
Compound Trace Clustering to Generate
Accurate and Simple Sub-Process Models

Yaguang Sun1(B), Bernhard Bauer1, and Matthias Weidlich2

1 Software Methodologies for Distributed Systems, University of Augsburg,
Augsburg, Germany

{yaguang.sun,bernhard.bauer}@informatik.uni-augsburg.de
2 Humboldt-Universität zu Berlin, Berlin, Germany

matthias.weidlich@hu-berlin.de

Abstract. Business process model discovery targets the construction of
conceptual models from event data that has been recorded during the
execution of a business process. While a plethora of discovery techniques
have been proposed in the literature, most existing techniques fail to cope
with complex control-flow patterns as they are observed in event logs of
highly flexible processes. In this paper, we follow the idea of splitting-
up an event log into sub-logs, before applying process model discovery.
This yields a set of sub-process models, one per sub-log, each describing
a major variant of the business process. Unlike existing techniques, our
clustering approach is guided by the result of model discovery: It first
optimises the average complexity of the resulting models, before improv-
ing the accuracy of each model in isolation. Our experimental evaluation
highlights that our approach yields more accurate sub-process models
(that are of comparatively low complexity) than state-of-the-art trace
clustering techniques.

Keywords: Business process mining · Process model discovery · Trace
clustering · Model fitness improvement · Model complexity reduction

1 Introduction

Manual elicitation of business process models is regarded a complex, time con-
suming, and error-prone task. In recent years, therefore, techniques for auto-
mated business process model discovery (BPMD) have been developed, which
aim at the construction of conceptual models from event data that has been
recorded during the execution of a business process [1]. The starting point for
BPMD is an event log that is generated by information systems and contains
information on traces. A trace is a sequence of events that denote activity exe-
cutions for a particular instance of a business process.

While a large number of BPMD techniques have been described in the liter-
ature, see [7,11,18], most existing approaches fail to cope with complex control-
flow patterns in real-life event logs, which usually stem from business processes

c© Springer International Publishing AG 2017
M. Maximilien et al. (Eds.): ICSOC 2017, LNCS 10601, pp. 175–190, 2017.
https://doi.org/10.1007/978-3-319-69035-3_12

176 Y. Sun et al.

Raw
event log

Complex and
inaccurate process

model mined

Sub-model1 Sub-model2 Sub-modeln

Sub
Log1

Sub
Log2

Sub
Logn

BPMD
Technique

Trace Clustering
Technique

Simpler and more
accurate sub-models

Fig. 1. The basic setting of using trace clustering in business process model discovery.

implemented in highly flexible environments, e.g., healthcare, customer relation-
ship management (CRM), and product development [6]. For such processes, the
phenomenon of ‘spaghetti-like’ process models has been described in multiple
case studies. Such models are often inaccurate and too complex to be inter-
preted by domain experts [4], and thus of limited use. This problem is largely
due to the presence of diverse variants of a business process within a single event
log [3].

Against this background, it has been argued that trace clustering [2–6,8–10]
shall be applied before BPMD. As outlined in Fig. 1, an event log is first split
into sub-logs, each containing traces of similar structure. Afterwards, BPMD
techniques are applied to each of the generated sub-logs to obtain a set of sub-
process models that provide a more accurate and comprehensible view on the
business process. However, existing trace clustering techniques are largely decou-
pled from process model discovery. They are primarily guided by the similarity
of traces in an event log, but are agnostic to the impact of clustering decisions
on the quality of the discovered models. Consequently, applying traditional trace
clustering in BPMD may yield inaccurate sub-process models.

In this paper, we therefore put forward a new trace clustering technique
named Compound Trace Clustering (CTC). It considers the accuracy and com-
plexity of the resulting sub-process models during the clustering procedure. More
specifically, it first optimises the average complexity of the sub-process models,
before the accuracy of each model is improved separately.

In the remainder of this paper, we first exemplify the issues of applying
traditional trace clustering in BPMD with experimental results (Sect. 2) and
introduce basic formal notions and notations (Sect. 3). We then elaborate on the
details of the proposed CTC technique (Sect. 4). To test the efficiency of our
method, we carried out a comprehensive evaluation with four real-world event
logs (Sect. 5). As part of that, we also compared CTC with six traditional trace

Compound Trace Clustering 177

clustering techniques. Finally, we review related work (Sect. 6) and conclude
(Sect. 7).

2 Issues of Traditional Trace Clustering in BPMD

Existing trace clustering techniques are decoupled from business process model
discovery and focus on the detection of similarity between traces in a given event
log. As such, they largely neglect the implications of certain clustering decisions
on the accuracy of the sub-process models derived per sub-log [6]. Some of the
resulting sub-process models are therefore likely to be of low quality.

We illustrate this issue with experimental insights obtained for the event
log of the loan and overdraft approval process [12] that has been published as
part of the Business Process Intelligence Challenge (BPIC) in 2012. Using two
traditional trace clustering techniques, namely GED [4] and sequence cluster-
ing (SCT) [5], and setting the number of generated sub-logs to five, yields the
results shown in Table 1. For each method, the table lists the number of traces
in the respective sub-logs as well as the quality of the sub-process model discov-
ered from it. Models have been constructed with the Flexible Heuristics Miner
(FHM) [11] and accuracy is measured in terms of fitness [13], i.e., the amount
of behaviour present in the log that is covered by the discovered model.

Table 1. The information about the sub-process models mined from the sub-logs of
LOA generated by two traditional trace clustering techniques.

Method Metrics Model of
sub-log 1

Model of
sub-log 2

Model of
sub-log 3

Model of
sub-log 4

Model of
sub-log 5

GED Fitness 0.9718 0.9959 0.8049 0.5193 0.6197

#Traces 1509 1607 8073 784 1114

SCT Fitness 0.9095 0.8436 0.9636 0.932 0.7828

#Traces 2091 1839 1740 2765 4652

The results illustrate that both trace clustering techniques will generate one
or more sub-logs, for which the discovered sub-process models have low fitness.
For example, the fitness of the model discovered from sub-log 4 as constructed
by GED is only 0.5193, meaning that a large part of the behaviour of the sub-log
cannot be replayed in the model. For the case of SCT, we observe that the model
generated for sub-log 5 has a comparatively low fitness value of 0.7828.

The above results exemplify that conducting trace clustering independent of
business process model discovery may yield sub-process models of low quality. In
the remainder, we will therefore present a new clustering mechanism that helps
to generate accurate and simple sub-process models.

178 Y. Sun et al.

3 Preliminaries

In this section, we introduce fundamental concepts and notations needed to
define our approach to compound trace clustering.

Let I be a set of items (we will later consider activities as items), S(I)
be the set of all finite sequences over I. A sequence s ∈ S(I) of length m
is denoted 〈it1, it2, . . . , itm〉, where each element itk is an item from I. For
two sequences X = 〈x1, x2, . . . , xl〉 and Y = 〈y1, y2, . . . , yq〉 from S(I), of
length l and q, respectively, X is a sub-sequence of Y , denoted as X � Y , if
1 ≤ p1 < p2 < · · · < pl ≤ q such that x1 = yp1 , x2 = yp2 , . . . , xl = ypl

.
We also need notions related to frequent sequences. Let DS be a set (or

database) of sequences. By support(seq), we denote the number of sequences in
DS that contain the sequence seq as a sub-sequence. Given a minimum support
value min sup, with 0 < min sup < 1, a sequence seq is called a sequential
pattern (or a frequent sequence), if support(seq) ≥ min sup × |DS|. The set
of sequential patterns, SP , consists of all sub-sequences of DS, for which the
support values are no less than min sup×|DS|. Acknowledging that SP contains
partly redundant information in terms of sequential patterns that are contained
in other patterns, we also define the set of closed sequential patterns as CSP =
{α ∈ SP | � β ∈ SP : α � β ∧ support(α) = support(β)}. Many algorithms for
the detection of sequential patterns have been proposed in the literature, see [15,
16]. For our purposes, it suffices to abstract from a specific algorithm for closed

sequential pattern mining, which we assume to be given as Γ : DS+ min sup−→
CSP+, where DS+ is the universe of sequence databases, CSP+ is the universe
of sets of closed sequential patterns, and min sup is a minimum support value.

Next, we turn to the notion of an event log, as recorded by information
systems during the execution of a business process. Let A be the universe of
activities of a business process. Then, an event e denotes the execution of an
instance of a particular activity a ∈ A. With E as the universe of such events,
we define an event log as follows.

Definition 1 (Trace, Event Log). A trace t ∈ S(E) is a sequence of events. An
event log L is a non-empty multiset of traces.

For instance, L = {〈a, b, c, d〉23, 〈a, c, b, d〉16} denotes an event log built of 156
events that refer to four activities (a, b, c and d). The events are part of 39
traces, with the variant 〈a, b, c, d〉 appearing 23 times, while the variant 〈a, c, b, d〉
appears 16 times in L.

With L+ as the universe of event logs and M+ as the universe of process
models, Λ : L+ → M+ is a BPMD algorithm. To evaluate the result quality of
BPMD, we further consider a process model complexity measure, Σ : M+ → R.

4 Compound Trace Clustering for Process Discovery

This section presents a novel trace clustering technique named Compound Trace
Clustering (CTC) for process discovery. An overview of our approach is given in

Compound Trace Clustering 179

Fig. 2. In essence, we proceed in two stages. In the first stage, the given event
log is split into sub-logs, so that the sub-process models derived from these logs
with some business process model discovery technique have an optimal aver-
age complexity. In a second stage, the accuracy of these sub-models created in
stage 1 is assessed and, if needed, improved by employing an algorithm pro-
posed in our earlier work [17]. Below, we first present details of our novel trace
clustering technique for stage 1 (Sect. 4.1), before providing a short summary of
the algorithm for improving model accuracy in stage 2 (Sect. 4.2). Finally, we
integrate these building blocks and define the complete algorithm for compound
trace clustering for process discovery (Sect. 4.3).

BPMD
Technique

Original
event log

Clustering traces for
generating sub-process
models with optimal
average complexity

Stage : 1

Sub
Log 1

Sub
Log 2

Sub
Log n

Sub-model
space

Sub
Log m

Sub-model 1 Sub-model 2 Sub-model n

BPMD Technique

Sub-log
space

Judge if sub-model m is
accurate or not Input

sub-model m ,

YES

NO
Stage : 2Output

Sub
Log m*

Sub
Log m

Input Output

Input

Output Output Output

Input Input Input

Output Output Output

Input

BPMD Technique

Input

Output

Continue to judge next sub-model
from sub-model space

Sub-model m* Sub-model m* is
more accurate than

sub-model m

Inaccurate and
complex modelNote 1

Note 2

Fig. 2. Outline of the basic idea for the proposed trace clustering technique CTC.

4.1 Stage 1: Trace Clustering

For the first stage of our approach, we developed a new trace clustering method,
referred to as top-down trace clustering (TDTC). The main idea of our method
is to convert the traditional trace clustering problem that is based on a notion of

180 Y. Sun et al.

similarity of traces, into a clustering problem that is guided by the complexity
of the sub-process models derived for the sub-logs.

Let Φ = {φ1, φ2, . . . , φn} be a solution space, where each solution φm ∈ Φ
stands for a unique way to divide the original event log into a fixed number of
sub-logs. TDTC employs a greedy strategy to search for the optimal solution φop

of Φ, which is characterised by an optimal weighted average complexity of the
sub-process models constructed for the generated sub-logs. As shown in Fig. 3,
for a log L and a target number (three in this example) of sub-logs, TDTC first
searches for the optimal way to divide L into two sub-logs L1 and L2. Then,
TDTC continues to detect the optimal way to split L2 (which is assumed to lead
to a sub-model with the highest complexity) into L3 and L4. This basic idea
is instantiated based on the following concepts related to sequential patterns in
traces, henceforth called trace behaviours.

Log L

Log L1 Log L2

Best way
to divide

Log L1

Log L2

Log L3 Log L4

Set of sublogs

Find the log that leads
to a process model with

highest complexity

Input Output

Best way
to divide

Set of sublogs

Fig. 3. Illustration of the basic idea for top-down trace clustering.

Significant Trace Behaviours. A complex business process can often be
divided into several simpler sub-processes, where each sub-process is charac-
terised by specific behavioural patterns [6]. We refer to the representation of
these behavioural patterns in the event log as trace behaviours. When conducting
trace clustering, we are particularly interested in trace behaviours that adhere
to a sub-process model that is simpler than the one that would be discovered for
the whole event log. We call these trace behaviours complexity-related significant
behaviours (CRSB) and detecting them enables us to split up an event log, such
that the discovered sub-process models are of low complexity.

We first define trace behaviours in a formal way, based on the notion of
sequential patterns as introduced in Sect. 3. That is, a trace behaviour is a
sequential pattern mined from a given event log, as the latter can be seen as
a database of sequences.

Definition 2 (Trace Behaviours). Let Γ be a closed sequential pattern mining
algorithm and min sup be a minimum support value. Then, the set of trace
behaviours Θ of an event log L is defined as Θ = {θ | θ ∈ Γ (L, min sup)}.

The idea behind grounding trace behaviours in sequential patterns is that cer-
tain frequent sub-sequences among the traces of an event log are able to reveal

Compound Trace Clustering 181

some significant criteria about the behavioural patterns in business processes.
They may therefore help to distinguish sub-process models that represent differ-
ent variations of a business process. Moreover, we note that relying on sequential
patterns is also in line with the idea of most advanced BPMD algorithms, which
cope with noise in the event data by taking the frequency of behavioural patterns
into account in the construction of a process model.

As a next step, we classify trace behaviours of an event log into complexity-
related significant behaviours (CRSB) and complexity-related insignificant
behaviours (CRIB). Let L be an event log; θ be a trace behaviour of L; L1 ⊆ L
be a sub-log of L which contains all the traces with sub-sequence θ from L;
L2 ⊆ L be a sub-log of L which consists of all the traces from L without sub-
sequence θ; and m1 = |L1| and m2 = |L2| be the total numbers of traces in sub-
logs L1 and L2 respectively. Furthermore, let vL = Σ(Λ(L)), vL1 = Σ(Λ(L1))
and vL2 = Σ(Λ(L2)) be three assessed values generated by implementing the
process model complexity evaluation mechanism Σ on the process models for
L, L1 and L2. Based thereon, we define sub-model improvement on complex-
ity SMIC(L1, L2, L) as a measure to quantify the impact of a particular trace
behaviour to split the log L into sub-logs L1 and L2:

SMIC(L1, L2, L) =
(vL − (m1 · vL1 + m2 · vL2)/(m1 + m2))

vL
. (1)

Using this measure, we characterise complexity-related significant behaviours
(CRSB) and complexity-related insignificant behaviours (CRIB). That is, a trace
behaviour θ is judged to be a CRSB, if it is able to divide the original event log L
into two sub-logs, such that the weighted average complexity of the sub-models
discovered from the sub-logs can be decreased by at least η, in comparison to
the complexity of the model discovered for the original event log.

Definition 3 (CRSB and CRIB). Given a minimum threshold η, a trace behav-
iour θ ∈ ΘL is a complexity-related significant behaviour, if SMIC(L1, L2, L) ≥ η,
otherwise θ is a complexity-related insignificant behaviour.

Top-Down Trace Clustering (TDTC). Using the above notions, Algorithm1
describes our top-down trace clustering method. TDTC applies a greedy strategy,
which detects the best CRSB for iteratively splitting the event log. According
to Algorithm 1, for an input event log L, TDTC first acquires the set of trace
behaviours TB for L and initialises the set of logs SL (line 1). Afterwards,
TDTC iteratively divides the log L into several sub-logs until the total number
of generated sub-logs reaches μ or no log in SL can be further divided (lines 2–9).
As shown in line 6, if the found trace behaviour tbm is not a CRSB, then it will
not be utilised for dividing the log. This means that, if the average complexity of
the sub-process models discovered from the generated sub-logs (i.e., Ln1 and Ln2)
cannot be decreased to a certain extent compared to the quality of the model
discovered from the original event log (i.e., Ln), then it is not worth splitting the
log. Intuitively, this requirement is derived from the goal to achieve a balance

182 Y. Sun et al.

between the integrity and the quality of the resulting models. Additionally, if
the number of traces in the generated sub-logs (i.e., Ln1 and Ln2) is less than
threshold κ, then the found trace behaviour tbm will also not be used for splitting.
Here, threshold κ is used to prevent TDTC from generating sub-logs with too
few traces. Finally, an array of sub-logs SL is returned by TDTC.

Algorithm 1. Top-down trace clustering (TDTC)
Input: an event log L, a minimum support min sup for mining closed sequential

patterns, a minimum threshold η for detecting CRSB, the minimum size κ for each
generated sub-log, the target number of generated sub-logs μ.
Let TB be a set of trace behaviours.
Let SL be a set of event log.

1: TB ← Γ (L, min sup), SL ← SL ∪ L
2: repeat
3: find the log Ln ∈ SL which leads to a model with the highest complexity
4: find the trace behaviour tbm ∈ TB to generate the highest SMIC for log Ln

5: split log Ln into Ln1 and Ln2 by employing trace behaviour tbm
6: if SMIC(Ln1, Ln2, Ln) ≥ η and |Ln1| ≥ κ and |Ln2| ≥ κ then
7: remove Ln from SL and put Ln1 and Ln2 in SL
8: end if
9: until (no log in SL can be further divided or the cluster number μ is reached)
Output: a set of event logs SL.

4.2 Stage 2: Process Model Fitness Improvement

As part of our compound trace clustering technique, the accuracy of the sub-
process models stemming from stage 1 is improved in a second stage (see Fig. 2).
In particular, we consider fitness [13] as a well-established measure for the accu-
racy in process model discovery. Specifically, we employ a fitness improvement
algorithm named HIF [17] and apply it to each of the sub-process models. In
essence, HIF locates behavioural patterns recorded in the event log, which cannot
be expressed by the utilised BPMD algorithm. It then converts these patterns
into behavioural structures that can be expressed by the discovery algorithm, so
that a more fitting process model will be obtained.

4.3 The Compound Trace Clustering (CTC) Algorithm

Putting the above techniques together, the complete approach of compound
trace clustering for process discovery is formalised in Algorithm 2. In addition
to the above notions, this algorithm relies on a process model fitness evaluation
measure Δ : (M+, L+) → R, where M+ is the universe of process models and
L+ is the universe of event logs.

As described above before, CTC contains two stages. In stage 1, TDTC
(introduced in Algorithm1) is employed to divide the original event log L into
a fixed number (indicated by parameter μ) of sub-logs, which are then stored in

Compound Trace Clustering 183

set SL (line 2 of Algorithm 2). In stage 2, if a sub-log sl from SL leads to a sub-
process model with a fitness value less than a given target value ε (line 4), then
HIF is used to transform the respective sub-log until the discovered sub-process
model has a fitness value of no less than ε (line 5). Finally, the sub-process
models with improved fitness are stored in MO (lines 6 and 8), which forms the
output of CTC. Note that the time complexity of CTC depends on the chosen
algorithms for closed sequential pattern mining (Γ) and BPMD (Λ).

Algorithm 2. The compound trace clustering technique: CTC
Input: an event log L, a minimum support min sup for mining closed sequential

patterns, a minimum threshold η for detecting CRSB, the minimum size κ for each
generated sub-log, the target number of generated sub-logs μ, a target fitness value
ε for the sub-process model.
Let SL be an array of event log.
Let MO be a set of sub-process models.

1: SL ← null, MO ← null
Stage 1: cluster traces for generating sub-process models with optimal complexity

2: SL ← TDTC(L, min sup, η, κ, μ)
Stage 2: generate high-fitness sub-process models

3: for each sub-log sl ∈ SL do
4: if Δ(Λ(sl), sl) < ε then
5: sl ← HIF (sl, ε)
6: MO ← MO ∪ Λ(sl)
7: else
8: MO ← MO ∪ Λ(sl)
9: end if

10: end for
Output: a set of sub-process models MO, an array of event log SL.

5 Evaluation

This section presents an experimental evaluation of the proposed method of com-
pound trace clustering for process discovery. We first review the used datasets
and experimental setup, before turning to a discussion of the obtained results.

Datasets. We tested the effectiveness of CTC on four real-life event logs: an
event log of a Volvo IT incident and problem management process (VIPM)
published as part of the Business Process Intelligence Challenge (BPIC) 2013;
a log of a loan and overdraft approvals process (LOA) of BPIC 2012; a log of
an ICT service process (KIM); and a log of a CRM process (MCRM) from [6].
Descriptive statistics of these event logs are given in Table 2.

Experimental setup. To evaluate the quality of the discovered models, a
process model complexity measure is used. To this end, we exploit the insights
reported in [14], which highlight that the density, the number of control-flows
arcs, and the number of model elements are the main factors that influence the

184 Y. Sun et al.

Table 2. Basic information of the evaluated logs.

Log Traces Events Event types

VIPM 7554 65533 13

LOA 13087 262200 36

KIM 24770 124217 18

MCRM 956 11218 22

comprehensibility of a process model that is expressed as a Petri-net [1]. More
specifically, we rely on the Place/Transition Connection Degree (PT-CD) metric
for quantifying complexity of a Petri-net, see [6]. With |ar| as the total number
of arcs in the model, |P | as the number of places, and |T | as the number of
transitions, the PT-CD is defined as:

PT − CD =
1
2

|ar|
|P | +

1
2

|ar|
|T | (2)

Here, large values of the PT-CD metric indicate a high complexity of the
model. As an alternative measure for model complexity, we further consider the
Extended Cardoso metric (E-Cardoso) [19]. It quantifies the control flow com-
plexity of process models. A higher E-Cardoso value indicates a more complex
model.

In our experiments, we further use the Flexible Heuristics Miner (FHM) [11],
as implemented in ProM 61 as the business process model discovery algorithm.
This choice is motivated by the algorithm’s robustness against noise and its
computational efficiency. Since FHM constructs a process model that is given as
a Heuristics Net, we rely on the Heuristics Net to Petri Net plugin in ProM 6
to convert the result of FHM into a Petri-net. The complexity of this Petri-net
is then assessed based on the aforementioned measures.

To assess the accuracy of the discovered models, we rely on the ICS fitness
measure [13], which falls into rage (−∞, 1] and can be computed efficiently. In
addition, we consider the F-score, which is defined as the harmonic mean of
recall (fitness) and precision (appropriateness) [18]. To quantify precision of the
discovered sub-process models, we utilise the ETConformance Checker as it is
implemented in ProM 6.

When running CTC, the minimum support value min sup for closed sequen-
tial pattern mining is set to 0.1 for the logs VIPM, KIM, and MCRM; and to
0.25 for log LOA. The reason being that the first three logs contain less process
variants compared to LOA. The minimum threshold η for detecting CRSB is
set to 0 (i.e., condition SMIC > 0 should be fulfilled), while the minimum size
κ for each sub-log is set to 50. The target number of generated sub-logs μ is
varied in the experiments up to a value of 6. The target fitness value ε for each
sub-process model is set to 1.

1 http://www.promtools.org.

http://www.promtools.org

Compound Trace Clustering 185

Results. A first overview of our evaluation results (when μ is set to 5) is shown in
Table 3. For each measure and log, Table 3 first gives the obtained value for the
sub-process models obtained by CTC (averaged over all sub-process models),
before also listing the value for the model discovered from the original event
log. For instance, the weighted average ICS fitness of the sub-process models
obtained with CTC on the log VIPM is 0.9159 while the ICS fitness of the
model discovered from the original event log is 0.3594.

The evaluation results shown in Table 3 highlight that the weighted average
fitness of the generated sub-models for each event log is much higher than the
fitness of the model discovered from the original log, whereas the average com-
plexity of these sub-models is relatively low. As such, the results demonstrate the
effectiveness of our approach to compound trace clustering for process discovery.

Table 3. Evaluation results for the sub-models generated by CTC. First values are the
average over all sub-process models, whereas the second values are those obtained for
the model discovered from the original event log.

Event log Weighted average Weighted average Weighted average

ICS fitness PT-CD E-Cardoso

VIPM 0.9159/0.3594 2.3577/2.8848 47.3313/54

LOA 0.9909/0.7878 2.4845/3.1478 110.7463/148

KIM 0.9461/0.7904 2.8626/3.4797 63.2614/79

MCRM 0.9512/−0.1379 2.2818/2.4545 51.7364/64

We also compared CTC to six traditional trace clustering techniques, specif-
ically 3-gram [2], ATC [6], MR and MRA [3], GED [4] and sequence clustering
(SCT) [5]. For each log, we evaluate the trace clustering technique with differ-
ent numbers of clusters (from 3, 4, 5 and 6). Figure 4 shows the comparison
results from the perspective of fitness.The results illustrate that CTC performs
much better on event logs LOA, VIPM and MCRM than the other six trace
clustering methods. For the log KIM, ATC has better overall performance than
CTC because ATC also has a fitness improvement mechanism that is applied to
the sub-process models. However, the mechanism provided by CTC seems more
stable on the four real-world event logs.

Figure 5 shows the comparison results on F-score. It can be seen that CTC
also performs better than the traditional trace clustering techniques on most of
the tested logs. Figure 6 highlights the comparison results from the angle of PT-
CD. Here, CTC and SCT outperform the other techniques. Figure 7 depicts
the comparison results on E-Cardoso, hinting at an average performance of
CTC in comparison to the other methods. The main reason is that the fit-
ness improvement method HIF utilised by CTC may decrease the performance
of CTC on optimising the complexity (evaluated by E-Cardoso) of the potential

186 Y. Sun et al.

sub-models. Nevertheless, we conclude that under a comprehensive assessment,
CTC improves beyond the state-of-the-art in trace clustering in the context of
process model discovery.

3 4 5 6
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

CTC
ATC
SCT
3−gram
MR
MRA
GED

(a) LOA

3 4 5 6
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

CTC
ATC
SCT
3−gram
MR
MRA
GED

(b) VIPM

3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

CTC
ATC
SCT
3−gram
MR
MRA
GED

(c) KIM

3 4 5 6
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 IC

S
 F

itn
es

s

CTC
ATC
SCT
3−gram
MR
MRA
GED

(d) MCRM

Fig. 4. Comparison of weighed average fitness of the sub-models output by the seven
trace clustering techniques.

6 Related Work

In the literature, many trace clustering techniques have been put forward to
overcome the negative impact of a large variety of complex control-flow patterns
recorded in event logs. We classify these proposed techniques into passive trace
clustering methods and active trace clustering methods.

Passive trace clustering methods such as [2–5] try to detect the similarity of
traces recorded in event logs and then group the traces with similar structures
into the same sub-log. For example, in [2], traces are expressed by profiles. Every
profile is a set of items that characterise a trace in terms of a particular aspect.
Five profiles, such like the case attributes profile and the event attributes profile,
are introduced in [2]. The distance between any two traces is then measured by
transforming the defined profiles into an aggregate vector. In [3], the authors
pointed out that the feature sets based on repeated sub-sequences of traces are
context-aware and able to exhibit some common functionality. The traces that
have a lot of common features should be placed in the same cluster. In [4], an

Compound Trace Clustering 187

3 4 5 6
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 F
−S

co
re

CTC
ATC
SCT
3−gram
MR
MRA
GED

(a) LOA

3 4 5 6
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 F
−S

co
re

CTC
ATC
SCT
3−gram
MR
MRA
GED

(b) VIPM

3 4 5 6
0.58

0.63

0.68

0.73

0.78

0.83

0.88

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 F
−S

co
re

CTC
ATC
SCT
3−gram
MR
MRA
GED

(c) KIM

3 4 5 6
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 F
−S

co
re

CTC
ATC
SCT
3−gram
MR
MRA
GED

(d) MCRM

Fig. 5. Comparison of weighted average F-score of the sub-models output by the seven
trace clustering techniques.

3 4 5 6
2.45

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 P

T−
C

D

CTC
ATC
SCT
3−gram
MR
MRA
GED

(a) LOA

3 4 5 6
2.35
2.4

2.45
2.5

2.55
2.6

2.65
2.7

2.75
2.8

2.85
2.9

2.95
3

3.05
3.1

3.15
3.2

3.25
3.3

3.35
3.4

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 P

T−
C

D

CTC
ATC
SCT
3−gram
MR
MRA
GED

(b) VIPM

3 4 5 6
2.65

2.7

2.75

2.8

2.85
2.9

2.95

3

3.05

3.1
3.15

3.2

3.25

3.3

3.35
3.4

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 P

T−
C

D CTC
ATC
SCT
3−gram
MR
MRA
GED

(c) KIM

3 4 5 6
2.2

2.3

2.4

2.5

2.6
2.7

2.8

2.9

3

3.1
3.2

3.3

3.4

3.5

3.6
3.7

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 P

T−
C

D

CTC
ATC
SCT
3−gram
MR
MRA
GED

(d) MCRM

Fig. 6. Comparison of weighted average PT-CD of the sub-models output by the seven
trace clustering techniques.

188 Y. Sun et al.

3 4 5 6
80

85

90

95

100

105

110

115

120

125

130

135

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 E
−C

ar
do

so

CTC
ATC
SCT
3−gram
MR
MRA
GED

(a) LOA

3 4 5 6
37.5

40

42.5

45

47.5

50

52.5

55

57.5

60

62.5

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 E
−C

ar
do

so

CTC
ATC
SCT
3−gram
MR
MRA
GED

(b) VIPM

3 4 5 6
34.5

37
39.5

42
44.5

47
49.5

52
54.5

57
59.5

62
64.5

67
69.5

72
74.5

77
79.5

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 E
−C

ar
do

so

CTC
ATC
SCT
3−gram
MR
MRA
GED

(c) KIM

3 4 5 6
45

47

49

51

53

55

57

59

61

63

65

Number of Clusters

W
ei

gh
te

d
A

ve
ra

ge
 E
−C

ar
do

so

CTC
ATC
SCT
3−gram
MR
MRA
GED

(d) MCRM

Fig. 7. Comparison of weighted average E-Cardoso of the sub-models output by the
seven trace clustering techniques.

edit distance-based approach for trace clustering is proposed. The context-aware
knowledge is integrated into the calculation procedure so that the calculated
edit distance between any two traces becomes more accurate. In [5], sequence
clustering technique is proposed, which learns a first-order Markov model for
each cluster. A trace will be put into the cluster that is assigned the Markov
model that is able to generate this trace with the highest probability. However,
passive trace clustering methods suffer from the gap between the clustering bias
and the model evaluation bias [6]. As a result, these techniques cannot ensure
the accuracy of the sub-process models constructed from the resulting sub-logs.

Active trace clustering methods such as [6,8–10] assume an integrated view
on the clustering bias and the model evaluation bias. For example, ATC as pre-
sented in [6], directly optimises the accuracy of the sub-process models derived
from sub-logs, similar to CTC proposed in this paper. However, as demonstrated
in our experimental evaluation, the mechanism provided by ATC turns out to
be not very stable. In contrast, CTC achieves the best results under a compre-
hensive assessment, when compared to existing active trace clustering methods.

7 Conclusions

In this paper, we proposed a new trace clustering technique named CTC to
generate accurate and simple sub-process models. Our technique consists of two

Compound Trace Clustering 189

stages. In a first stage, it generates sub-process models while striving for an opti-
mal average complexity of the resulting models. In a second stage, the accuracy
of the resulting models is improved. Our experimental results demonstrated the
effectiveness of our technique, also in comparison to six traditional trace clus-
tering techniques.

In future work, we will focus on improving the performance of CTC by devel-
oping new methods to filter trivial trace behaviours found by CTC from real-
life event logs. Also, techniques that help to explore the parameter spaces in
the configuration of our technique (such as the minimum threshold to detect
complexity-related significant behaviours or the minimum size per sub-log) will
be explored. Furthermore, we plan to conduct further evaluation studies, vali-
dating our methods in additional application domains.

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin
(2016)

2. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process min-
ing. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp.
109–120. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00328-8 11

3. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved pat-
terns: towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S.,
Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-12186-9 16

4. Bose, R., van der Aalst, W.M.P.: Context aware trace clustering: towards improving
process mining results. In: SIAM International Conference on Data Mining, pp.
401–402 (2009)

5. Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process mining
with sequence clustering: experiments and findings. In: Alonso, G., Dadam, P.,
Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-75183-0 26

6. Weerdt, J.D., vanden Broucke, S., Vanthienen, J., Baesens, B.: Active trace clus-
tering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12),
2708–2720 (2013)

7. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-38697-8 17

8. Ekanayake, C.C., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M.: Slice, mine and
dice: complexity-aware automated discovery of business process models. In: Daniel,
F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 49–64. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-40176-3 6

9. Garcia, L., Dumas, M., Rosa, M.L., Weerdt, J.D., Ekanayake, C.C.: Controlled
automated discovery of collections of business process models. Inf. Syst. 46, 85–
101 (2014)

10. Greco, G., Guzzo, A., Pontieri, L.: Discovering expressive process models by clus-
tering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

http://dx.doi.org/10.1007/978-3-642-00328-8_11
http://dx.doi.org/10.1007/978-3-642-12186-9_16
http://dx.doi.org/10.1007/978-3-540-75183-0_26
http://dx.doi.org/10.1007/978-3-642-38697-8_17
http://dx.doi.org/10.1007/978-3-642-40176-3_6

190 Y. Sun et al.

11. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible Heuristics Miner (FHM). BETA
Working Paper Series, WP 334. Eindhoven University of Technology, Eindhoven
(2010)

12. Adriansyah, A., Buijs, J.C.A.M.: Mining process performance from event logs. In:
La Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 217–218. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36285-9 23

13. de Medeiros, A.A.: Genetic process mining. Ph.D. thesis, Eindhoven University of
Technology (2006)

14. Mendling, J., Strembeck, M.: Influence factors of understanding business process
models. In: Abramowicz, W., Fensel, D. (eds.) BIS 2008. LNBIP, vol. 7, pp. 142–
153. Springer, Heidelberg (2008). doi:10.1007/978-3-540-79396-0 13

15. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2000)

16. Shengnan, C., Han, J., David, P.: Parallel mining of closed sequential patterns. In:
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowl-
edge Discovery in Data Mining, KDD 2005, pp. 562–567. ACM, New York (2005)

17. Sun, Y., Bauer, B.: A novel heuristic method for improving the fitness of mined
business process models. In: Sheng, Q.Z., Stroulia, E., Tata, S., Bhiri, S. (eds.)
ICSOC 2016. LNCS, vol. 9936, pp. 537–546. Springer, Cham (2016). doi:10.1007/
978-3-319-46295-0 33

18. Conforti, R., Dumas, M., Garćıa-Bañuelos, L., La Rosa, M.: Beyond tasks and gate-
ways: discovering BPMN models with subprocesses, boundary events and activity
markers. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659,
pp. 101–117. Springer, Cham (2014). doi:10.1007/978-3-319-10172-9 7

19. Lassen, K.B., van der Aalst, W.M.P.: Complexity metrics for workflow nets. Inf.
Softw. Technol. 51(3), 610–626 (2009)

http://dx.doi.org/10.1007/978-3-642-36285-9_23
http://dx.doi.org/10.1007/978-3-540-79396-0_13
http://dx.doi.org/10.1007/978-3-319-46295-0_33
http://dx.doi.org/10.1007/978-3-319-46295-0_33
http://dx.doi.org/10.1007/978-3-319-10172-9_7

	Compound Trace Clustering to Generate Accurate and Simple Sub-Process Models
	1 Introduction
	2 Issues of Traditional Trace Clustering in BPMD
	3 Preliminaries
	4 Compound Trace Clustering for Process Discovery
	4.1 Stage 1: Trace Clustering
	4.2 Stage 2: Process Model Fitness Improvement
	4.3 The Compound Trace Clustering (CTC) Algorithm

	5 Evaluation
	6 Related Work
	7 Conclusions
	References

