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Abstract. While mutation testing is considered to be an effective technique in
software testing, there are some impediments to its widespread use in industrial
projects. One of these challenges is the equivalent mutant problem, and a line of
research is dedicated to proposing new methods for addressing this problem.
Trivial Compiler Equivalence (TCE) method is recently introduced as a simple
technique that actually relies only on the optimizations made by the compiler. It
is shown by empirical studies that employing TCE with the gcc compiler results
in a fast and effective technique for detecting equivalent mutants in C programs.
However, considering the fact that the Java compilers generally do not perform
noticeable optimizations, the question is how effectively does TCE perform on
Java programs? In this paper, experimental evaluations are discussed which
demonstrate that using TCE technique with javac compiler results in very poor
performance. As a result, this paper proposes to use the Java obfuscators as the
complementary component, because of the optimizations they make. The
experimental evaluations confirm that using TCE with the ProGuard obfusca-
tion tool provides an effective and efficient method for detecting equivalent
mutants in Java programs.

Keywords: Mutation testing � Equivalent mutant � Trivial compiler
equivalence � Java

1 Introduction

Mutation testing is considered to be an effective approach to evaluate and also to
improve an existing test set [1]. It works based on the notion of mutants, where each
mutant is created by making a simple modification on the program under test. The set
of possible modifications are defined by the mutation operators that are defined for the
programming language of the target program. If there is a test set that the program has
successfully executed on, then mutation testing can be applied to provide a measure of
the quality of that test set. This is performed by running each mutant M on the test
cases to investigate whether the test cases are powerful enough to detect the injected
fault, i.e. the mutation. If the result of running the mutant on a test cases is different
from the result of running the original program on that test case, then the test case has
been able to distinguish, or kill, that mutant. The greater ratio of the mutants of the
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program are killed by the test set, the higher is the score of that test set. Finally, if there
remains any live mutant, i.e. mutants that are not killed by any test case, then there are
two possible cases for each live mutant: (1) whether this is a sign of the weakness of the
test set, or (2) the mutant is an equivalent mutant, i.e. the corresponding mutation has
made a syntax change without changing the semantic, and hence, the mutant cannot be
killed by any test case.

When applying mutation testing, a method is necessary to distinguish which of the
above cases holds for a live mutant. Without differentiating these two cases, it is
possible that the test case designer wastes his time and effort in trying to find a test case
for killing an equivalent mutant, which is actually not killable. Further, an equivalent
mutant may cause the quality of the test set to be underestimated.

While mutation testing has been empirically proven to be able to simulate
real-world programming errors [24], and hence to be an effective method for evaluating
and improving test sets, there some non-negligible impediments towards its application
in industrial software. The first problem is that mutation testing is a costly method,
since the number of possible mutants, even for a relatively small program is usually
high. Creating the mutants, compiling and executing them over the test cases and
comparing the execution result usually requires noticeable time and computation
resources.

Another problem is the equivalent mutants introduced before. Consequently, dif-
ferent approaches have been introduced during the last two decades for addressing this
problem by employing different techniques like machine learning [14], logical con-
straint solving [15], data flow pattern analysis [8], gamification [17], program slicing
[10] and code similarity measures [13]. One of the approached introduced recently, is
the Trivial Compiler Equivalence (TCE) approach [12] which is a simple, fast and
effective technique for detecting equivalent mutants.

The TCE technique actually relies on the optimizations performed by the compiler,
and it tries to determine equivalence of a mutant by comparing it with the original
program, in their binary, i.e. compiled, format. TCE has been evaluated in [12] on C
programs using the gcc compiler that is capable of performing different levels of
optimizations when compiling the program. The evaluations have shown that TCE is
an effective method for equivalent mutant detection in C programs. Considering Java
programs, however, TCE is not expected to perform noticeably, since the Java compiler
performs almost no specific optimization, and it leaves the optimizations to be per-
formed by Java Virtual Machine at runtime (JVM) [26]. We believe there is room for
evaluating the TCE technique on Java programs. Hence, in this paper, we experi-
mentally evaluate performance of TCE on Java programs, and further, we introduce
TCE+ as an extension of TCE which utilizes the ProGuard1 Java obfuscator in addition
to the compiler to address the lack of compiler optimizations.

The rest of the paper is organized as follows. Section 2 briefly reviews the related
works. In Sect. 3, the experimental evaluation of the TCE and TCE+ techniques on
Java programs is discussed. Finally, Sect. 4 concludes the paper.

1 http://proguard.sourceforge.net/.
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2 Related Work

In order to address the equivalent mutant problem in the mutation testing domain,
different approaches have been proposed during the last two decades. This problem, in
its general form is an undecidable problem [2, 3] and therefore it is not expected to be
able to find an automated method that can solve every instance of this problem cor-
rectly and completely. As a result, some of the proposed approaches employ heuristics
or limit the characteristics of the program under study, for instance restricting the
number of iterations of the loops [25]. A literature review on the approaches for
tackling with the equivalent mutant problem is provided in [4], where it is concluded
that the equivalent mutant detection techniques are still “far from perfect”.

Some works attempt to deterministically determine whether a specific mutant is
equivalent or not. For instance, in [8, 18] a set of 9 data flow patterns is introduced that
result in equivalent mutants. In addition, a framework is proposed which uses static
analysis of data flow to check each mutant of a program against these patterns. If a
mutant follows one of the predefined patterns, then it is equivalent, otherwise it is
considered to be non-equivalent. As another example, [15] introduces a technique that
extracts a set of logical constraints from a mutant such that solving those constraints
proves that the mutant is equivalent to the original program. Then, the constraints are
given to a constraint solver tool for the purpose of detecting equivalent mutants. The
method assumes certain characteristics on the mutants which limits applicability of the
method (e.g. recursive functions are not supported). A similar approach based on
constraint solving techniques is also introduced in [16].

Some works implicitly use the idea that for an undecidable problem, it is not
possible to provide a complete automated solution and hence human intervention is
unavoidable. Therefore, they try to help the human experts in analyzing the mutants
and in making decision about their equivalence. This help can be provided in form of
identifying the mutants that are more likely to be equivalent. Therefore, these methods
follow a inexact approach and generate a recommended list of mutants, ordered by their
equivalence probability, that need to be manually analyzed by the human expert to
make the final decision. For instance, in [11], the idea is that the probability that a
mutant is not equivalent is related to how its coverage on a specific test set differs from
the coverage of the original program. In other words, the greater the coverage is
affected, the lower is the probability of the mutant being equivalent. A similar approach
for determining equivalent mutants based on the coverage impact is also proposed in
[5, 6]. Machine learning techniques are also used in some works like [14] to provide a
probabilistic approach to detection of equivalent mutants.

Another example of the works that count on human involvement for detection of
equivalent mutants is [17] that uses gamification technique. It introduces a two-player
game in which one player tries to create mutants that are hard to kill, and the other one
tries to introduce test cases that kill the mutants. The game indirectly can contribute to
detecting mutants that are more likely to be equivalent.

Another group of works try to avoid creation of equivalent mutants by more
advanced mutation generation techniques. For instance, [19] proposes to consider the
fact that different mutation operators perform differently from the point of view of the
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difficulty of killing their resulting mutants. This can be employed to selectively use
mutation operators that less frequently create equivalent mutants. Another group of
works have shown that using higher order mutants instead of first-order mutants can
reduce the number of equivalent mutants generated for a program [9, 20–22].

Other techniques that have been used for exact equivalent mutant detection include
code similarity measures and clone detection techniques [13], program slicing tech-
niques [10], co-evolution algorithms [7].

An interesting approach that is recently proposed for detection of the equivalent
mutants is the TCE approach [12], which uses a very simple and straightforward
technique. TCE works based on the idea that the advanced optimizations performed by
a compiler can remove some type of the mutations that have not affected the semantic
of the program, and hence if the equivalent mutant is compiled, the result of compiling
can be the same as the result of compiling the original program. It is demonstrated
through experimental evaluations that the TCE technique is successful in effectively
detecting equivalent mutants of a C program using the gcc compiler optimizations.
However, since the Java compilers generally do not perform noticeable optimizations,
the performance of TCE on Java programs needs to be investigated. As a result, current
paper proposes TCE+ technique as an extension of TCE that utilizes ProGuard for the
purpose of optimizing Java code. In addition to performing different optimizations, e.g.
dead code removal, unused variable removal and peephole optimizations, ProGuard is
also able to obfuscate, shrink and pre-verify Java byte codes. However, TCE+ uses
ProGuard only for the purpose of optimizations and it does not use obfuscation or
shrinking capabilities of ProGuard. It is beyond the scope of this paper to describe the
optimization techniques employed by ProGuard or gcc, however, Table 1 briefly
mentions some of the main optimizations performed by each of these tools.

In [12], TCE has been shown to be able to find, in addition to equivalent mutants,
the duplicated mutants, i.e. mutants that are equivalent to each other, but not neces-
sarily equivalent to the original program. Since there is no advantage in using two
duplicated mutants, it is interesting to be able to detect duplicated mutants. In this
paper, we evaluate the TCE and TCE+ methods for the purpose of detecting equivalent
and duplicated mutants of Java programs.

Table 1. Some of the optmization techniques employed by the subject tools

Tool Optimization techniques

gcc Compiler Dead Code Elimination, Transforming Conditional Jumps, Constant Folding,
De-Virtualization, Function Inlining, Predictive Commoning, Elimination of
Useless Null Pointer Checks, Peephole Optimization, Global Common
Subexpression Elimination

ProGuard Dead Code Elimination, Peephole Optimization, Marking Classes as Final,
Variable Allocation Optimization, Method Inlining, Return Value
Propagation, Removing Write-only Fields
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3 Experimental Study

In this section, the experimental evaluation of the TCE and TCE+ approaches over Java
programs is discussed. First, the research questions are introduced and then, different ele-
ments of the experiments are described. Finally, the results of the experiments are discussed.

3.1 Research Questions

Since the TCE approach has been shown to be both effective and efficient in detecting
equivalent and duplicated mutants in C programs, the main research question this paper
seeks to answer is:
RQ. How do the TCE and TCE+ approaches perform on Java programs?

To answer this question, two more specific research questions are introduced.
RQ1. How effective are the TCE and TCE+ approaches at detecting equivalent and

duplicated mutants in Java programs?
To answer this question, the number of equivalent and duplicated mutants
detected by the TCE and TCE+ techniques, and also the ratio of the detected
equivalent mutants to the existing equivalent mutants is reported.

RQ2. How efficient is TCE+ for the purpose of equivalent mutant detection?
This question is answered by computing the execution time of the TCE+
approach to see if it is efficient enough to be used in practice. While we have
not evaluated TCE+ on large programs, we believe that the efficiency of the
technique for the large programs can be estimated based on the results
obtained for the small programs.

3.2 Dataset and Golden Standard

For the purpose of the experimental evaluations, first, a dataset is prepared including 5
java programs, and then, for each program, its mutants are created by the MuJava
mutation testing tool [23]. Table 2 shows the name of each program, its size in terms of
physical Source Line of Code (SLOC) and the number of its mutants. The mutation
operators that MuJava has applied on the subject programs are mentioned in Table 3.

In addition, a golden standard is created by manually checking each mutant of the
subject programs to determine whether it is equivalent to the original program. This
manual analysis is performed separately by three experts who have had more than 10
years of experience in object oriented programming in Java. After each expert has

Table 2. Dataset used in the experiments

Program Subject program Physical SLOC Number of mutants

P1 BubbleSort 15 111
P2 Bisect 25 189
P3 Triangle 46 456
P4 QuickSort 50 341
P5 java.util.StringTokenizer 174 772

168 M. Houshmand and S. Paydar



finished his job, the results have been compared so that any possible conflict is
resolved. Actually, there were 7 such cases that needed the experts to discuss with each
other to agree on the result.

3.3 Experimental Environment

All the experiments are performed on a PC with Microsoft Windows 7 operating system,
Intel Core i5-4400 processor and 8 GB RAM. Further, we have used the Oracle’s Java
compiler javac version 1.8.0_60 to compile the programs and the mutants, and also
ProGuard 5.3 to optimize the compilation results. Finally, for the purpose of comparing
the binary files, theWindows utility program FC is usedwith the parameters /B and /LB1.

3.4 Experiments

To answer the research questions, four experiments are designed. The first two exper-
iments evaluate the TCE and TCE+ techniques for the purpose of equivalent mutant

Table 3. Mutation operators applied by MuJava on the subject programs

Operator Operator definition

AODS: Short-cut Arithmetic
Operator Deletion

{(x,remove(x)) | x 2 {++, −−}}

AODU: Unary Arithmetic
Operator Deletion

{(−v, v)}

AOIS: Short-cut Arithmetic
Operator Insertion

{(v, −−v), (v, v–), (v, ++v), (v, v++)}

AOIU: Unary Arithmetic
Operator Insertion

{(v, −v)}

AORB: Binary Arithmetic
Operator Replacement

{(x,y) | x,y 2 {+, −, *, /, %} ^ x 6¼ y}

AORS: Shortcut Arithmetic
Operator Replacement

{(x,y) | x,y 2 {++, −−} ^ x 6¼ y}

ASRS: Shortcut Assignment
Operator Replacement

{(x,y) | x,y 2 {+=, −=, *=, /=, %=} ^ x 6¼ y}

CDL: Constant DeLetion {(op c, remove(op c)) | op 2 {+, −, *, /, %, >, >=, <, <=}}
COD: Conditional Operator
Deletion

{(!(e), e) | e 2 {if(e), while(e), for(s; e; s)}}

COI: Conditional Operator
Insertion

{(e, !(e)) | e 2 {if(e), while(e), for(s; e; s)}}

COR: Conditional Operator
Replacement

{(x,y) | x,y 2 {&&, ||, ^} ^ x 6¼ y}

LOI: Logical Operator Insertion {(v, � v)}
ODL: Operator DeLetion {(v op, remove(v op)), (op v, remove(op v)) | op 2 {+, −, *, /, %, <,

<=, >, >=}}, {(v++, v), (v−−, v), (−−v, v), (++v, v) | op 2 {++, –}}
ROR: Relational Operator
Replacement

{(x,y) | x,y 2 {>, >=, <, <=, ==, !=} ^ x 6¼ y}

SDL: Statement DeLetion {(s, remove(s))}
VDL: Variable DeLetion {(v [op], remove(v [op])) | op 2 {+, −−, *, /, %, ++, –, <, <=, >, >=}
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detection and the second two experiments evaluate them for detecting duplicated
mutants. The processes used in these experiments are shown in Figs. 1, 2, 3 and 4.

Input: P (original program) 
Output: EM (list of the equivalent mutants of P) 

//compile step
compile P to Pclass
for each mutant M of P
compile M to Mclass

//comparison step
for each mutant M of P
result = compare Mclass to Pclass
if (result == 'no difference')
add M to EM

return EM

Fig. 1. Process of experiment 1: TCE for equivalent mutant detection

Input: P (original program) 
Output: EM (list of the equivalent mutants of P) 

//compile step
compile P to Pclass
for each mutant M of P
compile M to Mclass

//optimization step
convert Pclass to Pjar
optimize Pjar to Pjar,op
extract Pclass,op from Pjar,op
Pclass = Pclass,op
for each mutant M of P 
convert Mclass to Mjar
optimize Mjar to Mjar,op
extract Mclass,op from Mjar,op
Mclass = Mclass,op

//comparison step
for each mutant M of P
result = compare Mclass to Pclass
if (result == 'no difference')
add M to EM

return EM

Fig. 2. Process of experiment 2: TCE+ for equivalent mutant detection
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In the first experiment, for each subject program P, P is compiled to Pclass and each
mutant M of P is compiled to Mclass. Then each compiled mutant Mclass is compared to
the Pclass. If no difference is identified in this comparison, it is considered that TCE has
determined the corresponding mutant as an equivalent mutant.

The second experiment evaluates the TCE+ approach by including an optimization
phase before the comparison step. In order to perform the optimization, first a jar file is
created from the compiled file, i.e. Pclass or Mclass. The jar file is then given to ProGuard
to do the optimizations. The resulting jar file is then decompressed to extract the
optimized compiled file which then goes through the binary comparison.

In the third experiment, each compiled mutant of the program is compared to all
other compiled mutants of that program that have the same file size. If there is no
difference between the corresponding binary files, those two mutants are added as a
pair to the list of duplicated mutants. After processing all the mutants, a simple
algorithm shown in Fig. 3 is used to determine the list of mutants that can be removed.

The fourth experiment is very similar to the third experiment and the only differ-
ence is that it compares the optimized version of the compiled mutants which are
created by the process described for the second experiment.

Input: P (original program) 
Output: DM (list of the removable duplicated mutants of 
P) 

//compile step
for each mutant M of P
compile M to Mclass

//comparison step
Pairs: empty list
for each mutant M1 of P
for each mutant M2 of P
if (M1 != M2 and filesize(M1class)==filesize(M2class))

result = compare M1class to M2class
if (result == 'no difference')
add pair(M1, M2) to Pairs

//removal step
sort Pairs based on the first element of the pairs
for each Pair in Pairs

M1 = first element of Pair
M2 = second element of Pair
if not (DM contains M1)

add M2 to DM
return DM

Fig. 3. Process of experiment 3: TCE for duplicated mutant detection
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3.5 Result Analysis

The results of the first two experiments are shown in Table 4. As it is shown in this
table, TCE approach has not detected any equivalent mutant in the subject programs.
Therefore, it can be concluded that since the Java compiler does not perform noticeable
optimizations [26], applying TCE on Java programs is not effective for detecting
equivalent mutants. However, the TCE+ technique, which compensates the limitation
of the Java compiler by utilizing ProGuard’s optimizations, has identified some
equivalent mutants for each of the subject programs. Therefore, TCE+ has been able to
address the shortcomings of the TCE method. However, the number of detected
equivalent mutants is small and at the best case, i.e. the Bisect program, it accounts for

Input: P (original program)
Output: DM (list of the removable duplicated mutants of 
P) 

//compile step
for each mutant M of P
compile M to Mclass

//optimization step
for each mutant M of P
convert Mclass to Mjar
optimize Mjar to Mjar,op
extract Mclass,op from Mjar,op

 Mclass = Mclass,op
//comparison step
Sort mutations based on their file size
for each mutant M1 of P
if (M1 in DM)
continue;

for each mutant M2 of P 
if (M2 in DM)
continue;

if (M1 != M2
and filesize(M1class) == filesize(M2class))
result = compare M1class to M2class
if (result == 'no difference')
add M2 to DM

else
break;

return DM

Fig. 4. Process of experiment 4: TCE+ for duplicated mutant detection
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only 7% of all the mutants. The worst case is also the BubbleSort program that the
detected equivalent mutants are only 2% of all the mutants.

In order to judge the effectiveness of the TCE+ approach, it is required to know the
ratio of the detected equivalent mutants to all the existing equivalent mutants. There-
fore, the results of the first two experiments have been compared with the golden
standard. As shown in the last column of Table 4, TCE+ has been able to detect from
18% to 100% of all the existing equivalent mutants. It has missed 9, 2 and 7 equivalent
mutants respectively for the BubbleSort, QuickSort and StringTokenizer programs. For
the other two programs, i.e. Bisect and Triangle, all the existing equivalent mutants
have been found by TCE+ .

Based on these results, we conclude that TCE+ is generally effective and it is
successful in detecting a good ratio of the existing equivalent mutants. However, it is
interesting to analyze the detected and undetected equivalent mutants based on their
mutation operators.

The distribution of the mutation operators over all the generated mutants is shown
in Table 5. The top-3 mutation operators that have created the greatest proportion of
the mutants are AOIS, ROR and SDL, which have created respectively 33%, 20% and
10% of all the mutants. There are some operators like AOSE and AODU that have
negligible contribution to the number of mutants created.

In Table 6, the distribution of the mutation operators over all the existing equiv-
alent mutants is shown. An interesting point is that the AOIS operator which has
created about 33% of all the mutants is also responsible for creating about 77% of all
the equivalent mutants in the golden standard. Further, the ROR operator has created
about 14% of all the equivalent mutants. From another point of view, about 13% of the
mutants created by the AOIS operator have been equivalent. This value for the ROR
operator has been about 4%. This means that the performance of the TCE+ technique
over these two mutation operators is of greater importance, compared to other mutation
operators.

Table 4. Results of experiments 1 and 2: Detecting equivalent mutants

Program Number of detected
equivalent mutants

Percentage of
detected equivalent
mutants to all
mutants

Percentage of
detected equivalent
mutants to all
existing equivalent
mutants

TCE TCE+ TCE TCE+ TCE TCE+

P1 0 2 0 2 0 18
P2 0 14 0 7 0 100

P3 0 23 0 5 0 100
P4 0 10 0 3 0 83

P5 0 34 0 4 0 83
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The distribution of the mutation operators over all the equivalent mutants that are
found by TCE+ is shown in Table 7. Comparing this table with Table 6 shows that
TCE+ has successfully detected all the equivalent mutants created by the AOIS
operator, which account for about 77% of all the equivalent mutants. Hence, consid-
ering the ratio of AOIS-generated equivalent mutants, it can be concluded that the TCE
+ approach is an effective method for detection of equivalent mutants in Java programs.
However, it is also important to note that TCE+ has not detected any of the 14
equivalent mutants created by the ROR operator (5 for BubbleSort, 2 for QuickSort and
7 for StringTokenizer). It also has missed 4 other equivalent mutants of BubbleSort, 2
created by the AORB operator, 1 by ODL and 1 by the CDL operator.

Regarding detection of the duplicated mutants, the results of the third and the fourth
experiments are presented in Table 8. This table shows that TCE and TCE+ have
identified respectively from 8% to 14% and from 13% to 23% of the mutants of the
subject programs as being duplicated. Since the duplicated mutants do not contribute to
the mutation testing results, they can be removed from the mutants. Considering all the
five subject programs, TCE and TCE+ have identified respectively 9% and 16% of all
the mutants as being duplicated. As a result, we conclude that while TCE+ noticeably
outperforms TCE, both approaches are effective in detecting duplicated mutants.

An interesting point is that while TCE has not detected any equivalent mutant, but
it has detected non-negligible number of duplicated mutants. Further analysis of the

Table 5. Distribution of the mutation operators over all the mutants

Program Mutation operator

AODS AODU AOIS AOIU AORB AORS ASRS CDL COD COI COR LOI ODL ROR SDL VDL

P1 30 3 16 2 4 3 11 8 19 10 5

P2 80 13 32 2 3 16 19 14 10

P3 128 11 36 3 24 14 43 32 119 31 15

P4 2 108 18 36 6 8 9 40 20 55 28 11

P5 2 262 33 7 20 6 39 20 80 33 163 100 7

Total 2 2 608 78 120 15 20 17 6 78 34 174 109 375 183 48

Ratio
(%)a

<1 <1 33 4 6 1 1 1 <1 4 2 9 6 20 10 3

a Percentage to all the mutants

Table 6. Distribution of the mutation operators over the existing equivalent mutants

Program Mutation operator

AODS AODU AOIS AOIU AORB AORS ASRS CDL COD COI COR LOI ODL ROR SDL VDL

P1 2 2 1 1 5

P2 12 2

P3 20 1 1 1

P4 10 2

P5 34 7

Total 0 0 78 3 2 0 0 1 0 0 0 0 2 14 0 1

Ratio (%)a 0 0 77 3 2 0 0 1 0 0 0 0 2 14 0 1
a Percentage to Existing Equivalent Mutants
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results reveals that the detected duplicated mutants are not a result of the optimizations
made by TCE, but they are resulted from the fact that applying some MuJava mutation
operators on some program statements may create exactly the same syntactic changes.
In other words, for each pair of duplicated mutants detected by TCE, both mutants are
syntactically-equal. An example pair is shown in Table 9. While TCE+ has detected all
the duplicated mutants found by TCE, it has also detected other results which are
syntactically different but semantically duplicated. An example is shown in Table 10.

Another interesting point is that, as shown in Table 11, 44% of all the duplicated
mutants detected by TCE are created by the ROR operator. The other 23% are asso-
ciated with the VDL operator. Only about 1% of the detected duplicated mutants are
results of the AOIS operator. The results for the TCE+ technique are also presented in
Table 12. This table shows that, compared to TCE, the TCE+ technique is able to
detect the duplicated mutants that are created by a wider set of mutation operators.
Actually, TCE+ has detected duplicated mutants of type AOI, AORB, CDL and LOI
operators, of which none is detected by the TCE method.

Finally, to answer RQ1, we conclude that TCE is not effective for detecting
equivalent mutants of Java programs, but it can effectively detect the duplicated
mutants. Further, TCE+ is effective for detecting both equivalent and duplicated
mutants.

Table 7. Distribution of the operators over the equivalent mutants detected by TCE+

Program Mutation operator

AODS AODU AOIS AOIU AORB AORS ASRS CDL COD COI COR LOI ODL ROR SDL VDL

P1 2

P2 12 2

P3 20 1 1 1

P4 10

P5 34

Total 0 0 78 3 0 0 0 0 0 0 0 0 1 0 0 1

Ratio (%)a 0 0 94 4 0 0 0 0 0 0 0 0 1 0 0 1
a Percentage to all equivalent mutants detected by TCE+

Table 8. Results of experiments 3 and 4: Detecting duplicated mutants

Program Number of detected
duplicated mutants

Percentage of
detected duplicated
mutants to all mutants

TCE TCE+ TCE TCE+

P1 15 25 14 23
P2 16 31 8 16
P3 52 89 11 20
P4 34 59 10 17
P5 60 99 8 13
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In order to evaluate efficiency of TCE+ for detecting equivalent mutants, its exe-
cution time for different steps, i.e. (1) compiling the mutants, (2) optimization of the
compiled mutants, and (3) comparison of the optimization results, is separately mea-
sured for each subject program. The process of detecting duplicated mutants also
includes the first two steps, but in the third step, it compares the optimization results
differently. Therefore, the execution time of this step is also measured to evaluate
efficiency of TCE+ for detecting duplicated mutants. The results are presented in
Table 13.

Table 9. An example duplicated mutant detected by TCE

Original statement Mutant by ODL operator Mutant by CDL operator

x = (M + x)/2; x = M + x; x = M + x;

Table 10. An example duplicated mutant detected by TCE+ but missed by TCE

Original Statement Mutant by AOIS Operator Mutant by AOIS Operator

public void setEpsilon
(double epsilon) {this.
mEpsilon = epsilon;}

public void setEpsilon
(double epsilon) {this.
mEpsilon = epsilon−−;}

public void setEpsilon
(double epsilon) {this.
mEpsilon = epsilon++;}

Table 11. Distribution of the operators over the duplicated mutants detected by TCE

Program Mutation Operator

AODS AODU AOIS AOIU AORB AORS ASRS CDL COD COI COR LOI ODL ROR SDL VDL

P1 4 3 3 5

P2 4 2 10

P3 3 27 7 15

P4 2 10 9 5 8

P5 8 39 11 2

Total 0 0 2 0 0 0 0 0 0 0 0 0 29 78 28 40

Ratio (%)a 0 0 1 0 0 0 0 0 0 0 0 0 16 44 16 23
a Percentage to all duplicated mutants detected by TCE

Table 12. Distribution of the operators over the duplicated mutants detected by TCE+

Program Mutation Operator

AODS AODU AOIS AOIU AORB AORS ASRS CDL COD COI COR LOI ODL ROR SDL VDL

P1 1 4 4 4 4 3 5

P2 13 2 4 2 10

P3 19 1 3 1 1 4 38 7 15

P4 14 6 6 10 10 5 8

P5 34 8 43 12 2

Total 0 0 81 3 13 0 0 11 0 0 0 1 30 95 29 40

Ratio (%)a 0 0 27 1 4 0 0 4 0 0 0 0 10 31 10 13
a Percentage to all duplicated mutants detected by TCE+
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As shown in Table 13, the execution times of detecting equivalent mutants and
duplicated mutants do not differ noticeably, and they are about 1s per mutant. Therefore,
to answer RQ2, we conclude that TCE+ can be considered as an efficient method.
Further, the comparison times, both for equivalent and duplicated mutants, are negli-
gible. However, the optimization time is about 2–3 times the compile time. It is worth
noting that the compile time is an inherent overhead of mutation testing, since in
mutation testing, each mutant should be compiled and executed against the test cases.
Therefore, the overhead imposed by TCE+ is the optimization time. Considering the fact
that TCE+ can effectively detect equivalent and duplicate mutants, and these mutants do
not need to be executed over the test cases, it means that TCE+ reduces the cost of
mutation testing by reducing the number of mutants that need to be run and specially by
removing the mutants that due to their equivalence, can waste the time of the test case
designers. Hence, we believe the overhead of optimization time which involves CPU
cycles can be considered as acceptable by the reduction it provides in required human
effort. Consequently, we conclude that TCE+ is cost effective.

4 Conclusion

In this paper, the performance of TCE technique for detecting equivalent mutants in
Java programs is evaluated. As the experimental evaluations have demonstrated, TCE
has not detected any equivalent mutant in the subject programs and hence it cannot be
considered to effective. To address this problem, current paper has proposed the TCE+
technique which extends TCE by utilizing an obfuscator like ProGuard, capable of
performing some optimizations on Java programs.

The experimental evaluations show that while there are mutation operators like
ROR for which TCE+ performance is weak, there are also operators like AOIS that
TCE+ is able to find all of its equivalent mutants. Considering the contribution of each
operator to the number of equivalent mutants of a typical program, TCE+ can be
considered to be an effective and efficient method for detecting both equivalent and
duplicated mutants for Java programs.

Current paper has investigated performance of TCE+ on small programs. Hence, it
is required to perform similar experiments on larger Java programs to see how the
performance of TCE+ changes as the program size increases. A challenge in this regard

Table 13. Execution time of TCE+ for detecting equivalent and duplicated
mutants

Program Execution time (s)

Compile Optimization Comparison for
detecting
equivalent
mutants

Comparison for
detecting
duplicated
mutants

Total for
detecting
equivalent
mutants

Total for
detecting
duplicated
mutants

P1 36 68 1 1 105 105
P2 57 124 3 1 184 182
P3 137 289 6 3 432 429
P4 101 188 5 2 294 291
P5 235 617 12 5 864 857
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is preparation of the golden standard, since for large programs, the number of mutants
is noticeable and it needs considerable effort to build a reliable golden standard. This is
a main direction of our future work. Further, more precise analysis of the behavior of
TCE+ on different mutation operators is an important job that we have scheduled for
our future works. The results of such analysis will provide insights on possible
improvements on ProGuard from the specific point of view of equivalent mutant
detection.
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