
An Approach to Modeling and Discovering
Event Correlation for Service Collaboration

Meiling Zhu1,2,3(&), Chen Liu2,3, Jianwu Wang4,
Shen Su2,3, and Yanbo Han2,3

1 School of Computer Science and Technology,
Tianjin University, Tianjin 300350, China

meilingzhu2006@126.com
2 Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream

Data, North China University of Technology, Beijing 100144, China
{liuchen,sushen,hanyanbo}@ncut.edu.cn

3 Cloud Computing Research Center, North China University of Technology,
Beijing 100144, China

4 Department of Information Systems, University of Maryland,
Baltimore County, Baltimore, MD 21250, USA

jianwu@umbc.edu

Abstract. In an IoT (Internet of Things) environment, event correlation
becomes more complex as events usually span over many interrelated sensors.
This paper refines event correlations in an IoT environment. We extend our
previous service hyperlink model to encapsulate such event correlations. To
effectively discover service hyperlinks, we transform the event correlation dis-
covery problem into a frequent sequence mining problem and propose
CorFinder algorithm. Moreover, we apply our approach to improve anomaly
warning in a power plant instead of simulation. Besides the application, we have
made extensive experiments to verify the effectiveness of our approach.

Keywords: IoT service � Service hyperlink � Sensor event � Event stream �
Event correlation

1 Introduction

Nowadays, sensors are widely deployed in industrial environments to monitor devices’
status in real-time. A sensor continuously generates sensor events and a series of sensor
events are correlated with each other. Such event correlations are modeled to enable
application-level sensor collaboration. We designed an event log based on a stream
data processing infrastructure [1, 2]. However, the correlations can be dynamically
interwoven, and data-driven analysis would be of help.

Event correlation discovery problem is concerned about how to identify relation-
ships among sensor events. Similar research has also received notable attention for the
discovery, monitoring and analysis of processes. In those studies, relationships among
sensor events refer to semantic relationship herein [3–7].

© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 191–205, 2017.
https://doi.org/10.1007/978-3-319-69035-3_13

In our previous work [1, 2], we studied a new kind of relationship among sensor
events, called statistical correlation. We used Pearson coefficient to measure such
relationship. Specifically, we tried to map physical sensors into a software-defined
abstraction, called proactive data service. A proactive data service takes event streams
derived from physical sensors or other services as inputs and transforms them into new
streams based on user-defined operations. In [2], we also proposed a new abstraction,
called service hyperlink, to encapsulate correlations between streams received and
outputted by two data services. With service hyperlinks, a service can dynamically
route an event to other services at runtime. In this way, the knowledge segment about
how these sensors collaborate with each other can be depicted at the software layer.

In this paper, we further refine event correlation on when and how a type of event
causes another type. Such event correlation can be easily transformed into a relation-
ship between two IoT services. The main contributions include: (1) We propose an
algorithm, called CorFinder, to discover such event correlations in a log of sensor
events. To reach this goal, we update classic frequent sequence mining algorithm.
(2) In a real application, we apply our approach to make anomaly warnings in a power
plant based on discovered event correlations. We elaborate on how our approach works
and what the differences with the traditional approaches are. (3) Furthermore, a lot of
experiments are done to show the effectiveness of our approach based on a dataset from
a power plant.

2 Problem Analysis

Figure 1 shows a real case of anomaly detection in a power plant. Fan stall is a major
failure for the important equipment – primary air fan (PAF) in a power plant. It will
cause severe damages to the whole air and flue system. Currently, detecting such
equipment failures in a power plant mainly depends on the observation and judgment
of envelope range. They detect anomalies through various phenomena, like the sharp
descending of exit air pressure, electricity, and air volume in a PAF. However, when
such phenomena are observed, an anomaly has already occurred and the loss is
inevitable.

From a systematic view, a severe failure is often caused by some trivial anomalies
step by step. The paths of anomaly propagation are usually hidden behind the corre-
lations of sensor events in an IoT system. Figure 1 shows several possible event
propagation paths lead to the fan stall failure. We can observe that each propagation
path is formed of several correlated sensors.

For example, a decrease of valve degree (Valve Degree Descending Event) will
reduce the inlet air header pressure (Inlet Air Header Pressure Descending Event). To
maintain the output of the boiler, valve degree (Valve Degree Ascending Event) is
automatically increased to prevent inlet air header pressure event from decreasing in
this case. Following its rise, air pressure (Air Degree Ascending Event) increases and
will lead to the growth of electricity and exit air pressure. Unfortunately, excess air
pressure will cause a fan stall, which manifests as a sharp drop of electricity (Electricity
Descending Event) and exit air pressure (Exit Air Pressure Descending Event).

192 M. Zhu et al.

However, we find such correlations are not always available. For example, con-
sidering exit air pressure sensor and inlet air header pressure sensor, their correlations
only exist when the value of exit air pressure sensor exceeds 5. In this situation, the
value of inlet air header pressure sensor usually will keep the accordance with exit air
pressure sensor after about 3 min. Lots of similar cases can be found.

The above case shows, to make warnings in advance, we need to clearly
under-stand the way how an event transforms itself and propagates among different
devices. An effective way is to mine the event correlations. If we find such correlations,
we can merge these correlations to form an event propagation path as Fig. 1 shows.

3 Definitions

A sensor event e consists of four elements: a generation timestamp, a unique identifier,
a sensor id and a value. A sensor event log records events from all sensors in an IoT
system. We formulate a sensor event log as follows.

Definition 1 (Sensor Event log): given a set of sensors S ¼ s1; s2; . . .; smf g, a sensor
event log is a set of sensor events L ¼ e1; e2; . . .; enf g, where ei i ¼ 1; ::; nð Þ is a sensor
event generated from a sensor sj 2 S.

Fig. 1. Partial possible cases of fan stall in the primary air fan: a real case.

An Approach to Modeling and Discovering Event Correlation 193

For example, a sample of sensor event log is L = {
2015-11-15 02:24:20, 118967, A110(Valve Degree), 0.359347557;
2015-11-15 02:24:20, 118968, A763(Coal Consumption), 36.54394756;
2015-11-15 02:24:20, 118969, A945(Electricity), 123.4148096;
2015-11-15 02:24:20, 118970, A658(Vibration), 97.32905983;
2015-11-15 02:24:21, 118967, A110(Valve Degree), 0.359347557; …
}.
From a sensor event log L, an event sequence is a set of events

from the same sensor in ascending order by their timestamps. The correlation between
event sequences is defined as follows.

Definition 2 (Event Correlation): Given two event sequences , let
be the event correlation between and , where is the source, is

the target, Dt is the time delayed to , and conf is a measure of relationship between
and .
The left part of Fig. 2 elaborates an example of event correlation. In this picture, the

red dashes line marks out and respectively. Dt is 4 s.

4 Discovery of Event Correlation

4.1 The Rationales

The main idea is to transform the event correlation discovery into a frequent sequence
mining problem. To do this, as the right part of Fig. 2 shows, a numerical event
sequence from a sensor is firstly transformed into a symbol sequence [8]. Essentially,
symbolization is a coarse-grained description since each symbol corresponds to a
segment of the original sequence. In this manner, if a sequence correlates with another
one, there probably exists a frequent sequence between their symbolized sequences [8].
It inspires us to use the frequent sequence to measure event correlation. In another
word, if two symbolized sequences and have a long enough frequent sequence,
there is a correlation between them.

25

50

75

2:24:20 2:24:40 2:25:00 2:25:20 2:25:40 2:26:00 2:26:20 2:26:40

Coal Consump on

0.3

0.55

0.8

2:24:20 2:24:40 2:25:00 2:25:20 2:25:40 2:26:00 2:26:20 2:26:40

Valve Degree

Δt=4s

:target

:source

25

35

45

2:24:20 2:24:40 2:25:00 2:25:20 2:25:40 2:26:00 2:26:20 2:26:40

Coal Consump on

0.3
0.32
0.34
0.36
0.38
0.4

2:24:20 2:24:40 2:25:00 2:25:20 2:25:40 2:26:00 2:26:20 2:26:40

Valve Degree
l
n n n n

l
g
f f f f f g f

c
b b bb b c c c

h
i
l
n
n n n

i
l

n o n n
m

g ff f g f h g
c b bb b b c c c

h i
l
n o n

Fig. 2. An example of event correlation.

194 M. Zhu et al.

One challenge is how to identify the time delay between two correlated event
sequences shown in Fig. 2. It actually reflects how long that a sensor will be affected by
the value changes of its correlated sensor. However, traditional frequency sequence
mining algorithm cannot directly solve such problem. Traditional algorithms only
focused on the occurrence frequency of a sequence in a sequence set [9, 10]. Hence, we
try to design an algorithm which can discover a frequent sequence, each element of
which occurs in a sequence set within a short time period, i.e., time delay Dt in
Definition 2. Another challenge is how to determine the target and source by a frequent
sequence. If each element of a frequent sequence occurs in same order in the sequence
set, such frequent sequence can identify the target and source. Taking the right picture
in Fig. 2 as an example, each element occurs a little earlier (no more than 4 s) in valve
degree sequence than in coal consumption sequence. It indicates that valve degree
sequence is the source, and coal consumption sequence is the target. In a word, if two
symbol sequences si and sj have a long-enough frequent sequence, each element of
which occurs in si and sj in same order within the time period Dt, the original sequences
of si and sj have an event correlation . In this way, conf can be
computed as the ratio of the frequent sequence length to the length of .

Based on the above discussion, we propose an algorithm called CorFinder to
discover event correlations. Firstly, it uses a classic algorithm, called SAX [8], to
symbolize each event sequence in a sensor event log. Secondly, it mines the above
frequent sequences. Notably, we take gap constraint [9] into consideration. A gap
constraint c means any two adjacent elements in a frequent sequence skip no more than
the predefined consecutive elements in any sequence containing the frequent sequence.
A gap constraint can identify uncorrelated segments from correlated sequences.

Symbolization. In this paper, the classic symbolic representation algorithm Symbolic
Aggregate approXimation (SAX) [8] is used to preprocess our input numerical event
sequences. SAX algorithm allows an event sequence of length n to be reduced to a
symbol sequence of length m m � nð Þ composed of k different symbols. We will attach
a timestamp to each symbol. The sequences in Table 1 are the symbolization of four
event sequences from a sensor event log in a power plant via SAX algorithm with
k ¼ 15. The first two event sequences are shown in Fig. 2.

Frequent Sequence Mining. Before introducing our algorithm, we list some related
concepts about frequent sequence mining. A sequence in a sequence set D is associated

Table 1. A sample of a symbolized event sequence set (running example).

An Approach to Modeling and Discovering Event Correlation 195

with an identifier, called a SID. A support of a sequence is the number contained in
D. A sequence becomes frequent if its support exceeds a pre-specified minimum
support threshold in D. A frequent sequence with length l is called l-frequent sequence.
It becomes closed if there is no super-sequence of it with the same support in D. A
projection database of sequence in L is defined as (b is the
minimum prefix of η containing).

Projection-based algorithms are a classic category of traditional algorithms in
frequent sequence mining [10]. They adopt a divide-and-conquer strategy to discover
frequent sequences by building projection database. These algorithms firstly generate
1-frequent sequences F1, where F1 ¼ s1 : sup1; s2 : sup2; . . .; sn : supnf g, si is a
1-frequent sequence and supi is its support. This step is followed by the construction of
projection database for each 1-frequent sequence. In each projection database above,
they generate 1-frequent sequences F2 and projection database of each element in F2.
The process is repeated until there is no 1-frequent sequence. We propose two data
structures as follows to update the classic algorithms.

Loose k;Dt; lð Þ-frequent sequence and k-projection database. We propose several
concepts in this section. Traditionally, a frequent sequence with length 1 is called
1-frequent sequence. In this paper, a 1-frequent sequence occurring in time period Dt is
called Dt; 1ð Þ-frequent sequence. The concept is extended as loose Dt; 1ð Þ-frequent
sequence s0 : SID1; t1ð Þ; SID2; t2ð Þ; . . .; SIDm; tmð Þh i, where s0 occurs in SIDi at ti and
tiþ 1 � ti �Dt. Generalize loose Dt; 1ð Þ-frequent sequence into length l as follows.
Given a set of Dt; 1ð Þ-frequent sequences s01; s

0
2; . . .; s

0
l for id-list

SID1; SID2; . . .; SIDmh i, if s01; s
0
2; . . .; s

0
l orderly occurs in SIDj j ¼ 1; 2; . . .;mð Þ,

is a loose Dt; lð Þ-frequent sequence for the id-list. A loose Dt; lð Þ-
frequent sequence becomes a loose k;Dt; lð Þ-frequent sequence if it satisfies gap
constraint k, i.e., s0i and s0iþ 1 i ¼ 1; 2; . . .; l� 1ð Þ skips no more than k consecutive
elements in SIDj j ¼ 1; 2; . . .;mð Þ:

According to previous analysis, loose k;Dt; lð Þ-frequent sequences is the formu-
lation of the frequent sequences our algorithm focuses on. It can identify our
event correlations. To discover loose k;Dt; lð Þ-frequent sequences, we propose
c-projection database. c-projection database of sequence is denoted as

(b is the minimum prefix of η containing, a is
the prefix of h with length c + 1).

Some examples of the above concepts are shown in Table 1. Let Dt = 5 s and
c = 2. l: 〈(VD, t1), (CC, t2)〉 is a Dt; 1ð Þ-frequent sequence (grey squares in Table 1); c:
〈(E, t14), (VD, t15), (CC, t16)〉 is a loose Dt; 1ð Þ-frequent sequence (blue squares in
Table 1), and {(VD, 〈(b,t16), (b,t17)〉), (CC,〈(b,t17), (b,t18)〉), (E,〈(e,t15), (c,t16)〉)} is its
c-projection database (red squares in Table 1); 〈c, h〉: 〈(VD, 〈t23, t24〉), (CC, 〈t24, t25〉)〉
is a loose (c, Dt, 2)-frequent sequence (green squares in Table 1); 〈c, i〉: 〈(E,〈t22, t26〉),
(V,〈t22,t26〉)〉 is a loose Dt; 2ð Þ-frequent sequence but not (c, Dt, 2) one (purple squares
in Table 1).

196 M. Zhu et al.

4.2 The CorFinder Algorithm

In this paper, we improve the classic projection-based algorithms and propose the
CorFinder algorithm to solve our problem. Traditional 1-frequent sequence s:sup does
not consider occurrence time of s. Consequently, we propose the concept of Dt; 1ð Þ-
frequent sequence. However, any adjacent Dt; 1ð Þ-frequent sequences for same
sequence s are overlapped. It will increase storage cost and lead to repeated counting.
For instance, adjacent Dt; 1ð Þ-frequent sequences for c, c:〈(E, t14), (VD, t15)〉 and c:
〈(VD, t15), (CC, t16)〉, are overlapped in (VD, t15). Therefore we extend Dt; 1ð Þ-frequent
sequence into loose Dt; 1ð Þ-frequent sequence. The following Theorem 1 lays the
foundation of the completeness of our algorithm.

Theorem 1. Each Dt; 1ð Þ-frequent sequence in a given sequence set D is contained by
a loose Dt; 1ð Þ-frequent sequence in D. Versa, any element of each loose Dt; 1ð Þ-
frequent sequence in D is contained by a Dt; 1ð Þ-frequent sequence.
Proof. We prove the theorem by reduction to absurdity. Let D be a sequence set, and
there is a Dt; 1ð Þ-frequent sequence s : SID1; t1ð Þ; SID2; t2ð Þ; . . .; SIDk; tkð Þh i in
D. Assume that there is no loose Dt; 1ð Þ-frequent sequence containing s. Thus, any
SIDi 2 s i\kð Þ, tiþ 1 � ti [Dt. Obviously, tk � t1 [k � 1ð Þ � Dt. Therefore s :
SID1; t1ð Þ; SID2; t2ð Þ; . . .; SIDk; tkð Þh i is not a Dt; 1ð Þ-frequent sequence. It is a con-

tradiction in the assumption.
On the other hand, assume that there is an element SIDi; tið Þ of a loose Dt; 1ð Þ-

frequent sequence s0 : SID1; t1ð Þ; SID2; t2ð Þ; . . .; SIDm; tmð Þh i, and SIDi; tið Þ is contained
by none of Dt; 1ð Þ-frequent sequences in D. Let SIDj be the nearest element to SIDi

under SIDi 6¼ SIDj. Since SIDi; tið Þ is not contained by any Dt; 1ð Þ-frequent sequence,
ti � tj
�
�

�
�[Dt. It is in contradiction with the assumption that s0 is a loose Dt; 1ð Þ-

frequent sequence. So far, Theorem 1 is proved.
Loose Dt; lð Þ-frequent sequence can tell the target and source in an event correlation

while considering time delay Dt between the target and source. It is a measure of our
event correlation. Our CorFinder algorithm aims at discovering loose k;Dt; lð Þ-fre-
quent sequences for finding event correlations. The Theorem 2 inspires us to discover a
loose k;Dt; lð Þ-frequent sequence in c-projection database of its l-1 prefix.

Theorem 2. Any loose k;Dt; lð Þ-frequent sequence can be discovered in
the id-lists of and s0l, where is the prefix of with length l-1 and s0l is a loose
Dt; 1ð Þ-frequent sequence in c-projection database of .

Proof. Obviously, is a loose k;Dt; l� 1ð Þ-frequent sequence. Let be the c-
projection database of . Because is a loose k;Dt; lð Þ-frequent sequence, assume
its id-list is SID1; SID2; . . .; SIDmh i, we get and s0l must
be a loose Dt; 1ð Þ-frequent sequence for the id-list. Therefore, s0l is a loose Dt; 1ð Þ-
frequent sequence in . Theorem 2 is proved.

Theorem 2 indicates that we can discover a loose k;Dt; lð Þ-frequent sequence
with l-1 prefix by the following steps. (1) Generate and all loose Dt; 1ð Þ-
frequent sequence in . (2) For each loose Dt; 1ð Þ-frequent sequence s0l, discover

An Approach to Modeling and Discovering Event Correlation 197

frequent sequences in id-lists of and s0l. (3) Generate loose k;Dt; lð Þ-frequent
sequences in the frequent sequences.

Consequently, the recursion of generating c-projection databases and loose Dt; 1ð Þ-
frequent sequences can discover all loose k;Dt; lð Þ-frequent sequences. Finally,
CorFinder algorithm can discover event correlations by these loose k;Dt; lð Þ-frequent
sequences.

5 Application of Event Correlation for Anomaly Warning

5.1 The Service Collaboration Framework

Our previous work proposed an IoT service model to encapsulate sensor events into a
service [1, 2]. It can serve as the fundamental unit to form an IoT application. When
building a service, a user customizes its functionality by customizing the input event
sensors as well as operations. Each service processes its input sensor events by pre-
defined operations and generates higher-level events in form of stream. A created
service can be encapsulated into a Restful-like API so that other services or applica-
tions can use it conveniently and simply. Moreover, our service has an important
component, which is called service hyperlink. Hyperlink is responsible for indicating
target services for an outputted event. In this way, our services can run proactively to

Fig. 3. The framework of our approach to correlating and collaborating with sensor events.

198 M. Zhu et al.

correlate and collaborate with sensor events to serve IoT applications. Figure 3 presents
the framework of our approach.

Different from traditional service models and frameworks with the “request-and-
response” model, ours works in a more automatic and real-time way with the ‘stimuli-
and-response’ pattern while maintaining the common data service capabilities. To
reach this goal, service hyperlink is the key point. A service hyperlink enables
higher-level events outputted from a service (source service) to be routed to another
one (target service). After a higher-level event is routed to a target service, the target
service will be stimulated and autonomously respond to the event.

Our previous work encapsulated correlations among input sensor events as service
hyperlinks and used Pearson coefficient to weigh the correlation degree. However, it is
hard to tell the source and the target between two correlated services. To consummate
the previous work, we encapsulate event correlation in this paper as service hyperlinks.
With hyperlinks, a service can route an event to another service involving the target
sequence of encapsulated event correlation.

5.2 The Process to Make Anomaly Warnings in a Power Plant

Service Customization. Making early warnings in a power plant is a typical case for
our framework. As the beginning of the paper elaborates, we make early warnings by
event propagation paths, e.g., a valve degree ascending event propagates along the way
as valve degree ! coal consumption ! electricity ! vibration and finally leads to a
fan stall in Fig. 1. To reach this goal, we create services inputting sensor events from
different sensors. Each service will detect and output trivial anomaly events, such as a
valve degree ascending event. How to define and detect the trivial anomaly events
precisely is the first problem in this case. It can be solved in two ways. On the one
hand, such events can be defined based on business knowledge. On the other hand,
those events can be identified by clustering techniques [11]. According to the defined
events, we customize operations in each service so that a service can detect these trivial
anomaly events autonomously.

Fig. 4. The example of valve degree service.

An Approach to Modeling and Discovering Event Correlation 199

For example, we build a valve degree data service as Fig. 4 presents. In this service, we
select valve degree sensor events as its inputs. To detect a valve degree ascending
event, we customize subtraction as one of its operations. The subtracting operation will
subtract the value of a sensor event from that of the previous one. We perform K-means
algorithm on a real data set within 6 months in a power plant and conclude that valve
degree difference (short for diff) exceeding 14.97% is a trivial anomaly event. Thus, a
filtering operation diff > 14.97% is selected to detect valve degree ascending events.
Besides, inspection man concludes that the valve degree suddenly opening to all is a
trivial anomaly event. According to the business knowledge, we select another filtering
operation: diff > 0 ^ valve degree = 100%. Valve degree and valve degree difference is
the key attributes (KPIs) to be exposed with REST-like APIs. Based on the Fig. 2, the
hyperlink of this service indicates that coal consumption service is its target service.

Event Propagation. A service hyperlink encapsulates an event correlation
. An outputted event e related to sensor of will be routed along the

hyperlink to its target service. The target service keeps detecting trivial anomaly events.
If it detects e’ with respect to sensor of in time period Dt after e arrives, the target
service will record a composite event by appending e to trivial anomaly event e’.
Instead of e’, the composite event will be routed along the hyperlink related to e’.
A composite event records the event propagation path. Figure 5 presents four corre-
lated services. The composite event in vibration service indicates an event propagation
path as valve degree ascending event ! coal consumption ascending event ! elec-
tricity ascending event ! vibration ascending event.

Anomaly Warning. So far, we can get the propagation paths of trivial anomaly events
in each service. But it is still insufficient to make early warnings since the trivial
anomaly events are not equal to equipment anomalies. Practically, an inspector

Fig. 5. An example of event propagation path.

200 M. Zhu et al.

performs scheduled maintenances and records equipment anomalies in maintenance
records. A maintenance record r = 〈rid, anomaly_desc, rec_time, anomaly_obj〉 con-
sists of record id, anomaly description, recorded time, and anomaly object. For
example, there is a maintenance record r = 〈118977, vibration increases - fan stall,
2015/10/12 05:12:00, vibration in #2 primary air fan in #3 boiler〉. According to
recorded time and anomaly description in a maintenance record, we can infer causality
between event propagation paths and anomalies. For instance, an event propagation
path in Fig. 5 often occurred before a fan stall anomaly. Thus we can infer causality as
valve degree ascending event ! coal consumption ascending event ! electricity
ascending event ! vibration ascending event) fan stall. Once such a propagation
path occurs in the runtime, a warning of a fan stall can be made. Consequently, each
service is initialized with an operation for comparing runtime event propagation paths
with historical ones. This operation takes composite events as input, and outputs
warnings to users or other applications. The process to make anomaly warnings in a
service after receiving a sensor event is shown in Fig. 6.

6 Experiments

6.1 Experiment Setup

Datasets: The following experiments use a sensor event log from a power plant. The
log contains sensor events from 2015-07-26 23:58:30 to 2016-08-17 07:55:00. Totally
480 sensors are involved and each sensor generates one event per second. The log is
divided into two sets. The training set is from 2015-07-26 23:58:30 to 2016-01-31
23:59:55. This set is responsible for discovering event correlations. The testing set is
from 2016-02-01 00:00:00 to 2016-08-17 07:55:00. It is used for making early
warnings by our approach. In this set, events from same source are sent to our services
as a stream. The time interval between two adjacent events is in accordance with real

Fig. 6. Process of responding stimuli autonomously and proactively in a service.

An Approach to Modeling and Discovering Event Correlation 201

intervals when they were generated. Besides, we use maintenance records of this plant
power from 2015-07-26 23:58:30 to 2016-01-31 23:59:55 to verify the accuracy of our
approach.

Environments: The experiments are done on a PC with four Intel Core i5-2400 CPUs
3.10 GHz and 4.00 GB RAM. The operating system is Windows 7 Ultimate. All the
algorithms are implemented in Java with JDK 1.8.0.

6.2 Experiment Results

To verify the effectiveness of our approach, firstly, we create services according to
physical sensors. We learn business knowledge from a power plant during the creation.
Besides, sensors related to one attribute of devices’ status are inputted into one service,
such as events from bearing temperature 1, 2, 3 and 4 sensor in primary air fan are the
inputs of bearing temperature service. We created 108 services from all 440 sensors.
Secondly, we input the training set into CorFinder algorithm to discover service
hyperlinks. Next, on top of business knowledge and K-means clustering algorithm, we
customize operations in our services to detect trivial anomaly events. After this, we sent
testing set into our services as event streams. Once a service makes an early warning of
an anomaly, it will print the message in the console. We compare the warnings with
maintenance records to verify the accuracy of our approach. To measure the accuracy,
we use the following indicators. Precision is the number of correct results divided by
the number of all results. Recall is the number of correct results divided by the number
of results that should have been returned. Notably, in this paper, our approach makes
early warnings of the anomalies occurred both in training set and testing set.

To avoid loss, it is better to make early warnings of anomalies before they occur.
To achieve this goal, we compute the precision and recall of our approach under
different lengths of the trivial anomaly event propagation path. In the experiments, we
set the length from 5 to 20 and draw the results as Figs. 7 and 8.

0

0.2

0.4

0.6

0.8

1

5 10 15 20

pr
ec

is
io

n

length of event propaga on path

Fig. 7. The precision of our approach.

202 M. Zhu et al.

As Fig. 7 shows, the precision of our approach increases with the growth of
propagation path’s length. The reason is that longer propagation path can specify an
anomaly more clearly. When the length is short, the event has multiple possible
propagation paths so that it may evolve into different anomalies. Consequently, the
shorter the length of event propagation path is, the lower the precision of our approach
is. Meanwhile, shorter path needs less time to make a warning. It indicates that higher
precision needs more time. In this experiment, our approach makes warnings of
anomalies before the complete event propagation path is formed. It is the main reason
that the precision keeps below 100%.

On the other hand, as the Fig. 8 shows, our approach’s recall decreases with the rise
of propagation path’s length. Different from precision, our recall can reach 91.67%
when the length is 5. It is because shorter event propagation path can specify more
possibilities of anomalies, including those should have been made warnings. Besides,
we analyze the details of the results and find that, regardless of the path’s length, there
are several anomalies our approach cannot discover. The reason is their propagation
path is not completely covered by the paths in training set. Our approach cannot search
the corresponding anomaly in training set. Fortunately, the anomaly occurs frequently
in testing set, and we find that paths of the undiscovered anomalies can be covered by
testing set. It inspires us to solve this problem by updating training set periodically.

Our experiment results show that we can make warnings of anomalies before they
happen for 5 days ahead at most and 39.8 h ahead averagely, while the precision and
recall exceeding 80%.

7 Related Works

Service correlation has attracted much attention in the field of service computing. Dong
et al. tried to capture the temporal dependencies based on the amounts of calls to
different services [12]. Hashmi et al. proposed a framework for web service negotiation
management based on dependency modeling for different QoS parameters among
multiple services [13]. Wang et al. considered that a dependency is a relation between

0

0.2

0.4

0.6

0.8

1

5 10 15 20

re
ca

ll

length of event propaga on path

Fig. 8. The recall of our approach.

An Approach to Modeling and Discovering Event Correlation 203

services wherein a change to one of the services implies a potential change to the others
[14]. They utilized a service dependency matrix to solve the service replacement
problem.

However, most of the existing work only considers input/output dependency,
pre/post condition dependency, correlations among services and so on. Neither of them
takes the dependency of the involved data, which can be regarded as events. Hence,
existing studies of event correlation is also the foundation of our work.

Reguieg et al. regarded event correlation as correlation condition, which is a
predicate over the attributes of events that can verify which sets of events belong to the
same instance of a process [3]. It presented a framework and techniques with multi-pass
algorithms to discover correlation conditions in process discovery and analysis tasks
over big event datasets using MapReduce framework. It guarantees the efficiency and
scalability by partitioning, replication and optimizing the I/O cost. Motahari-Nezhad
et al. focused on event correlations in service-based processes [4]. It proposed the
notion of correlation condition mentioned above. It developed an algorithm to discover
event correlation (semi-) automatically from service interaction logs. Liu et al. pre-
sented an event correlation service for distributed middleware-based applications [5]. It
enables complex event properties and dependencies to be explicitly expressed in cor-
relation rules. Remarkably, these correlation rules can be accessed and updated at
runtime. These event correlation studies provide foundations for our study. However,
they do not consider the event correlation in an IoT environment.

Recently, some researchers focus on event dependencies. Song et al. mined activity
dependencies (i.e., control dependency and data dependency) to discover process
instances when event logs cannot meet the completeness criteria [6]. In this paper, the
control dependency indicates the execution order and the data dependency indicates the
input/output dependency in service dependency. A dependency graph is utilized to
mine process instances. In fact, the authors do not consider the dependency among
events. Plantevit et al. presented a new approach to mine temporal dependencies
between streams of interval-based events. [7]. Two events have a temporal dependency
if the intervals of one are repeatedly followed by the appearance of the intervals of the
other, in a certain time delay.

8 Conclusion

In this paper, we elaborate service hyperlink by encapsulating event correlations in an
IoT environment to consummate our previous work. We transform service hyperlink
discovery into frequent sequence mining problem and propose the CorFinder algo-
rithm. Moreover, we apply our approach to make anomaly warnings in a power plant.
Experiments show that, our approach can make warning of anomalies before they
happen for 5 days ahead at most, and 39.8 h ahead in average while the precision and
recall exceed 80%.

204 M. Zhu et al.

Acknowledgement. Funding: This work was supported by National Natural Science Founda-
tion of China (No. 61672042), Models and Methodology of Data Services Facilitating Dynamic
Correlation of Big Stream Data; Beijing Natural Science Foundation (No. 4172018), Building
Stream Data Services for Spatio-Temporal Pattern Discovery in Cloud Computing Environment;
The Program for Youth Backbone Individual, supported by Beijing Municipal Party Committee
Organization Department, Research of Instant Fusion of Multi-Source and Large-scale Sensor
Data.

References

1. Han, Y., Wang, G., Yu, J., Liu, C., Zhang, Z., Zhu, M.: A service-based approach to traffic
sensor data integration and analysis to support community-wide green commute in china.
IEEE Trans. Intell. Transp. Syst. 17(9), 2648–2657 (2016)

2. Han, Y., Liu, C., Su, S., Zhu, M., Zhang, Z.: A proactive service model facilitating stream
data fusion and correlation. Int. J. Web Serv. Res. 14(3), 1–16 (2017)

3. Reguieg, H., Benatallah, B., Nezhad, H.R.M., Toumani, F.: Event correlation analytics:
scaling process mining using mapreduce-aware event correlation discovery techniques. IEEE
Trans. Serv. Comput. 8(6), 847–860 (2015)

4. Motahari-Nezhad, H.R., Saint-Paul, R., Casati, F., Benatallah, B.: Event correlation for
process discovery from web service interaction logs. VLDB J. 20(3), 417–444 (2011)

5. Liu, Y., Gorton, I., Lee, V.: The architecture of an event correlation service for adaptive
middleware-based applications. J. Syst. Softw. 81(12), 2134–2145 (2008)

6. Song, W., Jacobsen, H.A., Ye, C., Ma, X.: Process discovery from dependence-complete
event logs. IEEE Trans. Serv. Comput. 9(5), 714–727 (2016)

7. Plantevit, M., Robardet, C., Scuturici, V.M.: Graph dependency construction based on
interval-event dependencies detection in data streams. Intell. Data Anal. 20(2), 223–256
(2016)

8. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series, with
implications for streaming algorithms. In: Proceedings of the 8th ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge Discovery, pp. 2–11. Association for
Computing Machinery, San Diego, CA, United States (2003)

9. Pei, J., Han, J., Wang, W.: Constraint-based sequential pattern mining: the pattern-growth
methods. J. Intell. Inf. Syst. 28(2), 133–160 (2007)

10. Mooney, C.H., Roddick, J.F.: Sequential pattern mining - approaches and algorithms. ACM
Comput. Surv. 45(2), 1–39 (2013)

11. Ahmed, M., Mahmood, A.N., Islam, M.R.: A survey of anomaly detection techniques in
financial domain. Future Gener. Comput. Syst. 55(6), 278–288 (2016)

12. Dong, F., Wu, K., Srinivasan, V., Wang, J.: Copula analysis of latent dependency structure
for collaborative auto-scaling of cloud services. In: Proceedings of the 25th International
Conference on Computer Communication and Networks, pp. 1–8. Institute of Electrical and
Electronics Engineers Inc., Waikoloa, HI, United States (2016)

13. Hashmi, K., Malik, Z., Najmi, E., Alhosban, A., Medjahed, B.: A web service negotiation
management and QoS dependency modeling framework. ACM Trans. Manag. Inf. Syst. 7
(2), 1–33 (2016)

14. Wang, R., Peng, Q., Hu, X.: Software architecture construction and collaboration based on
service dependency. In: Proceedings of 2015 IEEE 19th International Conference on
Computer Supported Cooperative Work in Design, pp. 91–96. Institute of Electrical and
Electronics Engineers Inc., Calabria, Italy (2015)

An Approach to Modeling and Discovering Event Correlation 205

	An Approach to Modeling and Discovering Event Correlation for Service Collaboration
	Abstract
	1 Introduction
	2 Problem Analysis
	3 Definitions
	4 Discovery of Event Correlation
	4.1 The Rationales
	4.2 The CorFinder Algorithm

	5 Application of Event Correlation for Anomaly Warning
	5.1 The Service Collaboration Framework
	5.2 The Process to Make Anomaly Warnings in a Power Plant

	6 Experiments
	6.1 Experiment Setup
	6.2 Experiment Results

	7 Related Works
	8 Conclusion
	Acknowledgement
	References

