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Abstract. We propose a qualitative similarity measure approach to
select an optimal set of probabilistic Infrastructure-as-a-Service (IaaS)
requests according to the provider’s probabilistic preferences over a long-
term period. The long-term qualitative preferences are represented in
probabilistic temporal CP-Nets. The preferences are indexed in a k -d
tree to enable the multidimensional similarity measure using tree match-
ing approaches. A probabilistic range sampling approach is proposed to
reduce the large multidimensional search space in temporal CP-Nets.
A probability distribution matching approach is proposed to reduce
the approximation error in the similarity measure. Experimental results
prove the feasibility of the proposed approach.

1 Introduction

IaaS providers (e.g., Amazon and Windows Azure) offer Virtual Machines (VMs)
as services in a cloud market [1]. IaaS services (i.e., configurations of VMs) are
usually customized to fit the requirements of consumers. Consumers (e.g., univer-
sities, governments, and Software-as-a-Service (SaaS) providers) are more likely
to require long-term IaaS services according to their business goals and budget
constraints. A typical IaaS request includes functional attributes, such as CPU,
memory, and network units, and Quality of Services (QoSs) attributes, such as
availability, throughput, response time and price [1]. The IaaS composition is
defined as to select an optimal set of custom consumer requests that maximizes
the revenue and profit of the provider [8,16].

The provider’s long-term business strategies are typically qualitative in
nature. For example, the provider may have a promotional strategy (discounted
prices for services) in the first year. In the following years, it may have profit-
maximization strategies considering the market completion. Similarly, long-
term consumer requests are usually variable over a time period and qualita-
tive in nature. For example, a consumer may prefer an IaaS service that has
higher throughput in the first year. While in the second year, the consumer
may find throughput is less important and may require price-sensitive services.
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In the qualitative IaaS composition, the acceptance or rejection of an incoming
request should follow the business strategies of the provider as accepted requests
are committed for the whole period [9]. A key limitation of exiting approaches
is that the business strategies need to be deterministic, i.e., the provider should
have 100% confidence to determine future changes in advance. Another limitation
is that consumers are not allowed to represent their preferences in a qualitative
manner.

We consider probabilistic qualitative IaaS requests from the consumers and
probabilistic qualitative business strategies of the providers in the long-term com-
position. Here, consumers provide their probabilistic IaaS service requests based
on their predicted business needs. For example, a university may calculate the
required IaaS services based on the number of students and staffs for the first
year. However, there is a 40% chance that the number of students and staffs will
increase in two folds in the second year. Hence, there is 60% probability that the
consumer’s preference will remain similar and 40% probability to be changed in
the second year. Similarly, providers’ business strategies are constructed based
on different environment variables such as available resources and number of
consumers. For example, business strategies are constructed assuming a fixed
size of resources for a long-term period in [9]. However, such an assumption is
hardly applicable in the real world as available resources tend to be probabilistic
rather than deterministic. For example, the provider may invest in increasing
new resources or sell a part of existing resources to other providers in the fol-
lowing years [5]. Similarly, the future demand for IaaS services is probabilistic
in nature and hard to predict with 100% confidence.

We assume that an IaaS provider has already developed its long-term proba-
bilistic qualitative service delivery preferences. It receives different long-term
probabilistic qualitative service requirements from different consumers. Note
that, how the probabilities are determined is out of the scope of this paper.
Our target is to find the optimal set of requests where their probable preferences
are best matched with the provider’s uncertain preferences. We have identified
the following research challenges in the probabilistic long-term IaaS composition:

– Probabilistic temporal preference representation: We require not only
an intuitive tool for structuring the provider’s qualitative preferences but
also a support for assigning temporal transition probabilities. For example,
a provider may prefer providing CPU based services over Network based
services in the first year. In the second year, there is 80% probability that
provider will stick to its existing preference order, but there is 20% proba-
bility to deliver services with a different preference order. The semantics of
preferences may not be static during the whole period of composition. For
example, 10ms response time is treated as a high QoS in this year, but it may
become a moderate QoS in the next year due to an upgrade of the hardware
in the market.

– Probabilistic qualitative similarity measure: Upon receiving probabilis-
tic qualitative temporal preferences from the consumers, we have to quantify
their similarity measure with the provider’s temporal qualitative preferences.
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However, as we are considering long-term composition, each time segments
should have several probable temporal preferences and each of them may have
several probable temporal preferences in the next temporal segments. Hence,
the number of temporal sequences or orders of preferences might be large for
the whole composition period. It is computationally inefficient to compare
every pair of sequences for the similarity measure. We require a probabilis-
tic similarity matching approach that can approximate to the optimal result
using fewer number of comparisons.

We represent preferences in probabilistic Temporal CP-Nets (PrTempCP-
Net), where dynamic TempCP-Nets have a transition probability matrix among
composition intervals. The dynamic semantics of the preferences are indicated
using a Conditional Preference Table (CPT) [3] of the PrTempCP-Net. We
assume that the dynamic semantics of preferences are global across the con-
sumers for simplicity. However, we transform semantics of consumers’ preferences
to match the dynamic semantics of the provider’s preferences and apply compo-
sition aggregation rules [16] for the similarity measure. Moreover, the induced
preference graph [13] from TempCP-Net is indexed in a multidimensional k -d
tree [2] to effectively match with the attributes of the consumer preferences.

Although long-term IaaS composition is a preference maximization combina-
torial optimization problem [8], we only focus on probabilistic similarity match-
ing approach in the composition. We apply a brute force approach to gener-
ate all possible combinations of IaaS requests. Instead of comparing all prefer-
ence sequences in the PrTempCP-Net (a computationally inefficient matching
process), we propose a novel probabilistic range sampling approach. The ranges
are selected in a way so that they approximate to an optimal spectrum of sim-
ilarity deviations from any random preference sequences matching. We use the
Kolmogorov-Smirnov test (K-S test) [4] as a statistical distribution matching
algorithm to determine the weight of a given preference range in the similarity
measure. The weighted similarity measures of all the preference range samples
are aggregated to determine the highest matched, i.e., the optimal set of requests.

2 Related Work

Graphical models are proposed to represent user-preferences where relative
ordering among preference attributes are determined by economic variables such
as cost and profit [14]. A Conditional Preference Network (CP-Net) [3] is a
dependency graph that represents consumers’ preferences qualitatively. A CP-
Net based graphical model is proposed for the service composition from the con-
sumers’ perspective [12]. The composition approach from incomplete consumer
preferences [13] performs preference amendment, i.e., the similar consumer detec-
tion and historical preference voting. Graph based similarity measure are applied
to find the optimal composition in web service compositions [7]. A deterministic
temporal CP-Net is proposed to represent the provider’s long-term qualitative
preferences [9]. To the best of our knowledge, exiting research does not consider
probabilistic qualitative preferences in the long-term IaaS composition.
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Cluster sampling and multistage sampling are applied to generalize the
results to the target population [10]. Convenience sampling and probabilistic
range sampling are nonprobability sampling techniques which approximate a
sample of subjects/units from a population [15]. It is useful especially when ran-
domization is impossible like when the population is very large [15]. Kolmogorov-
Smirnov (K-S) test is efficient to measure the similarity between the probability
distributions of two samples [4]. To the best of our knowledge, statistical analysis
is yet to be applied to reduce the large search space and to perform similarity
measure in the probabilistic qualitative IaaS composition.

3 Motivation: Probabilistic Qualitative IaaS Composition

Let us assume, a new IaaS provider starts offering virtual CPU services associ-
ated with QoS of availability for simplicity. Consumer A and B are interested
in using services from the provider. We assume that both the provider and con-
sumers have same semantic interpretation of the qualitative preferences on CPU,
availability, and price for simplicity. We represent the semantic levels as high,
moderate, and low, as shown in Fig. 1(a).

The CP-Net can elegantly represent these qualitative preferences. For exam-
ple, an arc from “CPU” to “availability” means the preference of “availability”
depends on the preference of “CPU” units. The provider may have different
business strategies represented in CP-Nets. For example, the provider prefers
to provide high-quality services with relatively lower prices, to build its reputa-
tion in the market. Hence, the provider decides that “availability” of a service
is the most important attribute, followed by “CPU” and “price”. CP1 is the
corresponding CP-Net for reputation building (Fig. 1(b)). In CP1, the “high”
availability has a higher priority than the “moderate” availability, i.e., A1 � A2.
Note that, the “low” availability (A3) is not in the provider’s preference in CP1.
The choice of availability dictates the choice of CPU units. Finally, the price of
the service is chosen based on the selection of the levels of availability and CPU
units. As this is a reputation building phase, the provider will not charge “high”
price (P1) while providing “moderate” CPU units (C2 : P2 � P3). In CP1, the
most preferred service provision is (A1, C1, P1) and the least preferred choice
is (A2, C1, P3). Similarly, CP2 and CP3 capture the profit maximization and
risk management strategies respectively (Fig. 1(b)). In CP2, the most preferred
service provision is (P1, C3, A3) and the least preferred service is (P2, C2, A2)
expressing the preference on the higher price. In CP3, the most preferred service
provision is (C3, P1, A3) and the least preferred service provision is (C2, P3, A3).

Consumers may have different qualitative preferences represented in CP-
Nets based on their requirements. In Fig. 1(c), CP4 captures the “availability
sensitive” preferences. Here, consumers do not prefer “low” availability and are
able to pay “high” price for “high” availability and CPU units. CP5 captures
the “price sensitive” preferences where consumers do not prefer “high”-priced
services and are satisfied with“low” CPU and availability if the service price is
“low”. CP6 captures the “CPU sensitive” preferences. Here, consumers do not
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prefer “low” CPU and are able to pay “high” price for “high” CPU units and
availability. CP7 also captures the “availability sensitive” preferences. It decides
CPU and price values based on “low to moderate” availability preferences. In
CP7, the highest preferred service is (A2, C1, P2) and the least preferred service
is (A3, C1, P3).

Fig. 1. (a) Semantic representation of preferred service attributes, (b) A provider’s
qualitative preferences, (c) Consumers’ qualitative preferences

The provider’s business strategies probably change in the long-term period
(Fig. 2(a)). For example, the provider is determined to apply the reputation
building strategy (CP1) in the first year. In the second year, the profit maxi-
mization strategy (CP2) has a 60% chance to be applied, because the number
of consumers may turn out lower than expected. Hence, there is 40% proba-
bility to continue the reputation building strategy (CP1) from the first year.
Similarly, the risk management strategy (CP3) has a 10% chance to be applied
in the third year due to possible hardware failures in the aging infrastructure.
Uncertainties around consumers’ qualitative preferences are also a natural phe-
nomena in a long-term period (Fig. 2(a)). For example, consumer A may fore-
cast a 60% chance of using “availability-sensitive” services (CP4) only for the
three year period. It also predicts that there is a 40% chance to use “price-
sensitive” services (CP4) due to a possible economic recession in business. The
temporal changes in qualitative preferences and their transition probabilities
from one CP-Net to another CP-Net are captured in a probabilistic tempo-
ral CP-Net model denoted as PrTempCP-Net. In Fig. 2(a), the provider uses
{CP1, CP2 and CP3}, the Consumer A uses {CP4, CP5 and CP6}, and Con-
sumer B uses {CP6, CP7 and CP4} to build their PrTempCP-Nets.

Here, all possible compositions in a brute force manner are {A}, {B} and
{A,B}. The aggregated CPU and availability requirements of Consumer A and



Probabilistic Qualitative Preference Matching 261

Time

1st year

2nd year

3rd year

CP6

CP7 CP4

CP7

CP6

CP6

0.6 0.4

0.6 0.2

0.2 0.6

0.3 0.1

CP2

CP1 CP3

CP1

CP1

CP2

0.7 0.3

0.6 0.3

0.1 0.6

0.3 0.1

CP4

CP5 CP6

CP5

CP4

CP4

0.6 0.4

0.6 0.2

0.2 0.6

0.3 0.1

Provider Consumer A Consumer B

Similarlity (P,A)Provider (P) Consumer A Consumer B Similarlity (P,B)

Probable run-time temporal preference sequences

1st: CP1, CP2, CP2

1st: CP1, CP2, CP2

2nd: CP1, CP2, CP1

2nd: CP1, CP2, CP1

1st: CP4, CP4, CP4

2nd: CP4, CP4, CP5
1st: CP4, CP4, CP4

2nd: CP4, CP4, CP5

1st: CP6, CP6, CP6

2nd: CP6, CP6, CP7

1st: CP6, CP6, CP6

2nd: CP6, CP6, CP7

High

Low

High

Low

Almost High

Almost High

Moderate

Moderate

Similarity Index

(a)

(b)

Fig. 2. (a) Probabilistic Temporal CP-Nets (b) Runtime similarity index

B are greater than the provider’s maximum resource limit, we select either
{A} or {B} as the best composition. Each PrTempCP-Net in Fig. 2(a) has 6
sequences of CP-Nets with different probabilities. First, we apply a greedy app-
roach and match the highest probable sequences (Provider: (CP1, CP2, CP2),
Consumer A: (CP4, CP4, CP4), Consumer B: (CP6, CP6, CP6)) in Fig. 2(b).
Here, CP2 is highly matched with CP4 and CP6 as consumers are able to pay
“high” prices for “high” availability and CPU units. However, CP1 is better
matched with CP4 (higher availability in both preferences) than CP6 (CPU-
sensitive preferences). Hence, A is better matched (high) than B (almost high)
for highest probable CP-Net sequences. Next, we compare the provider’s high-
est sequences (CP1, CP2, CP2) with second highest sequences of Consumer A
(CP4, CP4, CP5) and Consumer B (CP6, CP6, CP7). As CP5 does not prefer
higher priced services, but CP2 does prefer the opposite, the similarity mea-
sure between the provider and Consumer A is lower than the similarity measure
between the provider and Consumer B. The similarity measure of the first two
probable sequences are described in Fig. 2(b). Although {A} is best matched
with the highest probable sequences, B has the best averaged similarity in all the
sequences (it never goes low in similarity measure). Hence, the greedy approach
may not be applicable in runtime. If there are m CP-Nets and t time segments in
a PrTempCP-Net, O(mt2) are required to find the optimal composition. It may
not be feasible to compare all the sequences for large m and t values. Hence,
we apply probabilistic statistical sampling and matching techniques to reduce the
search space in runtime.

4 Probabilistic Temporal CP-Net

We require not only an intuitive tool for structuring the probabilistic qualitative
preferences, but also a support for a matching process. We model the long-term
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preferences as probabilistic temporal CP-Net (PrTempCP-Net). PrTempCP-Net
is defined as 6-tuple < V,M,N, I, I0, P (., .) > where:

– V = {X1, ...,Xn} represents a set of functional and non-functional attributes.
Typical functional attributes are CPU (C), Network bandwidth (NB), and
Memory (M), and QoS attributes are Availability (A), Response time (RT ),
Throughput(TP ) and Price(P ).

– M = {CP1, CP2, ...., CPm} is a finite set of CP-Nets. A CP-Net in the inter-
val Ik, CP Ik is a directed graph G over V whose nodes are annotated with
conditional preference tables CPT (Xi) for each Xi ∈ V . Each conditional
preference table CPT (Xi) describes the qualitative preferences over the val-
ues of the variable Xi given every combination of parent values. For exam-
ple, in CP1, the CPT (C) contains {A1, A2} while preferences are made over
{C1, C2} (Fig. 1(b)). A CP-Net generates a total ordered (�) preference rank-
ing over the set of service configurations: o1 � o2 means that a configuration
o1 is equally or more preferred than o2. We use o1 � o2 to denote the fact that
provisioning or consuming service o1 is more preferred than o2 (i.e., o1 � o2
and o2 � o1), while o1 ∼ o2 denotes that the provider’s or consumers’ pref-
erence is indifferent between the configurations o1 and o2 (i.e., o1 � o2 and
o2 � o1).

– N = {Sem Table1, Sem Table2, ...., Sem Tablen} is a finite set of semantic
tables. Sem Tablek represents the kth semantic interpretations over ranges of
the variable Xi. Figure 1(a) is such a semantic table that maps 70–100 units
of CPU as a “high” CPU value.

– I = {I1, I2, ...., It} is the finite set of intervals. Here, the total composition
time, T is divided into t intervals where, T =

∑t
i=1 Ii.

– I0 represents the starting interval in the matching process of a composition
which is defined by the provider or consumer.

– P (CPs, Sem Tables, Is| ´CPs, ´Sem Tables, Ís) is the probability to choose a
particular service preference CPs in interval Is with the corresponding seman-
tic table (Sem Tables) from service preference ´CPs which is applied in inter-
val Ís with the semantic table ´Sem Tables. We assume that all probabilities
are generated before the composition. In Fig. 2(a), the probability to transit
from (CP1, first year) to (CP2, second year) is 0.7.

A probabilistic TempCP-Net produces different deterministic TempCP-Nets
based on I0. A deterministic TempCP-Net is generated by applying transition
probabilities to a CP-Net in an interval. Usually, the matching process is per-
formed from left to right, i.e., first interval to second interval and so on. Here, the
first interval is set as I0. For example, {(CP1, 1st Year), (CP2, 2nd year), (CP2,
3rd year)} is the highest probable deterministic TempCP-Net as the transition
probabilities are 0.7 and 0.7 respectively. The set of consequences o � ó of an
acyclic TempCP-Net constitutes a partial order over the service configuration.
This partial order can be represented by an acyclic directed graph, referred to
as the induced preference graph. The nodes of the induced preference graph cor-
respond to the complete assignments to the variables of the network. There is
an edge from node ó to node o iff the assignments at ó and o differ only in the
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Fig. 3. (a) Induced preference model, (b) k-d tree indexing

value of a single variable X. Given the values assigned by ó and o to Pa(X), the
value assigned by o to X is preferred to the value assigned by ó to X. Figure 3(a)
depicts the induced preference graph of CP1. There is no outgoing edge from
(A1, C1, P1) as it is the most preferred request configuration. Similarly, there
is no incoming edge to (A2, C1, P3) as it is the least preferred configuration. If
n is the number of attributes in the TempCP-net and q is the number of out-
put configurations in an interval, the time complexity for ordering queries in an
interval is O(nq2).

5 TempCP-Net Matching Using k-d Tree Indexing

First, we perform similarity measure between two deterministic TempCP-Nets,
A = {(CP 1

A, Sem Table1A, I1), ...., (CPm
A , Sem Tablem

A , Im)} and B = {(CP 1
B ,

Sem Table1B , I1), ...., (CPm
B , Sem Tablem

B , Im)}. We consider it as a base to
match probabilistic TempCP-Nets. We assume that the temporal lengths of the
CP-Nets are same in each TempCP-Nets. CP-Nets within the same interval are
matched and the similarity measure is averaged over the number of intervals (m)
as follows:

Sim(A,B) =
∑m

i=1 SimA,B(CP i
A, Sem Tablei

A, CP i
B , Sem Tablei

B)
m

(1)

The induced preference graph enables similarity measure between two CP-
Nets constructed with the same semantic table (i.e., SimA,B). Each tuple (s1, ....,
sn) in the induced preference graph of CP i

A is linearly traversed over the induced
preference graph of CP i

B . The similarity measure is then defined as the aver-
aged number of traversals required to search all tuples (time complexity O(n2))
[12]. Here, a lower value indicates a higher similarity index. Considering the
tuple (s1, ...., sn) as a multidimensional vector, we improve the matching process
using the k -d tree [2]. The k -d tree is a binary tree in which every node is a k-
dimensional point (Fig. 3(b)). Every non-leaf node can be thought of as implicitly
generating a splitting hyperplane that divides the space into two parts, known
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as half-spaces. Points on the left and right sides of this hyperplane are rep-
resented by the left and right subtree of that node respectively. We use the
canonical method to construct the k -d tree [2]:

– The selection of splitting planes follows a cycle as the construction algorithm
moves down on the tree. For example, in Fig. 3(b), the root is an “Availability-
aligned” plane, the root’s children both have “CPU-aligned planes”, the root’s
grandchildren have “Price-aligned” planes, the root’s great-grandchildren
have again “Availability-aligned” planes, and so on.

– As all the n points are available from the induced preference graph, we insert
points by selecting the median of the points being put into the subtree, with
respect to their coordinates in the axis being used to create the splitting plane.
This would result in a balanced k -d tree construction in O(n log(n)) times
[2]. Each node in the k -d tree is annotated with its respective preference order
from the induced graph. For example, the root node (A2, C2, P2) is annotated
with the preference ranking 6 in Fig. 3(b).

At first, CP i
A and CP i

B are indexed in corresponding k -d trees. We apply
semantic transformation to one of the k -d trees as follows:

– Semantic Transformation: if Sem Tablei
A �= Sem Tablei

B and the average
value of “high” semantics in Sem Tablei

A is greater than the average value
of “high” semantics in Sem Tablei

B , semantic transformation is applied to
CP i

B . The average value of a semantic “X” in range [a, b] is calculated as
Avg(X) = (a+b)

2 . For all “X” in CP i
B , if Avg(X) is within the range [á, b́] of a

semantic “Y ” in Sem Tablei
A, “X” is replaced with “Y ” in CP i

B . If Avg(X)
is below the “low” semantic in Sem Tablei

A (i.e., no range found), “X” is
replaced with “low” in CP i

B . For example, if “high” availability (A1) of CP i
A

is ranged in [80,100] (avg. 90) and “high” availability (A1) of CP i
B is ranged

in [60,90] (avg. 75), A1 of CP i
B is semantically transformed to “moderate”

A2 as it is ranged in [60,80] in Sem Tablei
A.

We start the matching process SimAB(CP i
A, CP i

B) using the indexed k -d
trees after the semantic transformation. We consider each tuple (s1, ...., sn) of
CP i

B as search points. Starting with the root node of CP i
A, a search point (rank-

ing rb) moves down on the tree recursively, in the same way that it would
if the search point was being inserted. If the search point is matched with a
node, it returns the annotated ranking value, ra. For example, the search point
(A2, C1, P3) of rank 1 in CP i

B returns rank 10 in CP i
A using only 4 comparisons.

A non-matched search point returns L which is a large number indicating the
lowest ranking. The normalized difference between ra and rb indicates a simi-
larity measure (Eq. 2). In the previous example, it indicates a dissimilarity as
the non-negative normalized difference between ra and rb is 0.9. SimAB = 0
indicates the highest match and SimAB = 1 indicates the lowest match, i.e.,
dissimilarity. The time complexity of the k -d tree based similarity measure in
an interval is O(n log(n)).

SimAB(CP i
A, CP i

B) =
abs|ra, rb|

max(ra, rb)
| ∀ ra ∈ CP i

A and rb ∈ CP i
B (2)
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6 Similarity Measure Between PrTempCP-Nets

The similarity measure between probabilistic temporal CP-Nets should be reflec-
tive of a matching between runtime temporal CP-Nets. Let us assume there
are two probabilistic temporal CP-Nets (PA and PB) and two random deter-
ministic or runtime tempCP-Nets, A and B are generated from PA and PB
respectively. If Sim(A,B) = α, then the similarity measure between PrCP-Nets,
Sim(PA,PB) = β indicates that the difference |α − β| has a higher probability
to be less than the standard deviation. Based on the prediction of the possible
runtime CP-Nets, two approaches could be applied for the similarity measure
between PrTempCP-Nets:

– Greedy approach: The most runtime likelihood sequences of CP-Nets are gen-
erated from PA and PB and are matched using Eqs. 1 and 2 in this approach.
We define the following recursive procedure:
1. Base case: O(0) = {φ} denotes the empty sequence at no interval and the

total probability TP (0) = 1.
2. Recursion: O(n) = {CPn, O(n − 1)} denotes the maximum likelihood

sequence where, TP (n) = P (X,CPn−1) × TP (n) is maximum for X =
CPn.

– Brute force approach: It is not guaranteed that the similarity measure with
the greedy approach has a higher probability to be less than the standard
deviation from all possible sequences in PrTempCP-Nets. Hence, the brute
force approach generates all possible sequences of deterministic TempCP-Nets
from PA and PB and perform pair-wise similarity measure using Eqs. 1 and
2. If q is the total number of comparisons, the probabilistic similarity measure
is calculated as the averaged mean value:

Sim(PA,PB) =
∑q

i=1 Simi(A,B)
q

| ∀ A ∈ PA, B ∈ PB (3)

We apply statistical analysis and sampling techniques to reduce the large
number of comparisons in the brute force approach and to approximate the
similarity measure within the standard deviation. The approach consists of two
steps: (a) probabilistic range sampling to compress CP-Nets into fewer numbers,
(b) reducing approximation error by applying deviations in probability distrib-
utions using the K-S test.

6.1 Probabilistic Range Sampling of PrTempCP-Net

Stratified sampling is an effective technique where the solution space embraces
a number of distinct categories, the whole solution space can be organized into
separate “strata” [15]. Each stratum is then sampled as an independent sub-
space, out of which individual elements can be randomly selected [15]. Due to
different probability distributions in a PrTempCP-Net, we can apply stratified
sampling to compress CP-Nets into fewer numbers, where each “starta” is a
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probability range. We create the set of m probability ranges, denoted as RG,
where each interval in a range is 1

m . If m = 5, the set of probability ranges
are {[0, 0.2), [0.2, 0.4), [0.4, 0.6), [0.6, 0.8), [0.8, 1.0)}. For each probability range in
RG, we compress CP-Nets with the same probability interval. Total |RG| num-
bers of deterministic TempCP-nets are created from a PrTempCP-Net. Given a
probability range [x, y], we apply weighted aggregation to compress the CP-Nets.
For each interval I in a PrTempCP-Net, we filter CP-Nets where their probabil-
ities are within the range [x, y]. For example, if the probability range is [0,0.4],
the filtered provider’s PrTempCP-Net is {(CP1, I1), (CP1, I2), (CP1, CP3, I3)}
in Fig. 2. Note that, CP2 is excluded because its probabilities is out of the range
[0,0.4].

We aggregate CP-Nets as a compression mechanism in each interval to
create the deterministic TempCP-Nets. Pairwise aggregation order is applied
for multiple CP-Nets. For example, CP a, CP b, and CP c are aggregated as
((CP a + CP b) + CP c). The aggregation procedure of CP a and CP b along with
associated probabilities P a and P b uses tuple aggregation rules [9] as follows:

1. CP a and CP b are transformed into their corresponding k -d trees where each
node is a tuple (x1, x2, ..., xn).

2. Select tuples from the same level of the k -d trees. For example, both roots of
k -d trees are selected in the first level. If N tuples are selected, we apply the
following weighted summation rule for resource attributes (x) and weighted
maximization rule for QoS attributes (y):

Summation: x̄i =
N∑

i=1

P i × xi,where xi ∈ {C,M,NB,RT, P,Rank} (4)

Maximization: ȳi = max(P i × yi),∀ i ∈ [1, N ] where yi ∈ {A, TP}

3. Starting from the first level, the aggregation is performed in every level and
the corresponding ranking in attached with each tuple.

The m probability ranges are applied in both PA and PB. If P i
mean is the

mean probability of the ith probability range, the similarity measure is calculated
as follows:

Sim(PA,PB) =
∑m2

i=1(P
i
mean × Simi(A,B))

m2
| ∀ A ∈ PA, B ∈ PB (5)

6.2 Reducing Approximation Error in Sim(PA, PB) Using K-S Test

The similarity measure between TempCP-Nets with higher probability ranges
is given higher weight in the computation of total similarity measure between
PrTempCP-Nets in Eq. 5. It is based on the heuristic that the probability distri-
bution of attributes in a higher probability range TempCP-Net is significantly
greater than the probability distribution of attributes in a lower probability range
TempCP-Net. Hence, a change in the probability distribution may not change
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the similarity measure in the runtime. For example, the similarity measure with
the probability range [80,100] is not expected to change to a similarity measure
with the probability range [0,20] in runtime. However, such heuristic may not
be applicable when probability distributions of TempCP-Nets are close to each
other.

We apply Kolmogorov-Smirnov test (K-S test) [4] to find the closeness of
probability distribution of TempCP-Nets which are filtered with probabilistic
range sampling. Given two TempCP-Nets A and B and an attribute x, we first
derive the cumulative probability distribution FA(x) and FB(x). The null hypoth-
esis is that both the preferences are generated by the same distribution. The null
hypothesis is tested in the K-S test with two values Lm,n and Lm,n,α defined
in Eq. 6. Here Lm,n is the maximum difference in the cumulative distribution
functions and Lm,n,α is the critical value from Kolmorogov distribution func-
tions [4]. α is the confidence level to reject the null hypothesis. According to the
recommendation in [4], we reject the null hypothesis (at significance level α) if
Lm,n > Lm,n,α. For example, α = 0.05 gives 95% confidence to reject the null
hypothesis.

Lm,n = maxx|F (x) − G(x)| (6)

Lm,n,α = c(α)

√
m + n

mn

c(α) = the inverse of the Kolmorogov distribution at α

Let us assume, AvgA(α) is the averaged similarity measure in the pairwise
probability distributions between A and rest of the TempCP-Nets. A higher
AvgA(α) indicates that A is highly similar with other distributions and it has
higher chance to change in runtime. Hence, the initial probability which is
attached to A should consider such changing probability to reduce the approxi-
mation error. Hence, we update the Eq. 5 using (α) as follows:

Sim(PA,PB) =

∑m2

i=1
P i

mean×Simi(A,B)
max(AvgA(α),AvgB(α))

m2
| ∀ A ∈ PA, B ∈ PB (7)

7 Experiments and Results

As our focus is not on the optimization of IaaS composition, the optimal compo-
sition is selected by the brute-force combinatorial optimization. It generates all
combinations of consumers’ PrTempCP-Nets along with the brute-force similar-
ity measure. The brute-force similarity measure compares all possible TempCP-
Nets with the provider’s PrTempCP-Net. We compare the efficiency of the pro-
posed similarity measure with the greedy approach to find the optimal compo-
sition in a fewer number of comparisons between TempCP-Nets. All the experi-
ments are conducted on computers with Intel Core i7 CPU (2.13 GHz and 4GB
RAM). Java is used to implement the algorithms.
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Fig. 4. (a) Accuracy in different m values, (b) Accuracy in scalable intervals, (c) Impor-
tance of K-S tests, (d) Accuracy in different α values

7.1 Data Description

We create the PrTempCP-Nets using Google Cluster resource utilization [11],
real world cloud QoS performance [6], and synthetic price. Google Cluster data
include CPU and Memory utilization and allocation time series of 70 jobs over
a 1-month period. The real world QoS data [6] include two time series (i.e.,
response time and throughput) for 100 cloud services over a 6-month period. We
randomly pick 70 Google Cluster jobs and make one-to-one mapping with the
100 sets of QoS data. A 6-month request is extended to a 12-month request using
ARIMA model [17] with a confidence score. We create 50 such long-term requests
from one Google Cluster job with random confidence scores in the range (0, 100].
Each TempCP-Net has 12 monthly intervals and each interval contains different
CP-Nets where dependencies among the attributes are randomly generated from
the same segment of 50 long-term requests. The probabilities in the transition
matrix are mapped with the confidence scores which are used to generate the
long-term preferences. The generated PrTempCP-Nets are separated into 10
groups (G1 to G10). In a group, a random PrTempCP-Net is considered as the
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provider’s business strategy and the rest 6 PrTempCP-Nets are considered as
consumers’ preferences. For the K-S test, we set α = 0.05.

7.2 Efficiency of the Proposed Probabilistic Range Sampling

We consider the brute force similarity measure as our baseline. Let us assume,
s optimal compositions are returned from m groups by the brute force app-
roach. However, r compositions are optimal from the m returned compositions
using greedy or the proposed approach. Hence, we compute the accuracy of a
similarity measure as r

s in the range [0,1]. Here, 1 means the perfect accuracy.
Figure 4(a) depicts the accuracy of the proposed probabilistic sampling with
different numbers of probability ranges (m). We find that the proposed app-
roach is more accurate when higher numbers of probability ranges are used to
sample. There are no significant improvement in accuracy after m = 20. The
greedy approach performs similar to the proposed approach when the number
of CP-Nets is lower in the PrTempCP-Net. We find that the proposed approach
is significantly accurate than the greedy approach for higher numbers of CP-
Nets in Fig. 4(a). Figure 4(b) depicts the scalablity of the proposed approach in
long-term compositions. We find that the accuracy is relatively lower when the
number of intervals is increased. The proposed approach does not perform better
than the greedy approach when the number of intervals are set to 50. If each
interval represents a month, the proposed approach is applicable in a 4-year long
composition which is acceptable in the real world. Figure 4(c) depicts the impor-
tance of reducing approximation error using K-S tests. We find that K-S tests
are unnecessary when the number of CP-Nets is lower in an interval. However, it
improves the accuracy significantly for a higher number of CP-Nets. Figure 4(d)
depicts the importance of appropriate significance level (α) in K-S tests in the
proposed similarity measure. We find that α = 0.5, i.e., 95% confidence interval
is appropriate as it maximizes the similarity measures than other values.
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Fig. 5. (a) Time complexity, (b) Significance of k -d tree indexing
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7.3 Time Complexity Analysis

Although the brute force approach is more accurate, it is not appreciable in
runtime due to its exponential nature (Fig. 5(a)). We find that the greedy app-
roach is the most time efficient which is linearly correlated with the number of
CP-Nets in an interval. However, the time complexity of proposed approach is
quadratic and related to the value of m. For m = 20, the proposed similarity
measure takes around 75% less time than the brute force approach. Figure 5(b)
depicts the importance of k-d tree indexing. For a large number of CP-Nets in
TempCP-nets, k -d tree reduces the number of comparisons by the factor log(n)

n .

8 Conclusion

We represent the long-term qualitative preferences using a novel probabilistic
temporal CP-Nets in the IaaS composition. We propose sampling and probabilis-
tic distribution matching in the similarity measure between PrTempCP-Nets.
Although the greedy approach is the most time-efficient, the proposed approach
is significantly accurate than the greedy approach and has an acceptable run-
time efficiency. In the future work, we explore an efficient optimization process
in relation with PrTempCP-Nets.
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