
Model Checking of Concurrent Software
Systems via Heuristic-Guided SAT Solving

Nils Timm(B), Stefan Gruner, and Prince Sibanda

Department of Computer Science, University of Pretoria, Pretoria, South Africa
{ntimm,sgruner}@cs.up.ac.za

Abstract. An established approach to software verification is SAT-
based bounded model checking where a state space model is encoded
as a Boolean formula and the exploration is performed via SAT solv-
ing. Most existing approaches in SAT-based model checking rely on
general-purpose solvers that do not exploit the structural features of the
encoding. Aiming at a significantly better runtime performance in such
settings, we show in this paper that SAT algorithms can be specifically
tailored w.r.t. the structure of the Boolean encoding of the model check-
ing problem to be solved. We define a state space encoding of concurrent
software systems that preserves control flow information. This allows
to modify the solver such that the number of SAT decision levels can
be significantly reduced by assigning a set of atoms at each level. Such
set assignment always characterises a location in the control flow of the
encoded system. Moreover, we introduce heuristics that guide the SAT
search into directions where a violation of the property of interest may be
most likely detected. The heuristic approach enables to quickly discover
errors while keeping the actually explored part of the state space small.

1 Introduction: Motivation and Related Work

In SAT-based bounded model checking (BMC) [1] the state space of a system
to be verified is encoded as a propositional logic formula, and the state space
exploration happens via satisfiability (SAT) solving. Thereby, each satisfying
assignment of the formula characterises an error path, whereas an unsatisfiability
result implies the correctness of the system under consideration. The advantage
of BMC in comparison to explicit-state approaches is that the encoding yields
a more compact symbolic state space representation, and that the capability of
efficient solvers can be exploited to solve the encoded verification tasks. In BMC
most existing approaches rely on general-purpose solvers that do not exploit
the specific structure of the propositional logic encoding or any other available
knowledge about the underlying verification task. In this paper we show that
SAT algorithms can be specifically tailored towards solving encodings of ver-
ification tasks, which enables a significantly better solving performance. Here
we focus on the verification of reachability properties (e.g. deadlocks, mutual
exclusion violation) of concurrent software systems. We define a propositional
logic state space encoding that can be directly constructed for a given input

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
M. Dastani and M. Sirjani (Eds.): FSEN 2017, LNCS 10522, pp. 244–259, 2017.
DOI: 10.1007/978-3-319-68972-2 16



Model Checking of Concurrent Systems via Heuristic-Guided SAT Solving 245

system. The encoding preserves control flow information that can be utilised
to accelerate the SAT solving procedure. SAT solving algorithms are typically
based on a systematic search for a satisfying assignment of the input formula by
incrementally selecting an unassigned atom, assigning it by either 1 or 0, and
propagating the resulting constraints to all clauses of the formula. In case the
solver’s decisions lead to an unsatisfied sub formula, the solver tracks back to
a previous decision level and continues its search from that point in a different
branch of the search tree until a satisfying assignment is found or until the search
tree is exhaustively explored [2]. We introduce an enhanced SAT algorithm that
exploits the structure of our encodings in order to reduce the computational
effort for solving the encoded verification task. In our approach the number
of decision levels can be significantly narrowed down by instantiating a set of
atoms at each level. Such a set instantiation always characterises a location in
the control flow of the encoded system. Based on a simple query on whether such
location is an admissible successor location of the current location, the number
of branches that actually have to be explored can considerably reduced. More-
over, we show that the additional employment of heuristic guidance allows for a
further enhancement of the solving performance. For this, we adapt the concept
of directed model checking [5] which had been introduced for the exploration of
explicit-state models, but was not yet considered for SAT-based model checking.
We demonstrate that heuristics based on the property to be verified allow to
guide the SAT search into directions where a property violation may be most
likely detected. We prototypically implemented our encoding and our enhanced
SAT approach with set assignments and heuristic guidance on top of the solver
Sat4J [6]. Preliminary experiments show promising performance results.

Our technique is related to a number of existing approaches. In [8] we find
an overview of principles of using SAT solvers as model checkers, including atom
ordering strategies. It is assumed that the encoding is constructed based on an
already given state space model – not based directly on the system to be verified.
In [9] an algorithm is given to predict a beneficial ordering of the atoms before
the SAT search descends into the tree. Performance improvement is achieved by
knowing the unsatisfiable core of the (b − 1)-bounded encoding which the solver
explored in a previous iteration of incremental BMC [9]. A survey of directed
model checking can be found in [5]. The focus in [5] is on the algorithmic tech-
niques directed model checking approaches, including a classification of such
techniques into categories like guided search, explicit-state directed model check-
ing, and directed model checking based on binary decision diagrams. However, no
approach for a directed search in SAT-based BMC is proposed. In [4] a heuristic-
guided tool based on the model checker Spin is described. The used heuristics
are tuned w.r.t specific characteristics of Spin’s input language Promela. Thus,
the directed state space exploration algorithm assumes an explicit state space
model rather than a symbolic encoding. SAT-based model checking of concurrent
systems is also the topic of [10] which is based on the insight that concurrent
executions cannot drive arbitrary values through the system, and thus it is not
necessary to encode how the computation operates on all values, but rather just
on the values that actually arise in such executions. On the basis of an event



246 N. Timm et al.

graph representation of the systems behaviour a SAT problem is constructed and
solved in an iterative process of modelling, solving, and re-modelling. The idea
of this approach is to use the solver to encode the execution, not the system.
Conflict-directed clause learning (CDCL) is the topic of [11] which deals with
the question of how to design a predictive measure of learnt clauses pertinence.
The authors were able to show the relationship between the overall decreasing
of decision levels and the performance of the solver. Thereby, a good learning
schema should add explicit links between independent blocks of propagated lit-
erals, which should be beneficial for reducing the number of decision levels in
the remaining computation. In our work we reduce the number of decision lev-
els based on semantic dependencies of the literals (control flow information). In
[13] a heuristic improvement of the Java PathFinder is described: To find errors
faster, it is important to explore parts of the state space whose possibility of
containing errors is higher than others, whereby heuristic techniques prioritise
potential solution candidates according to particular efficiency considerations.
The authors propose a depth-first search which can be applied to verification of
LTL properties of Java bytecode. With regard to heuristic model checking, the
authors of [12] evaluated the resulting search behaviour on a number of models
from the BEEM database within the HSF-SPIN explicit-state model checker.
The technique of [12] applies a distance function to estimate the distance from
a given state to an error state, and explores states with the shortest estimated
distance first. Guided by the distance function, error paths can often be found
after exploring only a small part of the overall state space.

2 Concurrent Software Systems

We start with an introduction to the systems we consider. A concurrent soft-
ware system Sys consists of a fixed number of possibly non-uniform processes
P1 ‖ . . . ‖ Pn, in parallel composition. Inter-process communication is assumed
to happen via global variables in shared memory. In V ar = V ars ∪ ⋃n

i=1 V ari

the set V ars contains the shared variables whereas V ar1 . . . V arn are sets of
local variables associated exclusively with the processes P1 . . . Pn. Moreover, we
assume that Boolean predicate abstraction [3] has been applied, which results in
a system where all variables are Boolean variables, or more specifically, replaced
by Boolean predicates over the original variables. Hence, in our approach vari-
ables and predicates are synonymous. Predicate abstraction is a well-established
technique in software model checking to reduce the state space complexity of
a verification task. In our approach we use the tool 3Spot [14] to transfer a
concrete input system into an abstract system defined over predicates. 3Spot
formally represents (abstracted) processes Pi as control flow graphs (CFGs)
Gi = (Loci, δi, τi) where Loci = {0, . . . , |Loci|} is a finite set of control locations
given as binary numbers, δi ⊆ Loci × Loci is a location transition relation, and
τi : Loci ×Loci → Op is a function labelling location transitions with operations
from a set Op. The set of operations Op on the variables form V ar = {v1, . . . , vm}
consists of all statements of the form assume(e) : v1 :=e1, . . . , vm :=em in which



Model Checking of Concurrent Systems via Heuristic-Guided SAT Solving 247

e, e1, . . . , em are Boolean expressions over V ar. Thus every operation consists of
a guard and a list of assignments. For convenience we sometimes just write e
instead of assume(e). Moreover, we omit the guard if it is just true.

A concurrent software system given by n single control flow graphs
G1, . . . , Gn can be modelled by one compound control flow graph G = (Loc, δ, τ)
where Loc = Loc1 × · · · × Locn, δ ⊆ Loc × Loc and τ : Loc × Loc → Op. G is
the product graph of all single CFGs. We assume that initially all processes of
a system at location 0. Moreover, we assume that a deterministic initialisation
of the variables is given by an assertion over V ar. Now, a computation of a con-
current system corresponds to a sequence where in each step one process is non-
deterministically selected and the operation at its current location is attempted
to be executed. In case the execution is not blocked by the guard, the variables
are updated according to the assignment part, and the process advances to the
consequent control location. Note that a CFG is a formal representation of a sys-
tem but not a state space model. The state space over V ar corresponds to the
set SVar of all type-correct valuations of the variables. Given a state s ∈ SVar

and an expression e over V ar, then s(e) denotes the valuation of e in s. The
overall state space S of a concurrent system corresponds to the set of states over
V ar combined with the possible locations, i.e.: S = Loc×SVar . Thus each state
in S is a tuple 〈l, s〉 with l = (l1, . . . , ln) ∈ Loc and s ∈ SVar . An example for
a system where each process is represented by a control flow graph is shown in
Fig. 1. We represent the truth value t by 1, and f by 0. In the example we have
two uniform processes operating on the shared Boolean variables p and q. The
initial state of the system is 〈(00, 00), p = 1, q = 1〉. The system implements
a solution to the dining philosophers problem where each philosopher process
continuously attempts to acquire the two exclusive resources p and q. Once a
process has acquired both resources it releases them in a single step and attempts
to acquire them again. The order in which the resources are requested is non-
deterministically determined, which makes as deadlock possible: G1 has acquired
p and is waiting for q while G2 has acquired q and is waiting for p.

CFGs allow us to model the control flow of a concurrent system. Checking
properties of a system requires to explore a corresponding state space model.
Typically, Kripke structures are used as state space models. A Kripke structure
(KS) over a set of atomic predicates AP is a tuple M = (S, s0, R, L) where

– S is a finite set of states and s0 ∈ S is the initial state,
– R ⊆ S × S is a state transition relation with ∀s ∈ S : ∃s′ ∈ S : R(s, s′),
– L : S ×AP → {1,0} is a labelling function that associates a truth value with

each predicate in each state.

A path π of a KS M is a sequence of states s0s1s2 . . . with R(si, si+1). πi denotes
the i-th state of π, whereas πi denotes the i-th suffix πiπi+1 . . . of π. By ΠM

we denote the set of all paths of M starting in the initial state. All paths of a
KS have to be explored in order to determine whether certain error states are
reachable. Let p ∈ AP be a predicate that characterises error states. Then an
error state is reachable in M if and only if

∨
π∈ΠM

∨
i∈N

L(πi, p) holds.



248 N. Timm et al.

Fig. 1. Concurrent system over the Boolean variables V ar = {p, q} given by the single
control flow graphs G1 and G2, whereby initially p = 1 and q = 1.

Verifying such conditions for a given KS is known as model checking. As defined
in [14] a concurrent system Sys = ‖n

i=1 Pi given by a set of CFGs G1 to Gn can be
translated into a KS M over AP = V ar ∪ {(li = j) | i ∈ [1..n], j ∈ Loci} where
the predicate (li = j) denotes that the process Pi is currently at control location
j. The number of states of a KS corresponding to a given system is exponential in
the number of its locations and variables. For instance, a KS corresponding to our
simple example system has already 64 states. State space explosion is the major
challenge in model checking. Beside the aforementioned predicate abstraction,
a common approach to cope with state space explosion is to use a symbolic
and therefore more compact representation of the KS. In SAT-based bounded
model checking [1] all possible path prefixes up to a bound b ∈ N are encoded
in a propositional logic formula Init0 ∧ T0,1 ∧ . . . ∧ Tb−1,b. The formula is then
conjuncted with an encoding Errorb of the error property to be checked. In case
the overall formula is satisfiable, the satisfying assignment characterises an error
path of length b in the state space of the encoded system. Next, we define such
a propositional logic encoding for concurrent systems given by abstract control
flow graphs and for errors that can be expressed as reachability properties.

3 Propositional Logic Encoding

We now describe how a propositional logic encoding Init0 ∧ T0,1 ∧ . . . ∧ Tb−1,b ∧
Errorb can be directly constructed for a concurrent system given by control flow
graphs Gi = (Loci, δi, τi), 1 ≤ i ≤ n and for a given error property with b ∈ IN
being the bound of the encoding. This saves us the expensive construction of an
explicit state space model. The encoding is defined over Boolean atoms. Since a
state of a system is a tuple 〈l, s〉 where l ∈ Loc is a compound location and s is
a valuation of all Boolean variables in V ar, we encode l and s separately.

A composite location (l1, . . . , ln) ∈ Loc is a list of single locations li ∈ Loci

where Loci = {0, . . . , |Loci|} and i is the identifier of the associated process Pi.
Each li is a binary number from {[0]2, . . . , [|Loci|]2}. We assume that all these



Model Checking of Concurrent Systems via Heuristic-Guided SAT Solving 249

numbers have di digits where di is the number required to binary represent the
max. value |Loci|. Then, for each Pi, we introduce di Boolean atoms, each of
which refers to a distinct digit along the binary representation of its locations:
LocAtoms := {li[j] | i ∈ [1..n], j ∈ [1..di]}. Then li can be encoded as:

enc(li) :=
di∧

j=1

((li[j] ∧ li(j)) ∨ (¬li[j] ∧ ¬li(j)))

where li(j) is a function evaluating to 1 if the j-th digit of li is 1, and to 0
otherwise. A composite location l = (l1, . . . , ln) can subsequently be encoded as:

enc(l) :=
n∧

i=1

enc(li)

Because the function li(j) evaluates to 1 or 0, a location encoding enc(li) can
be always simplified to a conjunction of literals over LocAtoms. In our example
the initial location (00, 00) will be encoded to ¬l1[1] ∧ ¬l1[2] ∧ ¬l2[1] ∧ ¬l2[2].

Next we encode the variable (resp. predicate) part of states. For s ∈ SVar ,
where V ar = {v1, . . . , vm} is the set of Boolean variables over which the con-
current system is defined, we introduce V arAtoms := {v[j] | vj ∈ V ar}.
Hence, each variable vi is encoded by an atom v[i], which allows a straight-
forward encoding of arbitrary logical expressions e over V ar. For instance,
enc(v1∧¬v2) := v[1]∧¬v[2]. The initial state 〈(00, 00), p = 1, q = 1〉 of our exam-
ple system can now be encoded as Init = ¬l1[1] ∧ ¬l1[2] ∧ ¬l2[1] ∧ ¬l2[2] ∧ p ∧ q.
Since in our simple example the variables p and q are not subscripted, we also
omit the index values for the identically named atoms p and q.

For encoding the transition relation of a concurrent system we construct a
formula Init0∧T0,1∧. . .∧Tb−1,b that exactly characterises path prefixes of length
b ∈ IN in the systems state space. Because we consider states as parts of such
prefixes, we have to extend the encoding by index values k ∈ {0, . . . , b} where
k denotes the position along a path prefix. For this we introduce the notion
of indexed encodings. Let F be a propositional logic formula over Atoms =
LocAtoms ∪ PredAtoms and the constants 1 and 0. Then Fk abbreviates the
substitution F [a/ak | a ∈ Atoms]. Our overall encoding will be thus defined
over Atoms[0,b] = {ak | a ∈ Atoms, 0 ≤ k ≤ b}. Since all execution paths start
in the system’s initial state, we extend the initial state encoding by the index
0: Init0 = ¬l1[1]0 ∧ ¬l1[2]0 ∧ ¬l2[1]0 ∧ ¬l2[2]0 ∧ p0 ∧ q0. The encoding of all
possible state space transitions from position k to k + 1 is defined as follows.
Let Sys = ‖n

i=1 Pi over V ar be a concurrent system given by the single control
flow graphs Gi = (Loci, δi, τi) with 1 ≤ i ≤ n. Then all possible transitions for
position k to k + 1 can be encoded in propositional logic as follows:

Tk,k+1 :=∨n
i=1

∨
(li,l′i)∈δi

(enc(li)k ∧ enc(l′i)k+1 ∧∧i′ �=i idle(i′)k,k+1 ∧ enc(τi(li, l
′
i))k,k+1)

where idle(i′)k,k+1 :=
∧di′

j=1 (li′ [j]k ↔ li′ [j]k+1)



250 N. Timm et al.

and enc(τi(li, l′i))k,k+1 := enc(e)k ∧ ∧m
j=1

(
(enc(ej)k ↔ enc(vj)k+1

)

assuming that τi(li, l′i) = assume(e) : v1 :=e1, . . . , vm :=em.

Thus, we iterate over the system’s processes Pi and over the processes’ control
flow transitions δi(li, l′i). Now we construct the k-indexed encoding of a source
location li and conjunct it with the (k + 1)-indexed encoding of a destination
location l′i. This gets conjuncted with the sub formula

∧
i′ �=i idle(i′)k,k+1 which

encodes that all processes different to Pi are idle, i.e. do not change their control
flow location, while Pi proceeds. The last part of the transition encoding con-
cerns the operation associated with δi(li, l′i): The sub formula enc(τi(li, l′i))k,k+1

evaluates to 1 for assignments to the atoms in Atoms[k,k+1] that characterise
pairs of states s and s′ over V ar where the guard of the operation τi(li, l′i) is 1
in s and the execution of the operation in s results in the state s′. Otherwise
enc(τi(li, l′i))k,k+1 evaluates to 0. Our transition encoding requires that an oper-
ation τi(li, l′i) assigns to all Boolean variables. Thus, if a v ∈ V ar is not modified
by the operation we implicitly assume that v := v is part of the assignment
list. The encoding of the control flow transition δ1(00, 01) of our example system
with τ1(00, 01) = (assume(p) : p := 0) yields the following:

enc(00)k = ¬l1[1]k ∧ ¬l1[2]k
∧ ∧
enc(01)k+1 = l1[1]k+1 ∧ l1[2]k+1

∧ ∧
idle(2)k,k+1 = (l2[1]k ↔ l2[1]k+1) ∧ (l2[2]k ↔ l2[2]k+1)
∧ ∧
enc(τ1(0, 1))k,k+1 = pk ∧ (

(0 ↔ pk+1) ∧ (qk ↔ qk+1)
)

The encoding of the operation only evaluates to 1 for assignments to the atoms
in Atoms[k,k+1] that characterise the control flow transition δ1(00, 01) with idling
G2, the variable state s at position k with s(p) = 1 and a state s′ at k + 1 with
s′(p) = 0, and moreover, s(q) = s′(q). All other assignments yield false indicating
that corresponding pairs of states do not characterise valid transitions.

The previous definitions now allow us to construct a formula Init0 ∧ T0,1 ∧
. . . ∧ Tb−1,b that characterises all possible path prefixes of length b ∈ IN in the
state space of the encoded system. Each assignment α : Atoms[0,b] → {1,0}
that satisfies the formula characterises such a prefix. Next, we introduce the
encoding of the property to be checked for the concurrent system. In general,
want to verify whether a state is reachable that satisfies a particular predicate.
Such a predicate can be an arbitrary Boolean expression over Loc and V ar. For
our example system, a deadlock circular-wait situation can be described by

((l1 = 01) ∧ ¬q ∧ (l2 = 10) ∧ ¬p) ∨ ((l1 = 10) ∧ ¬p ∧ (l2 = 01) ∧ ¬q)

which can be straightforwardly encoded into a propositional logic formula

Error := (¬l1[1] ∧ l1[2] ∧ ¬q ∧ l2[1] ∧ ¬l2[2] ∧ ¬p)
∨ (l1[1] ∧ ¬l1[2] ∧ ¬p ∧ ¬l2[1] ∧ l2[2] ∧ ¬q)



Model Checking of Concurrent Systems via Heuristic-Guided SAT Solving 251

over Boolean atoms. Finally we index such an Error formula with a search-
bound b ∈ IN and conjunct it with our system’s state space encoding, yielding
F[0,b] := Init0 ∧ T0,1 ∧ . . . ∧ Tb−1,b ∧ Errorb, such that each assignment sat-
isfying this formula witnesses a path prefix of length b ending in an error state
in the state space of the encoded system. Hence the propositional logic encod-
ing allows us to model check a system of interest via SAT solving, without the
intermediate construction of an explicit Kripke structure. SAT-based BMC is
typically performed incrementally by increasing the bound b until an error state
or a threshold is reached. State-of-the-art SAT solvers e.g. [6] can be used for the
satisfiability checks. In the remainder of this paper we introduce our enhanced
SAT solving concepts that are tailored towards solving our propositional logic
encodings of verification tasks for concurrent systems. For the sake of illustra-
tion, we present our approach based on a simple SAT solving algorithm that
implements our enhanced concepts but not all features of modern solvers like
conflict-driven clause learning [2], conflict clause minimisation [16] etc. Neverthe-
less, our concepts can be straightforwardly integrated into any state-of-the-art
solver and combined with the advancements used in such solvers. For instance,
our tool that we later present is implemented on top of the solver Sat4J [6].

4 Enhanced SAT Solving for Encoded Verification Tasks

Modern SAT solvers are based on a systematic search for a satisfying assign-
ment of the input formula in conjunctive normal form (CNF) by incrementally
selecting unassigned atoms, assigning them by either 1 or 0, and propagating
the resulting constraints to the clauses of the formula. In case the solver deci-
sions lead to an unsatisfied clause, the solver tracks back by revising a former
assignment decision and continuing the search from this point until a satisfying
assignment is found or the search space is entirely explored [2]. While general-
purpose solvers do not make any assumption about the structure of the input
formula, our enhanced SAT solving approach exploits the structure of our encod-
ing F[0,b] and control flow information about the considered concurrent system.
We will see that this enables us to reduce the number of recursive calls of the SAT
algorithm. We reduce both the number of decision levels as well as the number of
branches to be explored which enables to significantly improve the efficiency of
SAT-based BMC in our chosen area of application. First, the structure of F[0,b]

allows us to transform the conjuncted parts of the formula separately into CNF:

cnf(Init0) ∧ cnf(T0,1) ∧ ... ∧ cnf(Tb−1,b) ∧ cnf(Errorb)

which can be done via the Tseytin transformation [15]. From now on we just
write F[0,b] when we refer to the CNF-equivalent of the formula. The atoms
of the encoding F[0,b] can be divided into disjoint sets: Atoms(F[0,b]) =

⋃b
k=0

LocAtomsk∪V arAtomsk where LocAtomsk resp. V arAtomsk refers to the set of
location resp. variable atoms with position index k. Our encoding has the useful
property that the application of an assignment α : LocAtomsk → {0,1} results



252 N. Timm et al.

in a formula α(F[0,b]) where all a ∈ V arAtomsk (i.e. all k-indexed variable atoms)
occur in unit clauses. Hence, the subsequent application of unit propagation [17]
will immediately assign truth values to all atoms in V arAtomsk. This allows us
to solely consider location atoms as branching atoms, since all variable atoms
will be automatically assigned under unit propagation.1

General-purpose SAT algorithms choose a single atom a as the branching
atom at each decision level and then branch for (a,0) (a is assigned by 0)
and (a,1) (a is assigned by 1). In our enhanced algorithm we choose the set
LocAtomsk+1 at each decision level k. (The use of unit propagation [17] will
ensure that all atoms with index k′ ≤ k will be already assigned at level k.) Now
instead of branching for each possible assignment to the atoms in LocAtomsk+1,
the structure of our encoding together with knowledge about the control flow
allows us to reduce the number of assignments (i.e. branches) to admissible ones.
Note that an assignment α : LocAtomsk+1 → {0,1} characterises a location
l′ ∈ Loc in the overall control flow graph G = (Loc, δ, τ) representing the system
under consideration. An assignment α is only admissible if it characterises a
location l′ such that δ(l, l′) holds, where l is the location characterised by the
assignment decision at the previous decision level k. Hence, the consideration of
the control flow of the encoded system allows us to narrow down the number of
branches at each level. Moreover, the number of levels gets reduced to b – the
bound of the encoding. Our new algorithm BMCSAT that implements such a
decision level reduction and branch reduction is depicted below.

Beside the formula F and a decision level k ∈ N the recursive algorithm
takes a location l ∈ Loc of the encoded system as input. and eventually returns
an assignment α : Atoms(F ) → {0,1} satisfying F or an unsatisfiability result.
The assignment α is constructed incrementally. Hence, until the algorithm has
terminated α may be a partial assignment for F , i.e. its domain may not nec-
essarily contain all atoms of the input formula. The incremental construction
of the overall assignment happens via the concatenation of partial assignments
with disjoint domains: α◦α′. We write α(F ) to refer to the formula F under the
assignment α. For instance, the partial assignment α = {(a1,1)} for the formula
¬a1 ∨ a2 yields α(¬a1 ∨ a2) = 0 ∨ a2, which gets simplified to a2.

In Line 2 of the algorithm, unit propagation [17] is applied to the input
formula: If a clause of F is a unit (single-literal) clause it can only be satisfied by
assigning the underlying atom such that the literal is 1. This assignment will be
then propagated to the remaining clauses, the formula will be simplified, and unit
propagation will be repetitively applied as long as there exist further unit clauses
with unassigned atoms. The application of unit propagation yields a (possibly
partial) assignment α. In case α already satisfies F , BMCSAT returns α as a
satisfying assignment and terminates (Line 3). In case α makes the formula 0 the
algorithm terminates with an unsatisfiability result (Line 4). In every other case,

1 The Tseytin CNF transformation introduces a number of auxiliary atoms for each
sub formulae Tk−1,k. The assignment to all k-indexed location atoms by our enhanced
algorithm and the subsequent application of unit propagation will also immediately
assign truth values to the auxiliary atoms. Hence, the presence of auxiliary atoms
does not affect our approach.



Model Checking of Concurrent Systems via Heuristic-Guided SAT Solving 253

Algorithm 1. BMCSAT(F, k, l)
Data: CNF formula F , decision level k ∈ N, control flow location l ∈ Loc
Result: assignment α : Atoms(F ) → {0,1} satisfying F , or UNSAT

1 begin
2 α := unit-propagate(F )
3 if α(F ) = 1 then
4 return α
5 else if α(F ) = 0 then
6 return UNSAT
7 else
8 A := {α′ : LocAtomsk+1 → {0,1} | δ(l, α′)}
9 while A �= ∅ do

10 choose α′ ∈ A
11 A := A\{α′}
12 if α′′ := BMCSAT((α ◦ α′)(F ), k + 1, α′) �= UNSAT then
13 return α ◦ α′ ◦ α′′

14 return UNSAT

LocAtomsk+1 is identified as the set of atoms that will be assigned at the next
decision level (Line 8). Moreover, the set of possible assignments to LocAtomsk+1

is computed and then restricted to admissible ones by the condition δ(l, α′).
Note that since such assignments α′ always characterise control flow locations
l ∈ Loc, we can also use them as arguments of the transition relation δ of the
underlying control flow graph. In the Lines 9 to 13, BMCSAT is recursively
called resulting in a branch for each admissible assignment. The result of the
calls is then concatenated with the so far partial assignment. SAT solvers do
not generally explore all possible branches. Commonly, one branch is explored
at a time until a satisfiability result can be obtained or until the branch turns
out to be inexpedient. In the latter case conflict-driven clause learning with non-
chronological backtracking [2] is performed and an alternative branch is explored.
An excerpt of the branching tree for BMCSAT (F[0,2], 0, (00, 00)) where F[0,2] is
the 2-bounded encoding of our example verification task is depicted below.

LocAtoms0

LocAtoms1

LocAtoms2

. . .

LocAtoms2

SAT XX

LocAtoms2LocAtoms2

. . .. . .

(00, 00)

(01, 00) (10, 00)(00, 01) (00, 10)

(01, 10) (00, 11)
(10, 10)



254 N. Timm et al.

The sub formula Init0 of F[0,2] is a conjunction of unit clauses over
LocAtoms0 and V arAtoms0. Hence, the first application of unit propagation
will yield an assignment α : LocAtoms0 ∪ V arAtoms0 → {0,1} that char-
acterises the initial system state encoded in Init0. The control flow location
l = (00, 00) is part of this initial state. Subsequently, BMCSAT will iden-
tify LocAtoms1 as the set of location atoms that are assigned next. Based
on the transition relation δ of the control flow graph G = (Loc, δ, τ) the set
of admissible assignments (i.e. direct successor locations of (00, 00) in G) is
determined: {(00, 01), (00, 10), (01, 00), (10, 00)}. For each admissible assignment
BMCSAT is recursively called. The branch corresponding to the assignment
(00, 10) has three further branches at decision level 1. The corresponding assign-
ments are (01, 10), (10, 10) and (00, 11). Choosing the assignment (01, 10) for
LocAtoms2 and the subsequent application of unit propagation immediately
yields a satisfying assignment for F[0,2] and therefore proves that within two
steps an error state is reachable in the encoded system. Thus, our BMCSAT
only requires two decision levels in order to accomplish this SAT-based verifi-
cation task, whereas a general-purpose SAT solving algorithm would require at
least |LocAtoms1| + |LocAtoms2| decision levels. The reduction of decision lev-
els in our branching tree comes at the cost of an increase of branches at each
level. However, our concept of admissible assignments (i.e. branches) allows us
to reduce the number of branches that actually have to be explored – based on
the exploitation of control flow information. In our example at decision level 0
the admissible assignment concept allows us to reduce the number of branches
to be explored from 16 to only 4, and at level 1 each node of the search tree
now only has 3 instead of 16 branches. The extent to which branch reduction is
generally possible depends on the number of transitions in the CFG G. In case
G is a complete digraph with |Loc|2 transitions (i.e. all pairs of locations are
bi-directionally connected via direct transitions), then our branch reduction will
not have any effect and at each decision level we have to consider |Loc| branches.
However, for most realistic software systems represented as CFGs the number
of transitions is substantially smaller than |Loc|2. For the verification of such
systems the application of branch reduction can enable computational savings
of orders of magnitude, which we just exemplified based on our example. We
implemented our enhanced concepts, that we illustrated here based on BMC-
SAT, on top of the solver Sat4j. Moreover, we integrated a concept for heuristic
guided error detection into the solver which we introduce next.

5 Directed Model Checking via Heuristic SAT Solving

Directed model checking (DMC) [5] is a concept for guiding the state space explo-
ration via heuristics in order to accelerate the detection of errors. Such heuristics
are typically based on the structure of the system to be checked and the property
of interest. While DMC has been successfully used to improve automata- and
BDD-based model checking [5,7], this concept has not been transferred yet to
SAT-based bounded model checking. Here we show how the DMC concept can



Model Checking of Concurrent Systems via Heuristic-Guided SAT Solving 255

be integrated into our SAT-based bounded model checking approach such that
the performance of SAT solving algorithm profits from heuristic guidance.

Heuristic model checking algorithms exploit useful information to guide the
search. This information is given as an evaluation function h : S → N∞ that
estimates the distance from the current state 〈l, s〉 ∈ S to an error state where
S is the overall set of states. This is known as best-first search. The heuristic
function h is precomputed before the search starts. In [4] a concept for computing
such a h based on the system and the property to be checked is introduced and
it is shown that based on h the exploration of an explicit state space model can
be guided. Here we show that h can be also straightforwardly computed based
on our verification tasks and then used in order to guide the SAT solver.

The evaluation function of [4] combines distances in the control flow and
property-based heuristics. Our system under consideration is given as a compos-
ite CFG G composed of single CFGs Gi = (Loci, δi, τi) for each process. Thus,
we can easily compute a local distance function di : Loci × Loci → N∞ for each
process that returns the shortest directed path in Gi for a pair of its control flow
locations. Now the global distance function is defined as d(l, l′) :=

∑n
i=1 di(li, l′i)

where l, l′ ∈ Loc and l = (l1, . . . , ln). Remember that in our encoding-based app-
roach each l can be expressed by an assignment α : LocAtoms → {0,1}. Hence,
we can also use assignments α as arguments of the distance functions, as long
as the assignments characterise actual locations. Since the control flow distance
does not incorporate constraints induced by variable values, the function d gives
us an under-approximation of the length of a shortest path in the actual state
space. From [4] we also get a property-based evaluation function that extends
the distance-based one. Our property is the characterisation of an error state
given as an arbitrary propositional logic expression Errorb over the b-indexed
atoms. For the computation of the evaluation function it is sufficient to consider
the non-indexed equivalent Error. In our running example we had Error :=

(¬l1[1] ∧ l1[2] ∧ ¬q ∧ l2[1] ∧ ¬l2[2] ∧ ¬p) ∨ (l1[1] ∧ ¬l1[2] ∧ ¬p ∧ ¬l2[1] ∧ l2[2] ∧ ¬q)

We now can adapt the property-based evaluation function for our SAT-based
approach as follows. Let Error over Atoms = LocAtoms ∪ V arAtoms be a
formula characterising an error state. Let F and G be arbitrary sub formulae of
Error and a ∈ V arAtoms. Let enc(li) be a sub formula of Error characterising
a location li ∈ Loci. Then hError : A → NI∞ (where A is a set of assignments
characterising states of the encoded system) is inductively defined as follows:

htrue(α) := 0
hfalse(α) := ∞
ha(α) := if α(a) = 0 then 1 else 0
h¬a(α) := if α(a) = 1 then 1 else 0
hF∨G(α) := min{hF (α), hG(α)}
hF∧G(α) := hF (α) + hG(α)
henc(li)(α) := di(α, li)

With our running example we illustrate how h can guide the search of
the SAT solving algorithm BMCSAT in the right direction: We assume that



256 N. Timm et al.

at decision level 0 the atoms of LocAtoms1 have been assigned by (00, 10)
and we are currently at decision level 1. Hence, the atoms of LocAtoms2 will
be assigned next. The execution of Line 8 of our algorithm will yield the set
A = {(01, 10), (10, 10), (00, 11)} of admissible assignments. For our heuristically
enhanced approach, we replace Line 10 of BMCSAT by the following statement:

α′ := select-min(A, hError)

such that the branch resp. assignment α′ ∈ A with the heuristically estimated
shortest distance to an error state is selected for further expansion. For our three
candidates from A we thus get:

hError((01, 10)) := min{0 + 0, 3 + 3} = 0
hError((10, 10)) := min{3 + 0, 0 + 3} = 3
hError((00, 11)) := min{1 + 2, 1 + 2} = 3

Consequently (01, 10) is heuristically chosen as the assignment for
LocAtoms2. At the next level the application of unit propagation will immedi-
ately return a satisfying assignment for the encoding F[0,2] and thus prove that
an error state is reachable within two steps. Our heuristic guidance has thus
avoided the exploration of fruitless branches associated with the other admissi-
ble assignments. Thus we now have two new concepts for tuning SAT solving
for model checking:

– the introduction of set assignments and admissible assignments in BMCSAT
shrinks the total number of branches to be explored, and

– the heuristic function h additionally guides the search into fruitful branches

Our heuristic function does not yet incorporate the variable atoms, since
all α′ ∈ A only assign values to location atoms. For each a ∈ V arAtoms,
α′(a) is undefined, and consequently ha(α′) yields 0. Thus, in our current
approach any costs associated with variable atoms are ignored. A straight-
forward way to incorporate those atoms would be to compute the assignment
αVar := unit-propagate((α ◦ α′)(Tk,k+1)) for each α′ ∈ A, such that αVar would
extend α′ to all variable atoms with index k + 1. In such a manner the costs
associated with an a ∈ V arAtoms would then be estimated by ha(α′ ◦ αVar ).

6 Implementation and Experiments

We have prototypically implemented our SAT-based bounded model checker with
heuristic guidance on top of the solver Sat4j [6]. Our tool builds abstract CFGs
for a given concurrent system Sys and a set of predicates Pred. It supports
almost all control structures of the C language as well as int, bool, semaphore
as data types. Based on the CFGs and an input Error property (e.g. mutual
exclusion violation, deadlock) defined over locations and predicates, our tool
automatically constructs an encoding F of the corresponding verification task.
The checker now iterates over the bound b starting with b = 0, until a the



Model Checking of Concurrent Systems via Heuristic-Guided SAT Solving 257

reachability of an Error state can be proven or a predefined threshold for b is
reached. In each iteration the encoding is processed by an solver instance of Sat4j.
We have modified the solver such that it implements our proposed concepts of
set assignments, admissible assignments and property-based heuristic guidance
of the SAT search. For this, the heuristic function that estimates the distance
from the current state to an Error state is precomputed based on the abstract
CFGs and the Error property. In experiments we compared the performance
of our heuristic-guided solver with the performance under the general-purpose
solving of Sat4j. As input systems we used the concurrent Boolean program
benchmark collection of the CProver project2. The programs of the collection
implement device drivers with multiple threads i.e. processes. We checked for the
reachability of states with particular combinations of program locations which
we henceforth denote as error states. The experimental results are summarised
below.

Benchmark General-purpose Heuristic-guided

ib700wdt Reachable 11.3 s 2.7 s

Unreachable 27.6 s 39.2 s

sc1200wdt Reachable 306 s 35.7 s

Unreachable 124 s 143 s

i8xx tco Reachable 807 s 122 s

Unreachable 201 s 163 s

Machzwd reachable 97.0 s 31.6 s

Unreachable 11.3 s 10.7 s

The experiments were conducted on a 2.6 GHz Intel Core i5 with 8 GB. All
benchmark items consist of a set of concurrent programs. We checked all pro-
grams individually. For some programs of each item the outcome of verification
was the reachability of the error state, whereas for other programs an unreacha-
bility result was obtained. In the table we consider verification tasks with a reach-
ability result and those with an unreachability result separately. The displayed
times denote the average runtime of all reachability resp. all unreachability cases
of each benchmark item. Our experiments revealed that our heuristic approach
significantly enhances the solving performance of verification tasks where the
reachability of an error state can be finally proven, whereas verification tasks
with an unreachability outcome can be typically solved equally efficient with the
general-purpose and the heuristic approach. Hence, our new approach is particu-
larly useful for detecting errors in concurrent systems, while it does not introduce
any drawbacks in case no error can be detected. Our enhanced concepts allow us
to guide the SAT search into directions where errors will be most likely detected.

2 www.cprover.org/boolean-programs.

www.cprover.org/boolean-programs


258 N. Timm et al.

7 Conclusion

We presented a new approach for accelerating SAT-based model checking. We
defined a propositional logic state space encoding of concurrent systems that
preserves control flow information. Moreover, we designed an enhanced SAT
algorithm that exploits the structure of our encodings in order to reduce the
computational effort for solving the encoded verification task. The concepts set
assignments and admissible assignments allow to narrow down the number of
decision levels and branches to be explored. Furthermore, we introduced a heuris-
tic based on the property to be verified, which enables to guide the SAT search
into directions where a property violation will be most likely detected. The
heuristic approach facilitates further computational savings. We implemented
our state space encoding and integrated our enhanced SAT concepts into the
solver Sat4j. Our tool allows to perform guided SAT-based BMC with a consid-
erably faster error detection compared to BMC via general-purpose SAT solving.

References

1. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model
checking. In: Handbook of Satisfiability, pp. 457–481 (2009)

2. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Conflict-driven clause learning
SAT solvers. In: Handbook of Satisfiability, pp. 131–153 (2009)

3. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based pred-
icate abstraction for ANSI-C. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS
2005. LNCS, vol. 3440, pp. 570–574. Springer, Heidelberg (2005). doi:10.1007/
978-3-540-31980-1 40

4. Edelkamp, S., Lafuente, A.L., Leue, S.: Directed explicit model checking with HSF-
SPIN. In: Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 57–79. Springer, Hei-
delberg (2001). doi:10.1007/3-540-45139-0 5

5. Edelkamp, S., Schuppan, V., Bošnački, D., Wijs, A., Fehnker, A., Aljazzar, H.: Sur-
vey on directed model checking. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt
2008. LNCS (LNAI), vol. 5348, pp. 65–89. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-00431-5 5

6. le Berre, D., Parrain, A.: The Sat4J library, release 2.2. J. Satisfiability Boolean
Modeling Comput. 7, 59–64 (2010)

7. Reffe, F., Edelkamp, S.: Error detection with directed symbolic model checking.
In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp.
195–211. Springer, Heidelberg (1999). doi:10.1007/3-540-48119-2 13

8. Shtrichman, O.: Tuning SAT checkers for bounded model checking. In: Emerson,
E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 480–494. Springer, Hei-
delberg (2000). doi:10.1007/10722167 36

9. Wang, C., Jin, H., Hachtel, G.D., Somenzi, F.: Refining the SAT decision ordering
for bounded model checking. In: DAC, pp. 535–538. ACM (2004)

10. Demsky, B., Lam, P.: SATCheck: SAT-directed stateless model checking for SC
and TSO. In: ACM SIGPLAN Notices, pp. 20–36. ACM (2015)

11. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI, pp. 399–404 (2009)

http://dx.doi.org/10.1007/978-3-540-31980-1_40
http://dx.doi.org/10.1007/978-3-540-31980-1_40
http://dx.doi.org/10.1007/3-540-45139-0_5
http://dx.doi.org/10.1007/978-3-642-00431-5_5
http://dx.doi.org/10.1007/978-3-642-00431-5_5
http://dx.doi.org/10.1007/3-540-48119-2_13
http://dx.doi.org/10.1007/10722167_36


Model Checking of Concurrent Systems via Heuristic-Guided SAT Solving 259

12. Andisha, A.S., Wehrle, M., Westphal, B.: Directed model checking for PROMELA
with relaxation-based distance functions. In: Fischer, B., Geldenhuys, J. (eds.)
SPIN 2015. LNCS, vol. 9232, pp. 153–159. Springer, Cham (2015). doi:10.1007/
978-3-319-23404-5 11

13. Maeoka, J., Tanabe, Y., Ishikawa, F.: Depth-first heuristic search for software
model checking. In: Lee, R. (ed.) Computer and Information Science 2015. SCI,
vol. 614, pp. 75–96. Springer, Cham (2016). doi:10.1007/978-3-319-23467-0 6

14. Schrieb, J., Wehrheim, H., Wonisch, D.: Three-valued spotlight abstractions. In:
Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 106–122.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-05089-3 8

15. Tseytin, G.S.: On the complexity of derivation in propositional calculus. In: Stud-
ies in Constructive Mathematics and Mathematical Logic, pp. 115–125. Steklov
Mathematical Institute (1970)

16. Gelder, A.: Improved conflict-clause minimization leads to improved propositional
proof traces. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 141–146.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02777-2 15

17. Zhang, H., Stickel, M.: An efficient algorithm for unit-propagation. In: 4th Interna-
tional Symposium on Artificial Intelligence and Mathematics, pp. 166–169 (1996)

http://dx.doi.org/10.1007/978-3-319-23404-5_11
http://dx.doi.org/10.1007/978-3-319-23404-5_11
http://dx.doi.org/10.1007/978-3-319-23467-0_6
http://dx.doi.org/10.1007/978-3-642-05089-3_8
http://dx.doi.org/10.1007/978-3-642-02777-2_15

	Model Checking of Concurrent Software Systems via Heuristic-Guided SAT Solving
	1 Introduction: Motivation and Related Work
	2 Concurrent Software Systems
	3 Propositional Logic Encoding
	4 Enhanced SAT Solving for Encoded Verification Tasks
	5 Directed Model Checking via Heuristic SAT Solving
	6 Implementation and Experiments
	7 Conclusion
	References




