
An Artifact-Driven Approach to Monitor
Business Processes Through Real-World Objects

Giovanni Meroni1(B), Claudio Di Ciccio2, and Jan Mendling2

1 Dipartimento di Elettronica, Informazione e Bioingegneria,
Politecnico di Milano, Milan, Italy

giovanni.meroni@polimi.it
2 Institute for Information Business,

Vienna University of Economics and Business, Vienna, Austria
{claudio.di.ciccio,jan.mendling}@wu.ac.at

Abstract. Nowadays, many business processes once intra-
organizational are becoming inter-organizational. Thus, being able to
monitor how such processes are performed, including portions carried
out by service providers, is paramount. Yet, traditional process moni-
toring techniques present some shortcomings when dealing with inter-
organizational processes. In particular, they require human operators to
notify when business activities are performed, and to stop the process
when it is not executed as expected. In this paper, we address these
issues by proposing an artifact-driven monitoring service, capable of
autonomously and continuously monitor inter-organizational processes.
To do so, this service relies on the state of the artifacts (i.e., physi-
cal entities) participating to the process, represented using the E-GSM
notation. A working prototype of this service is presented and validated
using real-world processes and data from the logistics domain.

Keywords: Artifact-driven process monitoring · Physical artifacts ·
E-GSM · Inter-organizational monitoring service · Autonomous process
monitoring

1 Introduction

In recent years, a large number of organizations opted to outsource some of their
business services to external service providers, either partially or entirely [12]. By
doing so, many traditionally intra-organizational business processes have become
inter-organizational. The adoption of this strategy has brought several advan-
tages. For example, organizations can now focus on their core business, rather
than having to deal with support processes, e.g., logistics. Furthermore, special-
ized service providers usually deal with the externalized processes more efficiently
and effectively than internal divisions of organizations operating on different
markets. However, outsourcing has also brought some issues, one of which is the
inability for an organization to directly control how the outsourced processes are
executed. It is up to the service provider to execute these processes as agreed with
c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 297–313, 2017.
https://doi.org/10.1007/978-3-319-69035-3_21



298 G. Meroni et al.

the organization. In such a case, a service capable to constantly monitor the exe-
cution of inter-organizational processes becomes crucial. A process monitoring
service allows an organization to know a.o. (i) when business activities com-
posing the process are executed, and (ii) if their execution order complies with
the process model, namely the formal specification of how the process should be
performed. This way, countermeasures can be taken in case violations in the exe-
cution occur, and a better coordination among the organization and the service
providers can be achieved.

Traditionally, monitoring services are included in Business Process
Management Systems (BPMSs), namely the software components responsible for
automating the execution of business processes [10]. However, a BPMS presents
shortcomings when monitoring inter-organizational processes. Firstly, unless an
activity is completely automated and fully executed by the BPMS, human oper-
ators have to manually notify the BPMS that an activity starts or ends. Such
a task disrupts the operator’s work, and can be easily forgotten or postponed,
thus negatively affecting the reliability of the monitoring. Secondly, whenever the
process is not executed as agreed, BPMS usually halt the execution of the process
until the violation is manually solved by a human operator. Consequently, the
process execution is not tracked until the violation is solved. This is undesirable:
In an inter-organizational process, service providers could continue running their
processes even though the BPMS halted. Such an issue can be partially mitigated
by instructing the BPMS not to halt in case of violations, so as to successively
resort to mining techniques to detect the disruptions in the recorded execution
log. However, such an approach impedes an organization to promptly react to
violations.

To overcome these issues, we propose a novel monitoring service which can
autonomously (i) monitor the execution of non-automated activities, as long as
they interact with machine-tracked real-world objects, and (ii) identify incor-
rectly executed activities yet continue monitoring the process after a violation
occurs. The approach we present is built upon the usage of the Extended-
GSM (E-GSM) artifact-centric language [20] for the automated monitoring of
processes. Our approach is implemented with a software prototype. We demon-
strate the efficacy of our approach with an application on a real-world use case
from the logistics domain.

The remainder of this paper is structured as follows. Section 2 introduces a
motivating example used to describe, in Sect. 3, our approach. The architecture
of a monitoring service based on our approach is discussed in Sect. 4. Section 5
validates our work against real processes and data. Finally, Sect. 6 surveys related
work and Sect. 7 concludes the paper outlining the future research plans.

2 Motivating Example

To better understand the need for an inter-organizational monitoring service,
we focus on a real scenario taken from the logistics domain, which will be used
throughout this paper. However, logistics is only one of the possible case studies.



An Artifact-Driven Approach to Monitor Business Processes 299

In fact, our solution is beneficial to every inter-organizational business process
interacting with real-world objects.

A manufacturer located in the United Kingdom, M , has a long-term pro-
visioning contract with customer C, located in Germany. To send its goods to
C, M relies on logistics company L, headquartered in Amsterdam, which owns
several inland terminals located nearby the principal airports of Europe. Instead
of performing the actual shipments, L outsources them to several truck shippers
S, each one responsible for one or more legs (i.e., for all the shipments from
the headquarters to a specific terminal and vice-versa). The shipment process
from M to C is organized as follows. At first, a container is shipped from the
plant of M to a terminal located near London Heathrow Airport, which serves
the UK market. We call this leg M-TU. Then, the container is shipped to the
headquarters of L (TU-HQ leg). After that, the container is shipped to a terminal
located near Frankfurt, which serves the German market (HQ-TG leg). Finally,
the container is delivered to C (TG-C leg).

The TU-HQ leg is organized as follows. Firstly, the container is loaded onto
a truck of S (Load container), which subsequently starts traveling in the UK
(Travel in UK) until either a break is taken (Take break in UK), or the entrance to
the Channel tunnel is reached. The alternation of traveling hours with breaks
forms a loop which we name UK Loop. In the first case, once the break ends,
the truck continues traveling in the UK. In the second case, the truck takes
the Channel tunnel (Take Channel tunnel), then continues traveling on continental
Europe (Travel in EU) until either it reaches the headquarters, or it takes a break
(Take break in EU). We name this loop of travel and breaks within continental
Europe as EU Loop. In the first case, the container is unloaded (Unload container)
and the process ends. In the last case, the truck continues traveling in Europe
once the break ends. The other legs are organized similarly. Once the container
is loaded, the truck starts traveling (either in the UK or in continental Europe,
depending on the location of the leg) until either the destination is reached, or a
break is taken. Similarly to the TU-HQ leg, once the break ends, the truck starts
traveling again.

UK Loop EU Loop

Shipment started

M-TU HQ-TG

Shipment ended

TU-HQ
started

Load 
container

Travel in 
UK

Take break 
in UK

Take Channel 
tunnel

TU-HQ
ended

Travel in 
EU

Take break 
in EU

TU-HQ TG-C

Unload 
container

Fig. 1. BPMN diagram of the running example: High-level process model (top), and
expanded subprocess TU-HQ (bottom).



300 G. Meroni et al.

The upper part of Fig. 1 depicts the whole shipment process using the Busi-
ness Process Model and Notation (BPMN) language. The lower part of Fig. 1,
on the other hand, depicts the TU-HQ leg. It is worth noting that none of the
involved organizations has full control of the execution of the whole process.
Since each leg is outsourced to a different truck shipping company S, S controls
only those activities inside its own leg, and cannot alter the execution of the
other ones. P , C, and L, who are the only organizations interested in the whole
process, have no direct control on it. Therefore, to allow each organization to
know how the whole process is being run, a monitoring service is needed.

3 Approach

The underlying idea of our approach is that the execution of an activity involving
real-world objects is reflected in the modification of their status. In the example
of Fig. 1, e.g., the loaded truck updating its position from the European end of the
Channel tunnel towards Frankfurt in the physical world indicates the enactment
of activity Travel in EU in the sub-process TU-HQ. Updates on the status of trucks
are typically provided by AIS/GPS on-board units to the systems of the logistic
control rooms. The transmitted information is elaborated and can lead in the
process environment to a change of state of the related artifacts. The platform
can thus observe the real-world objects involved in the process execution, and
compare the evolution of their status with the expected enactment of the process.
This allows for a monitoring that does not require a human intervention to signal
the progress of process instances. When the process instances’ execution differs
from the prescribed one, a violation is detected. The platform becomes aware of
such a discrepancy when the observed artifacts’ state changes do not match with
the model of the running process. It can identify which activities are affected,
flag them as non compliant, and alert the involved stakeholders.

We propose a four-steps procedure to provide the necessary information.
The first step is taking as input a BPMN process diagram, one of the most
used formalisms for process modeling, representing the process to be monitored.
The second step requires the designer to enrich the BPMN diagram by includ-
ing information on the artifacts participating in the process. The third step
automatically translates the BPMN diagram into an E-GSM process, suited for
monitoring distributed processes. The fourth step automatically defines criteria
to map real-world objects to the artifacts at runtime. This way, organizations
can reuse existing process models, without having to learn new languages and
remodel processes from scratch. Our approach poses the following three main
requirements.

R1. The platform must be made aware of the process model and the involved
artifacts. Such an input can be provided at deploy time for the process.

R2. The platform must be made aware of the physical entities to observe.
The second requirement pertains to the run-time link between real-world objects
and artifacts. Not the same truck will be used for all deliveries: Different real-
world objects may embody the same process artifact. However, it may not be



An Artifact-Driven Approach to Monitor Business Processes 301

possible to know at design-time which real-world objects will be involved in the
carry-out of every process instance. Oftentimes such an information is available
only after the process instance started.

Such a binding should be definable at runtime. By the same line of reasoning,
the information on the previously involved artifacts may be no longer relevant to
the ongoing process at some stage, as in the case of the truck moving away from
the logistics company headquarters once activity TU-HQ is concluded. Hence the
following requirement.

R3. The binding and unbinding of physical entities to process instances has
to be made declarable.

In the following, we explain how our solution meets those requirements.

UK Loop EU Loop

TU-HQ
started

Load 
container

Travel in 
UK

Take break 
in UK

Take Channel 
tunnel

TU-HQ
ended

Truck

Truck
[heathrow,s ll]

Truck
[heathrow,moving]

Truck
[cheriton,s ll]

Truck
[highwayUK,s ll]

Truck
[highwayUK,moving]

Travel in 
EU

Take break 
in EU

Truck
[amsterdam,s ll]

Truck
[highwayEU,s ll]

Truck
[highwayEU,moving]

Truck
[coquelles,moving]

Container

Shipment started

M-TU HQ-TG

Shipment ended

TU-HQ TG-C

Container
[unhooked]

Container
[hooked]

Unload 
container

Truck
[amsterdam,moving]

Fig. 2. BPMN process model enriched with information on the participating artifacts.

3.1 Enrichment of the BPMN Process Model with Artifacts

A BPMN process diagram specifies which activities are executed in a process
and their control flow relationships. However, to be able to infer when activities
start or end based on the state of the artifacts, the diagram must capture this
information (requirement R1). Furthermore, the following binding and unbinding
mechanisms among artifacts and real-world objects must be specified in the
diagram: (i) When an artifact starts interacting with the process (R3); (ii) How
the object impersonating the artifact is notified to the process (R2); (iii) When
an artifact is no longer related to the process (R3).

To this extent, we resort on the standard BPMN data objects, rather than
introducing yet another extension of BPMN. Data objects traditionally serve
for documentation purposes, yet we use them to model the artifacts and their
interactions with the process. Moreover, we establish the following set of rules



302 G. Meroni et al.

to guarantee at design-time that the process model contains enough information
to completely and unambiguously automate the monitoring of the process at
run-time. The explanatory examples provided for the rules are shown in Fig. 2.

– An artifact must be modeled with data objects. The name of the data object
identifies the artifact (e.g., Truck), whereas the data state identifies in which
condition the artifact is supposed to be (e.g., [highwayUK,moving]).

– Each monitored activity must have at least one input and one output data
object. The activity is supposed to start (resp., finish) only when all input
(output) data objects exist and have the specified data state. If an activity
has two input (output) data objects referring to the same artifact in different
data states, the artifact must assume one of the specified states. For exam-
ple, Travel in UK starts when Truck is either in state [highwayUK,moving], or in
[heathrow,moving]. It ends when Truck is either in state [highwayUK,still] or in
[cheriton,still].

– For each artifact, at least one output data object with no data state must be
defined in the diagram and associated to a start event. The artifact is sup-
posed to begin interacting with the process when that event occurs. Before-
hand, the artifact and its state is ignored. The payload of the event indicates
the object that instantiates the artifact. In the example, Container starts inter-
acting with the process at its initial event, and Truck is bound to the beginning
of TU-HQ.

– For each artifact, zero or more input data objects with no data state can
be defined in the diagram and associated to an end event. The artifact is
supposed to become unrelated to the process when the event occurs (after
such an event, the artifact and its state will be ignored when the process is
executed). For instance, Truck will be no longer related to the process once
TU-HQ finishes.

– Data associations must not contradict the semantics of the control flow as
they are used to identify when activities start or end. For example, Travel

in UK cannot be declared to start only when Truck is in [heathrow,moving],
otherwise it could not start again after a break along the journey through
UK, far from the airport (despite the loop in the process model). Therefore
Truck[highwayUK,moving] is set as another input for Travel in UK and as an
output of Take break in UK.

Example. Figure 2 shows the process model obtained by extending the one pre-
sented in Sect. 2 according to the previously mentioned rules. The input and
output data objects of Unload container indicate the preconditions and postcon-
ditions for that activity to be executed. To execute Unload container, the container
must be hooked to the truck, and the truck must already be parked in the head-
quarters of L. When Unload container finishes, the container will be unhooked
from the truck, and the truck will leave the headquarters of L. As the container
participates in the whole process, its data object is associated to the start and
end events of the process. On the other hand, a specific truck may only partic-
ipate to a single subprocess. As such, the data object representing the truck is
associated to the start and end events of each subprocess.



An Artifact-Driven Approach to Monitor Business Processes 303

3.2 Generation of the E-GSM Process Model

Due to its imperative nature, BPMN treats control flow information in a pre-
scriptive way: The only possible executions of the process are the ones that
comply with the control flow. Therefore, no other way of enacting the process
can take place than the prescribed ones. This assumption is suitable for intra-
organization execution scenarios. However, when it comes to inter-organization
monitoring scenarios, a different paradigm is needed in order to deal with devia-
tions that may arise from the different parties involved. To overcome this limita-
tion, we make use of the E-GSM language [3], an extension of the Guard-Stage-
Milestone (GSM) notation [15] especially devised for monitoring: E-GSM treats
control flow in a descriptive way, and as such it can monitor any possible execu-
tion of a process. When a deviation from the control flow is detected, an E-GSM
engine flags the part of the process causing such a deviation as non compliant,
without halting the monitoring.

In E-GSM the units of work that can be performed when the process is exe-
cuted are represented by stages. Stages can be atomic, thus representing a single
task, or can nest other stages, thus representing a process fragment. The con-
ditions that determine when stages become opened (the unit of work is being
performed) are represented by data flow guards, which we will indicate as “DFG”.
The conditions that determine when stages are closed (the unit of work is com-
pleted) are represented by milestones, indicated as “M”. Each stage must have at
least one data flow guard and one milestone attached. Control-flow dependen-
cies among stages are represented by process-flow guards, henceforth identified
by the acronym “PFG”. They are assessed before a stage becomes opened. If
they are evaluated as false, the stage is flagged either as out of order (executed
although it should not) or skipped (not executed when it should). Starting from
the enriched BPMN process model obtained in the previous step, an E-GSM
model of that process can be automatically produced. To do so, we apply the
following translation rules. They are based upon [4], which we extend to detect
when activities are executed based on the state of the artifacts. The effect of the
application of such rules on the model of Fig. 2 is shown in Fig. 3.

– Given a BPMN atomic activity (e.g., Unload container), a corresponding E-
GSM stage is produced (e.g., UnloadContainer).

– For each artifact Ar, if a change in its state occurs, events are raised to
signal that it leaves the previous state (henceforth denoted as Ar l) and
enters the current one (Ar e). For instance, when Truck transitions from
[heathrow,still] to [heathrow,moving], events Truck l and Truck e are produced.
Truck l is raised when Truck leaves [heathrow,still], and Truck e is raised when
it enters [heathrow,moving].

– The data flow guard (milestone) of a stage is evaluated on Ar e (Ar l) for
each artifact Ar associated with each input (output) data objects of Ar. The
stage is opened (closed) if the state assumed by all Ar’s is the one indi-
cated by the input (output) data objects of the associated activity. For
example, LoadContainer.DFG1 is evaluated when Container e or Truck e occur.
LoadContainer is opened if Container is [unhooked], and Truck is in [heathrow,still].



304 G. Meroni et al.

– Given a BPMN event E (e.g., TU-HQ started), a stage is produced (e.g.,
TU-HQStarted). One data flow guard and one milestone, both requiring E to
be raised, are attached to the stage. This way, TU-HQStarted is opened and
immediately closed when TU-HQ started occurs.

– As discussed in detail in [4], the BPMN model is decomposed into nested
process blocks identified by (i) control-flow patterns (e.g., the loop blocks
UK Loop and EU Loop, containing the fragments of the process with a struc-
tured loop), (ii) subprocess activities (e.g., TU-HQ). Each block B is trans-
lated into a stage BS that encloses the inner stages derived from activi-
ties, events or process blocks therein. The data flow guard of the block-
stage BS is the union of the data flow guards of the inner stages, whereas
the milestone of BS and the process flow guard of the inner stages reflect
the control flow pattern expressed by B. For instance, TU-HQ is trans-
lated into a stage TU-HQSeq containing TU-HQStarted, LoadContainer, UKLoop,
TakeChnTunnel, EULoop, UnloadContainer and TU-HQEnded. TU-HQEnded.DFG1 is
fulfilled only if the control flow is respected, i.e., TU-HQEnded is executed only
once and immediately after UnloadContainer ends.

TU-HQSeq

Load 
Container

M1: on container_l or truck_l 
if container[hooked]
and truck[heathrow,moving]

M1: on container_l or truck_l 
if container[hooked]
and truck[heathrow,moving]

D

DFG1: on container_e or truck_e 
if container[unhooked]

and truck[heathrow,s ll]
D

DFG1: on container_e or truck_e 
if container[unhooked]

and truck[heathrow,s ll]

Unload

Container

M1: on container_l 
or truck_l if
container[unhooked] and
truck[amsterdam,moving]

M1: on container_l 
or truck_l if
container[unhooked] and
truck[amsterdam,moving]

D
DFG1: on container_e or

truck_e if container[hooked]
and truck[amsterdam,s ll]

D
DFG1: on container_e or

truck_e if container[hooked]
and truck[amsterdam,s ll]

PPFG1: EULoop.M1 and not 
UnloadContainer.M1

PPFG1: EULoop.M1 and not 
UnloadContainer.M1

TU-HQ

Started

M1: on TU-HQ_startedM1: on TU-HQ_startedDDFG1: on TU-HQ_started DDFG1: on TU-HQ_started

EULoop M1: if EUIte.M1M1: if EUIte.M1DDFG1:EUIte.DFG1 DDFG1:EUIte.DFG1

P
PFG1: 

TakeChnTunnel.M1 and 
not EULoop.M1

P
PFG1: 

TakeChnTunnel.M1 and 
not EULoop.M1

D

DFG1: 
TU-HQStarted.DFG1 

U LoadContainer.DFG1 
U UKLoop.DFG1

U TakeChnTunnel.DFG1 
U EULoop.DFG1 

U UnloadContainer.DFG1
U TU-HQEnded.DFG1

D

DFG1: 
TU-HQStarted.DFG1 

U LoadContainer.DFG1 
U UKLoop.DFG1

U TakeChnTunnel.DFG1 
U EULoop.DFG1 

U UnloadContainer.DFG1
U TU-HQEnded.DFG1

M1: if 
TU-HQStarted.M1
and LoadContainer.M1 
and UKLoop.M1
and TakeChnTunnel.M1
and EULoop.M1
and UnloadContainer.M1
and TU-HQEnded.M1

M1: if 
TU-HQStarted.M1
and LoadContainer.M1 
and UKLoop.M1
and TakeChnTunnel.M1
and EULoop.M1
and UnloadContainer.M1
and TU-HQEnded.M1

PPFG1: TU-HQStarted.M1 
and not LoadContainer.M1

PPFG1: TU-HQStarted.M1 
and not LoadContainer.M1

UKLoop M1: if UKIte.M1M1: if UKIte.M1DDFG1: UKIte.DFG1 DDFG1: UKIte.DFG1

PPFG1: LoadContainer.M1 
and not UKLoop.M1

PPFG1: LoadContainer.M1 
and not UKLoop.M1

PPFG1: not 
TU-HQStarted.M1 PPFG1: not 
TU-HQStarted.M1

TakeChn
Tunnel

M1: on truck_l if
truck[coquelles,moving]
M1: on truck_l if
truck[coquelles,moving]D

DFG1: on truck_e if
truck[cheriton,s ll] D
DFG1: on truck_e if
truck[cheriton,s ll]

PPFG1: UKLoop.M1 and
not TakeChnTunnel.M1

PPFG1: UKLoop.M1 and
not TakeChnTunnel.M1

TU-HQ

Ended

M1: on TU-HQ_endedM1: on TU-HQ_endedDDFG1: on TU-HQ_ended DDFG1: on TU-HQ_ended

PPFG1: UnloadContainer.M1
and not TU-HQEnded.M1

PPFG1: UnloadContainer.M1
and not TU-HQEnded.M1

Fig. 3. E-GSM process model derived from the TU-HQ subprocess. For the sake of
clarity, stages inside UK Loop and EU Loop are omitted.

Example. Figure 3 shows the E-GSM process model derived from the BPMN
process model of Fig. 2. Here, UnloadContainer.DFG1 is evaluated whenever
the artifacts Truck or Container change their state, thus generating events
Truck l or Truck e. To mark UnloadContainer as opened (i.e., to represent
the fact that the container is currently being unloaded from the truck),
UnloadContainer.DFG1 requires that Truck is in [amsterdam,still], and Container

is [hooked]. UnloadContainer.M1 is evaluated when Truck or Container change
their state, thus generating events Truck l or Container l respectively. To mark
UnloadContainer as closed (i.e., to signal that the unloading of the container
finished), UnloadContainer.M1 requires that Truck is in [amsterdam,moving], and
Container is [unhooked]. Finally, to ensure that UnloadContainer is executed at the
right time, UnloadContainer.PFG1 requires that UnloadContainer has not already



An Artifact-Driven Approach to Monitor Business Processes 305

been executed (thus requiring UnloadContainer.M1 not to be achieved). Also,
UnloadContainer.PFG1 needs that EULoop (directly preceding UnloadContainer)
has already been executed, hence that EULoop.M1 was achieved.

3.3 Generation of the Artifact-to-object Mapping Criteria

The E-GSM model generated in the previous step allows us to detect when activ-
ities are executed based on the state of the artifacts participating to the process.
However, the E-GSM model does not indicate which real-world object will imper-
sonate each artifact (e.g., the artifact Truck is impersonated by the physical truck
having license plate “AB123XY”). We capture the mapping criteria among arti-
facts and objects in a separate document. Such a choice allows us to decouple the
process logic from the artifact instantiation logic, which significantly improves
the scalability of the platform. Starting from the enriched BPMN process model
obtained in the first step, the criteria to map real-world objects to the artifacts
can be applied in an automated way. To do so, the following rules are applied:

– Each data association between a BPMN start event and a data object is
translated to a mapping criterion. The criterion states that, whenever the
event is detected, the artifact represented by the data object is bound to the
object identified in the payload of the event. Should the artifact be already
bound to a different object, the new binding would replace the existing one.
For instance, when the event TU-HQ started occurs, Truck is bound to the
physical truck whose license plate is specified in the payload of TU-HQ started.

– Each data association between a data object and a BPMN end event is trans-
lated into a mapping criterion. The criterion states that, whenever the event
is detected and the artifact represented by the data object is bound to an
object, it becomes unbound. If the artifact is already unbound, no action is
taken. For instance, when the event TU-HQ ended occurs, no truck is bound
to Truck.

Example. Figure 4 shows the artifact-to-object mapping criteria derived from
the BPMN process model of Fig. 2. Because the Container artifact interacts with
the whole process, the binding is expected to occur when the process starts, and
the unbinding to occur once the process finishes. Therefore, to bind a physical
container to Container, event Shipment started should occur. Once Shipment started

Fig. 4. Artifact-to-object mapping criteria.



306 G. Meroni et al.

is detected, Container is bound to the container whose unique identifier (e.g., its
serial number) is equal to the one specified in the payload of Shipment started . To
unbind Container, shipment ended should occur. The Truck artifact, on the other
hand, interacts when each subprocess is running. Therefore, to bind a physical
truck to Truck, any of the events M-TU started , TU-HQ started , HQ-TG started , or
TG-C started should occur. Similarly, to unbind Truck, M-TU ended , TU-HQ ended ,
HQ-TG ended , or TG-C ended should occur.

4 Architecture and Implementation

Figure 5 shows the architecture of the monitoring service we developed to sup-
port inter-organizational processes. To completely automate the monitoring, we
assume that the real-world objects embodying the artifacts can autonomously
infer their state and submit such an information to the service. This is a feasi-
ble assumption in the context of a Wireless Sensor Network (WSN) [1] or the
Internet of Things (IoT) [2], where environmental data can be collected by the
objects, which can then infer their own state.

To allow the objects to communicate with the service, a Message Queue
Telemetry Transport (MQTT) Broker is used. MQTT1 is a queue-based pub-
lish/subscribe protocol, which is especially suited for applications where com-
puting power and bandwidth are constrained. The MQTT Broker contains
as many topics (i.e., queues) as the objects that can participate to the
process. Each of these topics adheres to the following naming convention:
/{artifact type}/{object id}, where artifact type is the artifact represented
by the object (e.g., a truck), and object id is the unique identifier of the object
(e.g., the license plate of the truck). Whenever the object changes its state, it
publishes the updated state on its own topic. The MQTT Broker also con-
tains as many topics as the process instances that are currently being car-
ried out. Each of these topics adheres to the following naming convention:

Monitoring Service
E-GSM EngineMQTT Broker

Container SN9876

Truck AB123XY
Publish

Publish

/Truck/ab123xy

/Container/sn9876

/Process/inst1
Publish

Actors

Events Router

Subscribe

Subscribe

Subscribe
<–––––––––>
<–––––– ––––––––>

<–––––– ––––––––/>
<––––––––– –––––––––/>

</––––––>
<–––––– ––––––––>

<–––––– ––––––––/>
<––––––––– –––––––––/>
<–––––– ––––––––/>
<––––––––– –––––––––/>

</––––––>
<–––––– ––––––––>

<–––––– ––––––––/>
<––––––––– –––––––––/>

</––––––>
<–––––– ––––––––>

<–––––– ––––––––/>
<––––––––– –––––––––/>

</––––––>

Ar fact-to-object 
mapping criteria

Forward

No fy

No fy

No fy

REST API
Interact

––––––

––

––––––
–––––––

DDPP

PP

––––––
–––––––

DD

––––––
–––––––

DD

PP

––––––
–––––––

DD

––––––
–––––––

DD

PP

DD

DD

PP

––––––
–––––––

DD

PP

PP

––––––

––

––––––
–––––––

DP

P

––––––
–––––––

D

––––––
–––––––

D

P

––––––
–––––––

D

––––––
–––––––

D

P

D

D

P

––––––
–––––––

D

P

P

E-GSM process model

––––––––

––––––
–––––––

DD

PP

––––––
–––––––

DD

––––––
–––––––

DD

PP

––––––
–––––––

DD

––––––
–––––––

DD

PP

PP

––––––
–––––––

DD

PP

PPDD

––––––––

––––––
–––––––

D

P

––––––
–––––––

D

––––––
–––––––

D

P

––––––
–––––––

D

––––––
–––––––

D

P

P

––––––
–––––––

D

P

PD

Fig. 5. Architecture of the monitoring service.

1 http://mqtt.org/.

http://mqtt.org/


An Artifact-Driven Approach to Monitor Business Processes 307

/{process name}/{instance id}, where process name is the name of process model
to be monitored (i.e., the shipment from M to C, henceforth MtoCProcess), and
instance id is the unique identifier of the process instance (i.e., the actual execu-
tion of the process) that is being run. These topics are used by the organizations
to send events related to the running processes, but not related to the state of
the artifacts (i.e., when a subprocess starts or ends).

The E-GSM Engine2 is the component responsible for monitoring the execu-
tion of each process instance. This component takes as input the E-GSM models
produced according to Sect. 3.2. Whenever a new execution of the process starts,
the E-GSM Engine creates a new model instance, whose identifier instance id

is the same as the one of the running process instance. For each model instance,
the E-GSM Engine (i) keeps track of which activities are ongoing, (ii) detects
whether they follow the execution flow defined in the model and, if not, (iii)
marks them as not compliant.

To support late binding and unbinding among objects and artifacts refer-
enced by the process, the Events Router component is introduced.3 By receiving
as input the artifact-to-object mapping criteria produced according to Sect. 3.3,
the Events Router forwards to each E-GSM model instance only the events pro-
duced by the objects that effectively take part in that process execution. Note
that, by keeping the binding logic separate from the process logic, the E-GSM
instance receives only events coming from those objects that are bound to the
running processes. This way, the scalability of the E-GSM engine is affected
only by (i) the number of processes being run, and (ii) the number of objects
interacting with those processes, which is way lower than the total number of
objects under observation. To do so, the Events Router subscribes to all the
/{process name}/{instance id} topics (e.g., /MtoCProcess/inst1). Whenever a
new event is published (e.g., process started), the Events Router checks if a
mapping criterion is defined for that event. If no mapping criterion exists, the
Events Router forwards the event to the E-GSM instance whose identifier is
instance id (e.g., inst1). If a binding criterion exists, the Events Router sub-
scribes to topic /{artifact type}/{object id}, where object id is the object
specified in the payload of the event (e.g., /Container/sn9876), and associates
to that topic the instance id (e.g., inst1). From that point on, whenever a new
change of state is published in /{artifact type}/{object id}, the Events Router
forwards it to the E-GSM model instance whose identifier is instance id . For
example, if the truck having license plate AB123XY publishes on /Truck/AB123XY

that its state changed to [heathrow,moving], the Events Router will notify that
Truck is in [heathrow,moving], together with the raising of Truck l and Truck e

events, to the E-GSM instance inst1 . If an unbinding criterion exists, the Events
Router unsubscribes to topic /{artifact type}/{object id}, where object id is
the object specified in the payload of the event.

Finally, the Representational State Transfer (REST) [22] API offers an
interface for the organizations and the service providers to interact with the

2 Source code at https://bitbucket.org/polimiisgroup/egsmengine.
3 Source code at https://bitbucket.org/polimiisgroup/eventsrouter.

https://bitbucket.org/polimiisgroup/egsmengine
https://bitbucket.org/polimiisgroup/eventsrouter


308 G. Meroni et al.

monitoring service. It allows (i) the E-GSM Engine to be provided with the E-
GSM model, (ii) the Events Router to be instructed with the artifact-to-object
mapping criteria, and (iii) the organizations and the service providers to deter-
mine if the processes are correctly executed. In addition to that, it is responsible
for the management of the communication channels between the organizations
and service providers, and the monitoring instances: Whenever a new process
execution takes place, the REST API instructs the MQTT Broker to create a
new /{process name}/{instance id} topic. Then, the REST API instructs (i) the
Events Router to listen to that topic for evaluating the mapping criteria, and
(ii) the E-GSM Engine to create a new model instance whose identifier is the
same as instance id . Finally, it forwards the instance id to the involved service
providers, to specify the topic on which they should publish the events related to
the running process. For instance, when a new shipment from M to C takes place,
a new instance id (e.g., inst1) is defined, the MQTT topic /MtoCProcess/inst1

is created, a new E-GSM instance is run, and the notification that inst1 is up is
sent to all involved parties. The organizations can then use /MtoCProcess/inst1

to send events concerning that shipment.

Fig. 6. Screenshot of our service showing a non compliant execution of the TU-HQ leg.

Figure 6 shows a screenshot of the monitoring service displaying a non-
compliant execution of the TU-HQ leg. In this case, the truck took a ferry instead
of the Channel tunnel. Therefore, our service marks stage TakeChannelTunnel
as skipped (dark gray). Since TU-HQStarted, LoadContainer, TravelInUK and
TakeBreakInUK were executed in compliance with the control flow, they are
marked as on track (green). Since the truck has not yet taken a break in the
European continent, and the end event has not yet been received, TakeBreakInEU
and TU-HQEnded are not executed yet (light gray). As the truck is traveling in
the European continent, stage TravelInEU is still being executed (yellow). Note
that, although a compliance violation occurred, the monitoring is still running.



An Artifact-Driven Approach to Monitor Business Processes 309

5 Validation

To demonstrate the applicability and efficacy of our approach on a real-world
case, we have conducted an experiment with truck shipments data provided by a
European logistics company. 4 This provided material consisted of (i) a dataset
with the registered positions and speed of trucks involved in the shipments,
captured by on-board AIS/GPS systems and henceforth indicated as GPS log,
and (ii) a dataset indicating the shipments’ activities start and completion times,
manually triggered by the truck drivers and hereinafter denoted as activity log.
We replayed the GPS log within our platform and checked whether the start
and completion events detected by our platform matched with the manually
inserted information in the activity log. This way, we could compare our fully-
automated approach with a traditional one relying on human intervention. We
focused on routes connecting the premises in Amsterdam (AMS) to four other
major European airports, namely the London Heathrow airport (LHR), Brussels
(BRU), Paris Charles de Gaulle (CDG), and Frankfurt (FRA). For every route,
we considered both inbound and outbound routes from/to Amsterdam.

The GPS log and the activity log contained 19966 and 815 entries, respec-
tively, distributed over 77 shipments. The reported shipments took on average
533 min, ranging from less than 3 to more than 27 hours. By analyzing the activ-
ity log, we built a BPMN process for the routes, structured similarly to the legs
described in Sect. 2. We identified the possible discrete states that each truck can
assume through the inspection of the GPS log. Then, we followed the approach
described in Sect. 3: First, we enriched each BPMN model with artifacts rep-
resenting the truck and its states. Then, we generated the E-GSM models and
the artifact-to-object mapping criteria. This output was then used to instruct
the monitoring platform on which processes to monitor. After that, we used
the WSO2 Complex Event Processing platform5 to replay the GPS log, let our
system detect when the truck changed state, and forward such changes to the
monitoring service. Finally, we compared the results of the monitoring platform
with the activity log. Table 1 shows the results of our experiment.

The monitoring service was able to correctly determine the actual execution
of a process for 93.13% of the total instances. For the remaining 6.87%, the
issues lay in the determination of when activity Load container was executed. For
example, during one shipment of the BRU-AMS route, Load container was not
identified as completed, even though it was. This has to be imputed to the lim-
ited information available to determine the state of trucks: Our system had only
access to their speed and position, thus anomalous slow progressions due to con-
gestions at the logistic platform and along the road caused the misinterpretation
of their state.

Moreover, the monitoring service detected activities to be started or ended
more often than what had been notified by the truck drivers. The matching

4 The (anonymized) dataset is available at http://purl.org/polimi/martifact/
logisticsds-anon (password: GM-CDC-JM-dataset).

5 See http://wso2.com/products/complex-event-processor/.

http://purl.org/polimi/martifact/logisticsds-anon
http://purl.org/polimi/martifact/logisticsds-anon
http://wso2.com/products/complex-event-processor/


310 G. Meroni et al.

Table 1. Results of the validation.

Shipment AMS-

LHR

LHR-

AMS

AMS-

BRU

BRU-

AMS

AMS-

CDG

CDG-

AMS

AMS-

FRA

FRA-

AMS

Global

Instances 12 15 9 11 8 10 4 8 77

Median

duration [min]

806.28 720.05 306.67 256.30 813.48 483.69 481.32 396.30 533.01

Min. duration

[min]

338.47 138.02 153.00 159.62 387.57 353.00 396.10 279.32 138.02

Max. duration

[min]

1328.56 1622.03 519.12 388.30 1583.52 723.25 567.47 357.32 1622.03

Correctness

[%]

91.67% 100.00% 100.00% 90.91% 100.00% 100.00% 75.00% 87.50% 93.13%

Completeness

[%]

58.33% 53.33% 77.78% 90.91% 87.50% 60.00% 100.00% 62.50% 73.79%

Median

detection

delay [min]

2.73 −0.50 5.33 1.09 14.79 0.80 7.10 2.44 4.22

Median

absolute d.

delay [min]

12.53 4.57 7.10 5.17 16.57 4.18 8.87 4.88 7.98

cases amounted to 73.79%. Whether the missing entries in the activity log were
due to an omission of the driver, or rather due to a wrong detection of the
system, is debatable and needs further investigation. However, e.g., whenever
the monitoring service notified that activity Travel in EU was ended, and no
notification was sent by the truck driver, we inspected the GPS log and noticed
that the truck had reached Europe and its speed had amounted to zero for more
than a quarter of an hour, which suggests the first hypothesis to be more likely.

To assess the time gain for the detection of the status changes in the process,
we computed the delay between when each activity was started or ended, as
reported by the manual entries of the activity log, and when the monitoring
platform detected it, based on the GPS log. We will henceforth name such time
difference as detection delay. On average, the median of the detection delays
amounted to 4.22 min (7.98 considering the absolute values of the delays), which
is negligible for processes that last on average 533 min.

6 Related Work

In this section we briefly report on related work about (i) the monitoring of
business processes by their interaction with physical objects, and (ii) techniques
to coordinate inter-organizational processes.

In [14], BPMN data objects are adopted to model information on the arti-
facts manipulated by the activities composing a process. With respect to our
work, [14] expects information on the artifacts to be stored in a relational data-
base. Also, binding mechanisms are implemented as an extension of the BPMN
syntax, while our work relies solely on BPMN 2.0 OMG standard constructs.
[18] proposes a platform to monitor a process based on its interactions with



An Artifact-Driven Approach to Monitor Business Processes 311

real-world objects and human operators. Additionally, binding relationships are
automatically inferred by observing the execution of the process. However, infor-
mation on when activities are performed must be explicitly sent to the platform.
Also, only the occupation of objects and operators (i.e., if the operator is busy or
idle) is taken into consideration. [7] focuses on the process execution monitoring
based on physical objects’ data. To do so, BPMN constructs are extended to
define which events produced by a Complex Event Processing (CEP) determine
their activation and termination. Similarly, [5,8] propose to annotate activities
with constraints on attributes that are monitored when the process is executed.
This way, it is possible to report if an activity is not executed as expected as
soon as a violation occurs. [9] applies that approach to detect anomalies and
diversions in the context of air-freight cargo transportation. [17], on the other
hand, relies on artifacts and their lifecycle to monitor all the parameters relevant
for the execution of a process. This way, Key Performance Indicators (KPIs) on
the overall execution of the process and each single activities are derived. None
of these solutions deal with the detection of deviations in the process execution
flow. Concerning the generation of GSM models from activity-centric languages,
different approaches have been proposed by [11,16]. However, these approaches
treat the execution flow in a prescriptive way. Our solution, which extends [4],
treats instead execution flow in a descriptive way, thus allowing more flexibility,
and uses information on the artifacts to derive guards and milestones.

Traditionally, to monitor process portions carried out by service providers,
commitments have been used. Commitments are formal contracts that specify
how the interactions between the organization and the service provider should
be performed [23]. However, they are mainly focused on the outcome of the out-
sourced process portion carried out by the service provider, rather than on the
activities composing the process. Our work, on the other hand, is better suited
whenever the process must strictly adhere to the model, or when a detailed log
on how the process was performed is needed. [19], on the other hand, proposes
a GSM-based collaboration hub to coordinate logistics processes at the activity
level. The hub also adopts GSM to keep track of the execution of the process.
However, it relies on explicit notifications to determine when activities are exe-
cuted. [13] overcomes this limitation by adopting the IoT paradigm: they take
advantage of Guards and Milestones to identify when Stages are being executed
by predicating on sensor data coming from smart objects. However, the GSM
model is expected to be modeled from scratch. Also, both solutions lack mech-
anisms to detect deviations in the execution of the process with respect to its
model.

7 Conclusions and Future Work

This paper presented a monitoring service based on E-GSM to monitor the
execution of inter-organizational processes based on the status of the artifacts
being manipulated. The paper has also shown how a standard BPMN process
model can be used to automatically produce all the information to drive the



312 G. Meroni et al.

monitoring service. Finally, mechanisms to dynamically bind and unbind real-
world objects to a process execution were presented.

A limitation of this service is the support for only one-to-one mappings among
real-world objects and artifacts. Therefore, we plan to also support one-to-many
and many-to-many mappings to support batch processes [21]. Furthermore, we
will introduce tool support to check the soundness of the annotated BPMN
process model (i.e., if changes in the states of the artifacts during a compli-
ant execution do not contradict the control flow). To improve the accuracy of
the automatic artifact state-change determination, it is in our plans to integrate
machine-learning techniques such as automated discriminative classifiers, as pro-
posed in [6,8,9]. Additionally, we are going to distribute the monitoring service
onto the real-world objects impersonating the artifacts, so as to completely take
advantage of the IoT paradigm. An extension of this service to monitor processes
involving non-tangible objects (e.g., invoices or purchase orders) is also planned.

Acknowledgments. This work has been partially funded by the Italian Project ITS
Italy 2020 under the Technological National Clusters program.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: a survey. Comput. Netw. 38(4), 393–422 (2002)

2. Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Comput. Netw.
54(15), 2787–2805 (2010)

3. Baresi, L., Meroni, G., Plebani, P.: A GSM-based approach for monitoring cross-
organization business processes using smart objects. In: Reichert, M., Reijers, H.A.
(eds.) BPM 2015. LNBIP, vol. 256, pp. 389–400. Springer, Cham (2016). doi:10.
1007/978-3-319-42887-1 32

4. Baresi, L., Meroni, G., Plebani, P.: Using the guard-stage-milestone notation for
monitoring BPMN-based processes. In: Schmidt, R., Guédria, W., Bider, I., Guer-
reiro, S. (eds.) BPMDS/EMMSAD-2016. LNBIP, vol. 248, pp. 18–33. Springer,
Cham (2016). doi:10.1007/978-3-319-39429-9 2

5. Baumgraß, A., Botezatu, M., Di Ciccio, C., Dijkman, R., Grefen, P., Hewelt, M.,
Mendling, J., Meyer, A., Pourmirza, S., Völzer, H.: Towards a methodology for the
engineering of event-driven process applications. In: Reichert, M., Reijers, H.A.
(eds.) BPM 2015. LNBIP, vol. 256, pp. 501–514. Springer, Cham (2016). doi:10.
1007/978-3-319-42887-1 40

6. Baumgrass, A., Cabanillas, C., Di Ciccio, C.: A conceptual architecture for an
event-based information aggregation engine in smart logistics. In: EMISA, pp.
109–123. GI (2015)

7. Baumgrass, A., Herzberg, N., Meyer, A., Weske, M.: BPMN extension for business
process monitoring. In: EMISA 2014, pp. 85–98. GI (2014)

8. Cabanillas, C., Di Ciccio, C., Mendling, J., Baumgrass, A.: Predictive task
monitoring for business processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.)
BPM 2014. LNCS, vol. 8659, pp. 424–432. Springer, Cham (2014). doi:10.1007/
978-3-319-10172-9 31

9. Di Ciccio, C., van der Aa, H., Cabanillas, C., Mendling, J., Prescher, J.: Detect-
ing flight trajectory anomalies and predicting diversions in freight transportation.
Decis. Support Syst. 88, 1–17 (2016)

http://dx.doi.org/10.1007/978-3-319-42887-1_32
http://dx.doi.org/10.1007/978-3-319-42887-1_32
http://dx.doi.org/10.1007/978-3-319-39429-9_2
http://dx.doi.org/10.1007/978-3-319-42887-1_40
http://dx.doi.org/10.1007/978-3-319-42887-1_40
http://dx.doi.org/10.1007/978-3-319-10172-9_31
http://dx.doi.org/10.1007/978-3-319-10172-9_31


An Artifact-Driven Approach to Monitor Business Processes 313

10. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013)

11. Eshuis, R., Van Gorp, P.: Synthesizing data-centric models from business process
models. Computing 98(4), 1–29 (2015)

12. Gilley, K.M., Rasheed, A.: Making more by doing less: an analysis of outsourcing
and its effects on firm performance. J. Manage. 26(4), 763–790 (2000)

13. Gnimpieba, Z.D.R., Nait-Sidi-Moh, A., Durand, D., Fortin, J.: Using internet of
things technologies for a collaborative supply chain: application to tracking of
pallets and containers. Procedia Comput. Sci. 56, 550–557 (2015)

14. Herzberg, N., Meyer, A., Weske, M.: Improving business process intelligence by
observing object state transitions. Data Knowl. Eng. 98, 144–164 (2015)

15. Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath, F.T., Hobson, S., Linehan,
M., Maradugu, S., Nigam, A., Sukaviriya, P., Vaculin, R.: Introducing the guard-
stage-milestone approach for specifying business entity lifecycles. In: Bravetti, M.,
Bultan, T. (eds.) WS-FM 2010. LNCS, vol. 6551, pp. 1–24. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-19589-1 1

16. Köpke, J., Su, J.: Towards quality-aware translations of activity-centric processes
to guard stage milestone. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM
2016. LNCS, vol. 9850, pp. 308–325. Springer, Cham (2016). doi:10.1007/
978-3-319-45348-4 18

17. Liu, R., Vacuĺın, R., Shan, Z., Nigam, A., Wu, F.: Business artifact-centric model-
ing for real-time performance monitoring. In: Rinderle-Ma, S., Toumani, F., Wolf,
K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 265–280. Springer, Heidelberg (2011).
doi:10.1007/978-3-642-23059-2 21

18. Maamar, Z., Faci, N., Sellami, M., Boukadi, K., Yahya, F., Barnawi, A., Sakr,
S.: On business process monitoring using cross-flow coordination. Serv. Oriented
Comput. Appl. 11(2), 203–215 (2017)

19. Meijler, T.D., Stollberg, M., Winkler, M., Erler, K.: Coordinating variable collab-
oration processes in logistics. In: MITIP 2011 (2011)

20. Meroni, G., Di Ciccio, C., Mendling, J.: Artifact-driven process monitoring: dynam-
ically binding real-world objects to running processes. In: CAiSE 2017 Forum, pp.
105–112 (2017). CEUR-WS.org

21. Pufahl, L., Weske, M.: Batch processing across multiple business processes
based on object life cycles. In: Abramowicz, W., Alt, R., Franczyk, B. (eds.)
BIS 2016. LNBIP, vol. 255, pp. 195–208. Springer, Cham (2016). doi:10.1007/
978-3-319-39426-8 16

22. Richardson, L., Ruby, S.: RESTful Web Services - Web Services for the Real World.
O’Reilly, Sebastopol (2007)

23. Telang, P.R., Singh, M.P.: Specifying and verifying cross-organizational business
models: an agent-oriented approach. IEEE Trans. Serv. Comput. 5(3), 305–318
(2012)

http://dx.doi.org/10.1007/978-3-642-19589-1_1
http://dx.doi.org/10.1007/978-3-319-45348-4_18
http://dx.doi.org/10.1007/978-3-319-45348-4_18
http://dx.doi.org/10.1007/978-3-642-23059-2_21
http://CEUR-WS.org
http://dx.doi.org/10.1007/978-3-319-39426-8_16
http://dx.doi.org/10.1007/978-3-319-39426-8_16

	An Artifact-Driven Approach to Monitor Business Processes Through Real-World Objects
	1 Introduction
	2 Motivating Example
	3 Approach
	3.1 Enrichment of the BPMN Process Model with Artifacts
	3.2 Generation of the E-GSM Process Model
	3.3 Generation of the Artifact-to-object Mapping Criteria

	4 Architecture and Implementation
	5 Validation
	6 Related Work
	7 Conclusions and Future Work
	References




