it is still worthwhile to evaluate our method against
more types of cloud systems. Moreover, it would be even better if we could evaluate
our method with systems deployed on other cloud platforms.

8 Related Work

8.1 Risks and Threat Models in Cloud Computing

The European Network & Information Systems Agency (ENISA) [18] classifies cloud
computing risks into three categories: Organizational, Technical and Legal [1]. The
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organizational risks refer to “all the risks that may impact the structure of the orga-
nization or the business as an entity”, e.g. “loss of business reputation due to the tenants
sharing the same resources” [1]. The technical risks refer to “problems or failures
associated with the provided services or technologies contacted from the cloud service
provider” [1], e.g. “malicious insiders/outsiders attacks on cloud” [1]. The legal risks
refer to “issues that surround data being exchanged across multiple countries that have
different laws and regulations concerning data traversal, protection requirements and
privacy laws” [1]. The Cloud Security Alliance (CSA) [19] lists the following threats as
the top cloud computing risks: malicious insiders, data loss/leakage, abuse and
nefarious use of cloud computing and shared technology vulnerabilities. From the
perspective of cloud infrastructure, the cloud threats include attacks on cloud instances
(virtual machines), attacks on cloud data storage and attacks on cloud networking
facilities such as elastic load balancers or auto scaling groups [20, 27]. From the
perspective of SaaS providers or cloud consumers, cloud threats include attacks on
different application functions, attacks on the business workflows of cloud systems, and
attacks on the service modules of cloud systems [28].

8.2 Existing Risk Assessment Methods for Cloud Computing

Risk is measured in terms of the consequence (or impact) and the likelihood of the
attacking event or threat [29]. Researchers from the University of Leeds proposed a
cloud risk assessment framework used by cloud service providers and service con-
sumers to assess risk during service deployment and operation [8]. This framework
quantitatively assesses the risks in various stages of the service lifecycle, and it con-
siders the risks of both cloud service providers (the cloud consumers) and infrastructure
providers (cloud vendors) [8]. The threat impacts are mainly determined by looking at
the seven security criteria (e.g. past SLA performance) of cloud providers and the three
performance criteria (e.g. past SLA performance) of cloud consumers [8]. This
framework calculates risk by computing the cross-product of the threat impacts vector
and the threat probabilities vector [8]. However, the main drawback of this risk
assessment framework is that it does not consider the threats resulting from the
on-demand nature of cloud since it largely focuses on the seven typical security
evaluation criteria of various cloud infrastructure providers and the three performance
criteria of the cloud consumers. Researchers from Lincoln Laboratory of MIT proposed
another risk assessment tool for cloud services, which can be used for evaluating the
runtime risk of particular cloud services [9]. This tool assesses system runtime risk
based on analyzing a list of possible runtime threats on cloud services. The impact of
each threat is determined by investigating how many virtual machines can be affected
by the threat, and the probability of each threat is derived from external historical data
[9]. However, the major problem with this tool is that its way of calculating threat
impacts does not well capture the real natures of the consequences of security failures
on cloud, and it does not fully consider the dependencies of cloud resources of the
cloud system or the conflictions of cloud system threats. In comparison, our proposed
method addresses all of these drawbacks. To the best of our knowledge, it is the first
time that such a cloud risk assessment framework is ever proposed.



526 M. Fu et al.

9 Conclusion and Future Work

Systems deployed on the cloud are prone to security attacks, which is one of the
greatest issues with cloud computing. Cloud system risk assessment is helpful for
managing and analyzing the security of cloud systems. Since existing methods of cloud
system risk assessment usually do not fully consider cloud resources dependencies or
cloud system threats conflictions, we proposed ARA-Assessor to continuously perform
risk assessment for cloud systems. ARA-Assessor is application-aware and leverages
cloud infrastructure-level threats. We implemented the prototype of ARA-Assessor and
evaluated it using three typical cloud systems. Based on the experimental results, we
can see that our method is able to automatically assess the runtime risk of cloud
systems in a continuous manner, and it is generalizable for multiple types of cloud
systems. Our future work includes: (1) include the application-level and service-level
threats into our risk assessment method; (2) evaluate the feasibility of our method with
more types of cloud systems and more cloud platforms.
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