
Middleware for Dynamic Upgrade Activation
and Compensations in Multi-tenant SaaS

Dimitri Van Landuyt(B), Fatih Gey, Eddy Truyen, and Wouter Joosen

imec-DistriNet, Department of Computer Science, KU Leuven,
Celestijnenlaan 200A, 3001 Leuven, Belgium

{dimitri.vanlanduyt,fatih.gey,eddy.truyen,wouter.joosen}@cs.kuleuven.be

Abstract. Multi-tenant Software as a Service (SaaS) is the cloud com-
puting delivery model that maximizes resource sharing up to the level
of a single application instance, servicing many customer organizations
(tenants) at once. Due to this scale of delivery, a SaaS offering, once suc-
cessful, becomes difficult to upgrade and evolve without affecting service
continuity, and this in turn limits its capabilities to respond to the reality
of changing customer requirements.

However, not all tenants are equal, and to some organizations such
disruptions are more costly than to others. Supporting different quality
trade-offs for different tenants is often a manual, error-prone task and
far from trivial.

This short paper outlines our middleware design for fine-grained, grad-
ual and continuous evolution of multi-tenant SaaS applications, providing
automated and systematic support for (i) tenant-aware upgrade enact-
ment, and (ii) compensations that allow recovering from negative side-
effects of the upgrade enactment.

1 Introduction

In the Software as a Service (SaaS) delivery model, Internet services are offered
to customer organizations (tenants) on a subscription basis. The SaaS provider
and tenants typically agree on individual service quality levels that such an
application must reliably provide.

A key advantage of SaaS applications is their cost-efficiency which is attained
at large scale due to economies-of-scale effects [2]: Run-time resources (such as
the hardware, platforms and supportive services) are shared among multiple ten-
ants up to the level of application instances (an architectural tactic called multi-
tenancy [7]). To minimize the costs per tenant, configuration and customization
activities are commonly outsourced to tenant administrators, a principle called
self service [25].

Such a multi-tenant SaaS application becomes difficult to change and evolve
without affecting overall service continuity and thereby many tenant businesses.
As a result, its capabilities to respond to the reality of changing customer require-
ments [21] (for example, through continuous delivery [24]) are limited. More
specifically, a SaaS application that is expected to attain high levels of service
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 340–348, 2017.
https://doi.org/10.1007/978-3-319-69035-3_24



Middleware for Dynamic Upgrade Activation and Compensations 341

continuity cannot be taken offline for maintenance, i.e. to enact an upgrade, but
must continue servicing tenant requests even during upgrade enactment. In addi-
tion, due to the high level of resource sharing among tenants, it must be ensured
that changes applied for one tenant do not negatively affect other tenants (ten-
ant isolation). Furthermore, service continuity cannot always be ensured (e.g.
during the enactment of an incompatible upgrade [4]), such that either the SaaS
application becomes temporarily unavailable, or different service qualities are
sacrificed, for example functionality and integrity.

An upgrade enactment that maintains one metric of service continuity at
the cost of another provides a specific quality compromise. A multi-tenant SaaS
application that traditionally evolves in one shot [4,11] has no room for consid-
erations on a per-tenant basis. Moreover, in this context, the large scale of oper-
ation of the SaaS application has a multiplying effect, which leads to upgrades
that potentially have a profound impact on many tenant businesses. This ren-
ders traditional approaches such as waiting for application-wide quiescence [19]
unfeasible. As different compromises (in terms of quality or functionality) may
be considered acceptable to different tenants (depending for example on the
tenant SLA), systematic support is required for compromises on a per-tenant
basis, both during the upgrade enactment and/or after the enactment, i.e. by
supporting compensatory measures that are enacted after the fact (e.g. rolling
back inconsistent transactions). This short paper presents middleware support
for continuous evolution of multi-tenant SaaS applications that provides support
for both types of compromises on a fine-grained, per-tenant basis.

The remainder of this paper is structured as follows: Sect. 2 derives and moti-
vates the main requirements, whereas Sect. 3 presents our middleware. Section 4
discusses related work, and Sect. 5 concludes the paper.

2 Motivation and Requirements

The following key observations contribute to our motivation: (i) Incompatible
software upgrades demand for different quality compromises with respect to the
upgrade enactment process; (ii) related work on dynamic software upgrades and
dynamic adaptations provides several alternative strategies [1,19,22,23,28], each
involving fundamentally different quality compromises (e.g. consistency over
availability or vice versa); (iii) to some tenants, software failures (as a cost of a
quality compromise) are only harmful for tenants if their effects remain perma-
nent, and when anticipated, such negative consequences can often be corrected
though compensatory measures.

The above observations highlight the potential to perform evolution of multi-
tenant on a per-tenant, customized manner, but current solutions either involve
enacting upgrades in a single shot operation, or require manual effort and are
therefore error-prone and expensive.

As such, we state the following requirements for supporting continuous evolu-
tion of multi-tenant SaaS applications in a systematic and maximally automated
fashion:



342 D. Van Landuyt et al.

R1 Customization support: The nature of the SaaS service degradation
and service quality compromises should be customizable and controllable by
tenants. This entails:

R1a Tenant-isolated upgrade enactment: Allowing the activation
of an upgrade for one tenant without affecting other tenants (tenant
isolation) is a key enabler for fine-grained per-tenant customization, as
this allows the activation of an upgrade for one tenant to be timely
and functionally decoupled from other tenants [14]. It enables, moreover,
approaches such as phased cut-off, i.e. to overlap the phase-out of the
current version and the phase-in of the upgraded version of service com-
ponents.
R1b Awareness of the upgrade compatibility: Alternative upgrade
paths that each involve different compromises (in terms of quality and
functionality) must exploit the compatibility nature [4] of upgrades. This
implies in particular that different upgrade activation mechanisms must
be developed and supported by the SaaS developer.

R2 Compensation support: For each quality compromise made during
upgrade enactment for which significant service degradations are anticipated,
automated compensation facilities should be provided that revert or counter-
act these, again on a per-tenant basis, in isolation and tailored to the nature
of the upgrade at hand (thus, provided by the SaaS developer and configured
by the tenant administrator).

3 Middleware Support

Fig. 1 provides an overview of the proposed middleware solution. The top of the
figure represents the SaaS application which is structured as a service-oriented
application (SOA). Section 3.1 first introduces the DSlookup component, which
supports tenant- and context-aware dynamic service composition [14,29]. The
Activation Controller and Compensation Controller components both rely
extensively on this component and are discussed in Sects. 3.2 and 3.3 respectively.

3.1 Dynamic Multi-tenant Service Composition

Our middleware relies extensively on the underlying ability to manipulate service
compositions at run time, and we leverage this mechanism for tenant-aware
customization of service bindings [29].

Dynamic service lookup is accomplished by the DSlookup component that
implements a lazy service composition approach: it resolves only to a specific
service binding of a composition at request time. In addition, DSlookup allows
manipulating its service lookup logic through changing the transaction context
of the triggering service request. Multi-tenant customization is accomplished by
defining a set of service compositions that serve specific variants of services spe-
cific to a tenant (these are part of the tenant configurations, stored in the Tenant
Configuration Repository) (step (0) in Fig. 2). Tenant context tokens [18,29]



Middleware for Dynamic Upgrade Activation and Compensations 343

Fig. 1. High-level overview of our middleware, which is comprised of the DSlookup

component, the Activation Controller, and the Compensation Controller.

are attached to the call chain when new application transactions are started,
and the tenant identity is derived, for example, from authentication data [29].

To allow ensuring version-consistent behavior [23], the dynamic service com-
position must additionally be aware of the end-to-end application transaction
context. This is done with a transaction context token that is attached to all
service requests of an application transaction. A service component instance
that issues outbound service requests rO in the course of processing an inbound
request rI must copy the tenant and transaction context of rI to rO [18].

Figure 2 illustrates the workings of the DSlookup component. A service
component instance addresses DSlookup to lookup another service component
instance that provides a specific interface, attaching the tenant and transac-
tion context token (step (1) in Fig. 2). To fulfill the request, DSlookup consults
the corresponding tenant configuration from the tenant configuration repository
(step (2b)), specifically to find a matching service binding. If successful, the refer-
ence to an instance1 of the specified target service is returned to the caller (return
arrow for step (1)) who now is able to invoke that service call ((3) in Fig. 2). It
is worth noting that service instances are identified by an identifier/type and a
version.
1 This involves consulting the Service Registry, which is omitted here for simplicity.



344 D. Van Landuyt et al.

Fig. 2. Dynamic context-aware service composition using Dynamic Service lookup.

Service cache. For performance and scalability reasons, each service compo-
nent instance caches service instance identifiers in a hierarchical cache. The
cache is queried in the reverse hierarchy order (step (2a) in Fig. 2): only if
transaction-specific service instance references cannot be found, generic refer-
ences are searched.

3.2 Activation Support

Our middleware enables configuration of upgrade activations dynamically and on
a per-tenant basis. Upgrade activation is accomplished by dynamically manipu-
lating service compositions, to reroute service lookups to new service versions. As
shown in Fig. 1, the key component for coordinating these upgrade activations
is the ActivationController.

More specifically, the possible upgrade paths for a specific upgrade are
encoded in a set of Activation scripts (provided by the SaaS developer), and these
can be selected or configured by the tenant or SaaS operator. These are code
artifacts that are defined in terms of pre-defined service composition manipula-
tion primitives. The following manipulation primitives are currently supported
by the middleware:

InitVer Change version for initial tenant context: this primitive provides
the capability to change the tenant configuration version used for initial ten-
ant contexts which is stored in the tenant configuration repository. This effec-
tively means that for all tenants that do not refer to a specific version in their
service compositions, the newer version will picked as a default.

TokenVer Change version of tenant context token: with this primitive, at
DSlookup, the configuration version entry of a tenant context token can be



Middleware for Dynamic Upgrade Activation and Compensations 345

manipulated for specific service-lookup queries before the actual lookup. This
effectively overrides the selected version.

FailLookup Deliberately fail service lookup: using this primitive, DSlookup
can be set to fail a specific lookup deliberately, i.e. to return that no service
component instances are available.

FlushSC Flush service reference cache: the service cache (maintained by
every service component instance locally) can be cleared for transaction-
specific or generic service instance references, e.g. to immediately effectuate
a version upgrade.

As depicted in Fig. 1, the Activation Controller monitors new application
transactions (beginning and end), and coordinates the execution of Activation
scripts, which in turn entails the invocation of the service composition manipu-
lation primitives discussed above.

3.3 Compensation Support

A compensation is essentially an additional behavior to prevent or recover
from a negative side-effect of upgrade enactment. Similarly to the Activation
Controller, the Compensation Controller actively monitors the application
transactions and perform actions in response to specific events. As with the
activation controller scripts, a compensation is put together with Compensation
Primitives. The following compensation primitives are currently supported:

ManipSC Manipulate service composition instance: this primitive is equiv-
alent to the TokenVer primitive discussed earlier.

FailReq Deliberately fail service requests: similarly, this primitive is
already supported by the FailLookup primitive.

TempComp Deploy temporary service components: an upgrade may be
shipped with temporary service components that are only deployed during
the activation of an upgrade by a compensation artifact (for example, to
attain graceful degradation).

Req Issue service requests: a compensation may issue additional service
requests, for example to start new transactions on behalf of the end user.

A Compensation script consists of two key elements: one for specifying events
it may have interest in (the monitor), and one for defining the appropriate
reaction to these events (action). Event filters are installed at the DSlookup
component at the start of an upgrade. Event filters may refer to service compo-
nent instances involved, tenant context used at the beginning and the end of the
service lookup2, and the application transaction context.

Relevant events are propagated from DSlookup to the Compensation
Controller, which in turn coordinates the execution of the corresponding Com-
pensation script.

2 Note: these two may differ when TokenVer is used.



346 D. Van Landuyt et al.

4 Related Work

We first discuss the broader set of related work on dynamic software updates
(DSU), then we focus on existing support for evolution or customization of cloud
applications and finally, we discuss related work w.r.t. compensation support.

Dynamic Software Updates. Updating an application at run time has been stud-
ied for decades [3,15,19], increasingly reducing the impact on its normal opera-
tion. There are two dominant and fundamentally different approaches:
(i) Dynamic software updates [16] score well on service continuity and focus
on update safety, but are limited to specific types of upgrades; moreover, they
usually depend on memory-invasive operations which are not applicable in a
cloud context.
(ii) Dynamic Adaptation techniques [1,17,19,22,23,28] are applied in terms of
components and connectors and are therefore applicable for any type of upgrade
and technology-independent. These techniques can be further divided in two
classes: those that require a safe state (e.g. quiescence) of the application before
performing the upgrade [19,28], and those that support a mixed mode where old
and new versions co-exist [1,17,26].

Although showing this in further detail is part of our future work, using the
manipulation primitives for service composition presented in Sect. 3.2, we can
effectively support these different classes of upgrade strategies simultaneously.
Similar to [17,22,27], our middleware provides an open and versatile platform
for upgrades, specific to the domain of cloud-scale evolution [4].

Middleware Support for Evolution of Cloud Applications. Dumitras et al. [11]
propose a middleware that moves an entire application to a “parallel universe” to
avoid inconsistencies of otherwise incremental upgrades of enterprise-sized cloud
applications. Opposed to theirs, our approach promotes a service component as
the smallest unit for evolution. Others [13,20] support adaptation and evolu-
tion of a SaaS application for anticipated upgrades. Ertel et al. [12] present a
framework to support dynamic evolution of dataflow programs. While their sup-
port is based on types of applications that are different from multi-tenant SaaS
applications, their work is complementary to ours as it focuses on algorithms
for automated enactment, accounting for state-transfer, referential integrity and
timeliness of dependent upgrades.

Compensations. In relational database transactions [8,9], supporting compensa-
tions is a strategy for forward error recovery which is an alternative to backward
error recovery (i.e. roll-back). Automatic workaround [5,6,10] as a related self-
healing tactic on the other hand provides a computed recovery strategy as a
compensation.

Although showing this in further detail is part of our future work, using the
compensation primitives defined in Sect. 3.3, we support the following types of
compensations: (i) inverting or repeating service requests (Req), (ii) changing
behavior for specific requests (ManipSC and TempComp), (iii) deliberately failing
service requests (FailReq).



Middleware for Dynamic Upgrade Activation and Compensations 347

5 Conclusion

We have presented dedicated middleware support for continuous evolution of
multi-tenant SaaS applications that essentially implements two measures to
reduce the impact of –or at least to increase control over– an upgrade enact-
ment: customization and compensation. Our middleware allows per-tenant, cus-
tomized and fine-grained service continuity compromises when enacting different
types of software upgrades. Compromises that entail a significant sacrifice are
complemented by a compensation to alleviate their effect in an automated fash-
ion. Our approach allows the SaaS developer to implement upgrade activation
and compensation scripts that are based on common manipulation and compen-
sation primitives respectively that are built into the middleware.

The systematic support for both types of measures allow controlling the over-
all cost of enacting a change (in the course of software evolution) in multi-tenant
SaaS applications that are subject to continuous service delivery guarantees, and
as such these mechanisms may contribute greatly in reducing the time-to-market
of new features.

Acknowledgements. This research is partially funded by the Research Fund KU
Leuven, the ADDIS research program funded by KU Leuven GOA, and the DeCoMAdS
SBO strategic research project.

References

1. Ajmani, S., Liskov, B., Shrira, L.: Modular Software Upgrades for Distributed Sys-
tems. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 452–476. Springer,
Heidelberg (2006). doi:10.1007/11785477 26

2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53(4), 50–58 (2010)

3. Bloom, T., Day, M.: Reconfiguration and module replacement in argus: theory and
practice. Softw. Eng. J. 8(2), 102–108 (1993)

4. Brewer, E.: Lessons from giant-scale services. IEEE Internet Comput. 5(4), 46–55
(2001)

5. Carzaniga, A., Gorla, A., Perino, N., Pezzè, M.: Automatic workarounds for web
applications. In: FSE 2010, pp. 237–246. ACM, New York (2010)

6. Carzaniga, A., Gorla, A., Pezzè, M.: Self-healing by means of automatic
workarounds. In: SEAMS 2008, pp. 17–24. ACM, New York (2008)

7. Chong, F., Carraro, G.: Architectural strategies for catching the long tail (2006).
http://msdn.microsoft.com/en-us/library/aa479069.aspx

8. Colombo, C., Pace, G.J.: Recovery within long-running transactions. ACM Com-
put. Surv. 45(3), 28:1–28:35 (2013)

9. Davies Jr., C.T.: Recovery semantics for a db/dc system. In: Proceedings of the
ACM Annual Conference, pp. 136–141. ACM, New York (1973)

10. de Lemos, R., et al.: Software Engineering for Self-Adaptive Systems: A Second
Research Roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.)
Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-35813-5 1

http://dx.doi.org/10.1007/11785477_26
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://dx.doi.org/10.1007/978-3-642-35813-5_1


348 D. Van Landuyt et al.

11. Dumitraş, T., Narasimhan, P.: Why Do Upgrades Fail and What Can We Do about
It? In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896, pp.
349–372. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10445-9 18

12. Ertel, S., Felber, P.: A framework for the dynamic evolution of highly-available
dataflow programs. In: Middleware (2014)

13. Garćıa-Galán, J., Pasquale, L., Trinidad, P., Ruiz-Cortés, A.: User-centric adapta-
tion of multi-tenant services: Preference-based analysis for service reconfiguration.
In: SEAMS (2014)

14. Gey, F., Van Landuyt, D., Joosen, W., Jonckers, V.: Continuous evolution of multi-
tenant saas applications: a customizable dynamic adaptation approach. In: PESOS,
May 2015

15. Gupta, D., Jalote, P., Barua, G.: A formal framework for on-line software version
change. Softw. Eng. 22(2), 120–131 (1996)

16. Hayden, C.M., Magill, S., Hicks, M., Foster, N., Foster, J.S.: Specifying and veri-
fying the correctness of dynamic software updates. In: Verified Software (2012)

17. Hillman, J., Warren, I.: An open framework for dynamic reconfiguration. In: Pro-
ceedings of the 26th International Conference on Software Engineering, ICSE 2004,
pp. 594–603. IEEE Computer Society, Washington (2004)

18. Jørgensen, B.N., Truyen, E.: Evolution of Collective Object Behavior in Presence
of Simultaneous Client-Specific Views. In: Konstantas, D., Léonard, M., Pigneur,
Y., Patel, S. (eds.) OOIS 2003. LNCS, vol. 2817, pp. 18–32. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45242-3 4

19. Kramer, J., Magee, J.: The evolving philosophers problem: dynamic change man-
agement. Softw. Eng. 16(11), 1293–1306 (1990)

20. Kumara, I., Han, J., Colman, A., Kapuruge, M.: Runtime Evolution of Service-
Based Multi-tenant SaaS Applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 192–206. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-45005-1 14

21. Lehtonen, T., Suonsyrjä, S., Kilamo, T., Mikkonen, T.: Defining metrics for contin-
uous delivery and deployment pipeline. In: Symposium on Programming Languages
and Software Tools (2015)

22. Li, W.: Evaluating the impacts of dynamic reconfiguration on the qos of run-
ning systems. JSS 84(12) (2011). http://www.sciencedirect.com/science/article/
pii/S0164121211001439

23. Ma, X., Baresi, L., Ghezzi, C., Panzica La Manna, V., Lu, J.: Version-consistent
dynamic reconfiguration of component-based distributed systems. In: FOSE (2011)

24. Neely, S., Stolt, S.: Continuous delivery? easy! just change everything (well, maybe
it is not that easy). In: Agile Conference (AGILE), 2013, pp. 121–128 (2013)

25. Sun, W., Zhang, X., Guo, C.J., Sun, P., Su, H.: Software as a service: Configuration
and customization perspectives. In: Services (2008)

26. Truyen, E., Vanhaute, B., Joosen, W., Verbaeten, P., Jorgensen, B.: A dynamic cus-
tomization model for distributed component-based systems. In: Distributed Com-
puting Systems Workshop, pp. 147–152, April 2001

27. Truyen, E., Janssens, N., Sanen, F., Joosen, W.: Support for distributed adapta-
tions in aspect-oriented middleware. In: AOSD (2008)

28. Vandewoude, Y., Ebraert, P., Berbers, Y., D’Hondt, T.: Tranquility: A low dis-
ruptive alternative to quiescence for ensuring safe dynamic updates. Softw. Eng.
33(12), 856–868 (2007)

29. Walraven, S., Truyen, E., Joosen, W.: A Middleware Layer for Flexible and Cost-
Efficient Multi-tenant Applications. In: Kon, F., Kermarrec, A.-M. (eds.) Middle-
ware 2011. LNCS, vol. 7049, pp. 370–389. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-25821-3 19

http://dx.doi.org/10.1007/978-3-642-10445-9_18
http://dx.doi.org/10.1007/978-3-540-45242-3_4
http://dx.doi.org/10.1007/978-3-642-45005-1_14
http://www.sciencedirect.com/science/article/pii/S0164121211001439
http://www.sciencedirect.com/science/article/pii/S0164121211001439
http://dx.doi.org/10.1007/978-3-642-25821-3_19
http://dx.doi.org/10.1007/978-3-642-25821-3_19

	Middleware for Dynamic Upgrade Activation and Compensations in Multi-tenant SaaS
	1 Introduction
	2 Motivation and Requirements
	3 Middleware Support
	3.1 Dynamic Multi-tenant Service Composition
	3.2 Activation Support
	3.3 Compensation Support

	4 Related Work
	5 Conclusion
	References




