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Abstract. In this paper we investigate the upward embedding problem
on the horizontal torus. The digraphs that admit upward embedding
on this surface are called horoidal digraphs. We shall characterize the
horoidal digraphs, combinatorially. Then, we construct a new digraph
from an arbitrary digraph in such a way that the new digraph has
an upward embedding on sphere if and only if it is horoidal. By using
these constructed digraphs, we show that the decision problem whether
a digraph has an upward embedding on the horizontal torus is NP-
Complete.
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1 Introduction

We call a digraph horoidal if it has an upward drawing with no edge crossing on
the horizontal torus; an embedding of its underlying graph so that all directed
edges are monotonic and point to the direction of z-axis. Throughout this paper,
by surfaces we mean two-dimensional compact orientable surfaces such as sphere,
torus and connected sum of tori with a fixed embedding in three-dimensional
space R

3. In this paper we deal with upward drawing with no edge crossing
(hereafter it will be referred as upward embedding) on a special embedding of
the ring torus in R

3 which we call the horizontal torus. This surface is denoted
by Th.

There are major differences between graph embedding and upward embed-
ding of digraphs. Despite the fact that the vertical torus and the horizontal torus
are two special embeddings of the ring torus in three-dimensional space R

3, and
are topologically equivalent, Dolati, Hashemi and Khosravani [11] have shown
that a digraph with the underlying graph with genus one, may have an upward
embedding on the vertical torus, and may fail to have an upward embedding on
the horizontal torus. In addition, while Filotti, Miller and Reif [12] have shown
that the question whether an undirected graph has an embedding on a fixed sur-
face has polynomial time algorithm, the decision problem of upward embedding
testing is NP-complete, even on sphere and plane. In the following we review
the results on upward embedding from the characterization and computational
complexity point of view.
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1.1 Plane

A digraph is called upward planar if it has an upward embedding on the plane.

Characterization. An st-digraph is a single source and single sink digraph in
which there is an arc from the source to the sink. Di Battista and Tamassia [7]
and Kelly [19], independently, characterized the upward planarity of digraphs.

Theorem 1.1 (Di Battista and Tamassia [7], Kelly [19]). A digraph is upward
planar if and only if it is a spanning subgraph of an st-digraph with planar
underlying graph.

Testing. The decision problem associated with plane is stated as follows.

Problem 1 Upward embedding testing on plane (Upward planarity testing)
INSTANCE: Given a digraph D.
QUESTION: Does D have an upward embedding on plane?

This decision problem has polynomial time algorithms for some special cases;
Bertolazzi, Di Battista, Liotta, and Mannino [5] have given a polynomial-
time algorithm for testing the upward planarity of three connected digraphs.
Thomassen [21] has characterized upward planarity of the single source digraphs
in terms of forbidden circuits. By combining Thomassen’s characterization with
a decomposition scheme Hutton and Lubiw [18] have given a polynomial-time
algorithm to test if a single source digraph with n vertices is upward planar
in O(n2). Bertolazzi, Di Battista, Mannino, and Tamassia [6] have presented
an optimal algorithm to test whether a single source digraph is upward planar
in the linear time. Papakostas [20] has given a polynomial-time algorithm for
upward planarity testing of outerplanar digraphs.

The results for the general case is stated in the following theorem.

Theorem 1.2 (Garg, Tamassia [13,14], Hashemi, Rival, Kisielewicz [17])
Upward planarity testing is NP-Complete.

1.2 Round Sphere

A digraph is called spherical if it has an upward embedding on the sphere.

Characterization. The following theorem characterizes the sphericity of
digraphs.

Theorem 1.3 (Hashemi, Rival, Kisielewicz [15,17]). A digraph is spherical if
and only if it is a spanning subgraph of a single source and single sink digraph
with planar underlying graph.
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Testing. The decision problem associated with this surface is as follows.

Problem 2 Upward embedding testing on sphere (Upward sphericity testing)
INSTANCE: Given a digraph D.
QUESTION: Does D have an upward embedding on the round sphere?

Dolati and Hashemi [10] have presented a polynomial-time algorithm for upward
sphericity testing of the embedded single source digraphs. Recently, Dolati [9]
has presented an optimal linear algorithm for upward sphericity testing of this
class of digraphs.

The results of the general case is stated in the following theorem.

Theorem 1.4 (Hashemi, Rival, Kisielewicz [17]) Upward sphericity testing is
NP-Complete.

1.3 Horizontal Torus

Another surface to be mentioned is horizontal torus. Here we recall its definition.
The surface obtained by the revolving of the curve c : (y−2)2+(z−1)2 = 1 round
the line L : y = 0 as its axis of the revolution in the yz-plane. In this case the
part of Th resulting from the revolving of that part of c in which y ≤ 2 is called
inner layer. The other part of Th resulting from the revolving of that part of c
in which y ≥ 2 is called outer layer. The curves generating from revolving points
(0, 2, 0) and (0, 2, 2) round the axis of revolution are minimum and maximum
of the torus and are denoted by cmin and cmax, respectively. According to our
definition, it is clearly seen that cmin and cmax are common between the inner
layer and the outer layer. Our main results bear characterization of the digraphs
that have upward embedding on the horizontal torus; we call them the horoidal
digraphs. Note that, this characterization can not be applied for vertical torus.
Because the set of all digraphs that admit upward embedding on horizontal
torus is a proper subset of the set of all digraphs that have upward embedding
on vertical torus.

Characterization. In the next section we will characterize the horoidal
digraphs. Let D be a horoidal digraph that is not spherical. As we will show, in
the new characterization, a proper partition of the arcs into two parts will be
presented. This partition must be constructed in such a way that the induced
subdigraph on each part is spherical. Moreover, the common sources and the
common sinks of the two induced subdigraphs must be able to be properly
identified. Note that, the arcs set of one of these parts can be considered as ∅.
Therefore, the set of spherical digraphs is a proper subset of the set of horoidal
digraphs.

Testing. It has been shown that the following corresponding decision problem
is not easy [8]. We will investigate its complexity in details in the next sections.
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Problem 3 Upward embedding testing on Th

INSTANCE: Given a digraph D.
QUESTION: Does D have an upward embedding on the horizontal torus Th?

Dolati, Hashemi, and Khosravani [11] have presented a polynomial-time algo-
rithm to decide whether a single source and single sink digraph has an upward
embedding on Th. In this paper, by using a reduction from the sphericity testing
decision problem, we show that this decision problem is NP-Complete.

Recently, Auer et al. in [1–4] consider the problem by using the fundamental
polygon of the surfaces. They use a vector field for defining the direction of the
arcs. By their definition, acyclicity condition is not a necessary condition for a
digraph to have upward embedding.

The rest of this paper is organized as follows. After some preliminaries in
Sect. 2 we present a characterization of a digraph to have an upward embedding
on Th in Sect. 3. Then we show that the decision problem to decide whether
a digraph has an upward embedding on the horizontal torus belongs to NP. In
Sect. 4 we shall present a polynomial reduction from the sphericity decision prob-
lem to the upward embedding testing on Th. In Sect. 5 we present conclusions
and some related open problems.

2 Preliminaries

Here, we introduce some definitions and notations which we use throughout the
paper. By a digraph D we mean a pair D = (V,A) of vertices V , and arcs A. In
this paper all digraphs are finite and simple (without loops and multiple edges).
A necessary condition for a digraph to have an upward embedding on a surface
is that it has no directed cycle, i.e. it is acyclic. For any two vertices u and v of
a digraph D, the symbol (u, v) denotes an arc in D that originates from u and
terminates at v. A source of D is a vertex with no incoming arcs. A sink of D
is a vertex with no outgoing arcs. An internal vertex of D has both incoming
and outgoing arcs. Let x be a vertex of D, by od(x) we mean the number of the
outgoing arcs of x and by id(x) we mean the number of the incoming arcs to x. A
directed path of a digraph D is a list v0, a1, v1, . . . , ak, vk of vertices and arcs such
that, for 1 ≤ i ≤ k; ai = (vi−1, vi). An undirected path of a digraph D is a list
v0, a1, v1, . . . , ak, vk of vertices and arcs such that, for 1 ≤ i ≤ k; ai = (vi−1, vi)
or ai = (vi, vi−1). If D is a digraph, then its underlying graph is the graph
obtained by replacing each arc of D by an (undirected) edge joining the same
pair of vertices. A digraph D is weakly connected or simply connected if, for each
pair of vertices u and v, there is a undirected path in D between u and v. We
use of the following equivalence relation R on the arcs of a digraph, introduced
by Dolati et al. in [11].

Definition 2.5 Given a digraph D = (V,A). We say two arcs a, a′ ∈ A(D) are
in relation R if they belong to a directed path or there is a sequence P1, P2, . . . , Pk,
for some k ≥ 2, of directed paths with the following properties:
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(i) a ∈ P1 and a′ ∈ Pk.
(ii) Every Pi, i = 1, . . . , k − 1, has at least one common vertex with Pi+1 which

is an internal vertex.

This partition is used directly in the following theorem.

Theorem 2.6 (Dolati, Hashemi, Khosravani [11]). Given a digraph D. In every
upward embedding of D on Th, all arcs that belong to the same class R must be
drawn on the same layer.

3 Characterization

In this section we present a characterization of a digraph that has an upward
embedding on the horizontal torus. Then, by using the characterization we show
that the decision problem to decide whether a digraph has an upward embedding
on the horizontal torus belongs to NP. Here, for the sake of the simplicity, by
D = (V,A, S, T ) we mean a digraph D with vertex set V, arc set A, source set
S, and sink set T . For each A1 ⊆ A, by D(A1) we mean the induced subdigraph
on A1. A bipartition A1 and A2 of A is called an ST -bipartition and denoted
by [A1, A2] if the source set and sink set of both D(A1) and D(A2) are S and
T , respectively. Such a bipartition is called a stable ST-bipartition if all arcs of
each equivalence class of R belong to exactly one part. If [A1, A2] is a stable
ST -bipartition for which D(A1) and D(A2) are spherical then we call it a con-
sistent stable ST-bipartition. See Fig. 1. As we will prove, a necessary condition
for a digraph D = (V,A, S, T ) to be horoidal is that D is a spanning subdigraph
of a digraph D′ = (V,A′, S′, T ′) with a consistent stable S′T ′-bipartition.

Fig. 1. (a) A horoidal digraph G = (V,A, {s}, {t}), (b) A non-stable {s}{t}-bipartition
of G, (c) An inconsistent stable {s}{t}-bipartition of G, (d) A consistent stable {s}{t}-
bipartition of G

We need to introduce two more notions. For the sphere S = {(x, y, z) :
x2 + y2 + z2 = 1} by the c-circle we mean one obtained from the intersection of
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S with the plane z = c. For a finite set S, by a permutation πS of S we mean a
linear ordering of S.

Let D = (V,A, S, T ) be a spherical digraph and πS and σT be two permuta-
tions for S and T , respectively. The digraph D is called ordered spherical with
respect to πS and σT if it has an upward embedding in which the vertices in S
and T lie on c1-circle and c2-circle for some −1 < c1 < c2 < 1, and are ordered
(cyclically) by πS and σT , respectively. A digraph D = (V,A, S, T ) is called
bispherical if there is a consistent stable ST -bipartition [A1, A2] of A.

Fig. 2. (a) A super source of type m. (b) A super sink of type n. (c) An upward
embedding of this super source (super sink) on sphere whose sinks (sources) lie on a
c1-circle (c2-circle) for some −1 < c1 < c2 < 1.

Let πS and σT be two permutations for S and T , respectively. A digraph
D = (V,A, S, T ) is called ordered bispherical with respect to πS and σT , if there
is a consistent stable ST -bipartition [A1, A2] of A such that D(A1) and D(A2) are
ordered spherical with respect to πS and σT . A super source of type m is denoted
by Sm and is a single source digraph of order 2m+1 whose vertex set is V (Sm) =
{s, x0, x1, . . . , xm−1, x

′
0x

′
1, . . . , x

′
m−1} and its arc set is A(Sm) = {(s, x′

i) : i =
0, 1, . . . ,m − 1} ∪ {(x′

i, xi), (x′
i, xi−1) : i = 0, 1, . . . ,m − 1}; here the indices are

considered modulo m, see Fig. 2. The vertices {x0, x1, . . . , xm−1} are the sinks
of Sm. A super sink of type n is denoted by Tn and is a single sink digraph of
order 2n + 1 whose vertex set is V (Tn) = {t, y0, y1, . . . , yn−1, y

′
0, y

′
1, . . . , y

′
n−1}

and its arc set is A(Tn) = {(y′
i, t) : i = 0, 1, . . . , n − 1} ∪ {(yi, y

′
i), (yi, y

′
i−1) : i =

0, 1, . . . , n−1}; here the indices are considered modulo n. See Fig. 2. The vertices
{y0, y1, . . . , yn−1} are the sources of Tn. Let D and H be two digraphs such that
V (D) ∩ V (H) = ∅. Also suppose that {u1, . . . , um} ⊆ V (D) and {v1, . . . , vm} ⊆
V (H), by D � {(u1 = v1) . . . (um = vm)} � H we mean the digraph obtained
from D and H by identifying the vertices ui and vi, for i = 1, . . . ,m. Suppose
that D = (V,A, S, T ) is a digraph whose source set is S = {s1, s2, . . . , sm} and
its sink set is T = {t1, t2, . . . , tn}. Assume that πS and σT are permutations
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for S and T , respectively. Suppose that Sm is a super source whose sink set is
{x0, x1, . . . , xm−1} and Tn is a super sink whose source set is {y0, y1, . . . , yn−1}.
Let us denote the single source and single sink digraph obtained as

(Sm�{(x0 = sπ(0)) . . . (xm−1 = sπ(m−1))}�D)�{(tσ(0) = y0) . . . (tσ(n−1) = yn−1)}�Tn

by πSDσT .

Lemma 3.7 Let D = (V,A, S, T ) be a digraph and πS and σT be permutations
for S and T , respectively. The digraph is ordered spherical with respect to the
permutations πS and σT if and only if πSDσT is spherical.

Proof. If πSDσT is spherical, then it is not hard to observe that, we can redraw
the graph, if necessary, to obtain an upward embedding of πSDσT in which the
vertices of S lie on a c1-circle and also the vertices of T lie on a c2-circle preserv-
ing their permutations. The proof of the other side of the lemma is obvious. �

Consider the round sphere S = {(x, y, z)|x2 + y2 + z2 = 1}, by Sε
z we mean

the portion of the sphere between the two level curves obtained by cutting the
sphere with parallel planes Z = z and Z = z + ε, for all −1 < z < 1 and all
0 < ε < 1 − z. Note that, every upward embedding of a digraph D on sphere
S can be redrawn to be an upward embedding on Sε

z, for all −1 < z < 1 and
all 0 < ε < 1 − z. According to this observation, we can show that for upward
embedding of digraphs, each layer of Th is equivalent to the round sphere. It is
summarized in the following proposition.

Proposition 3.8 The digraph D has an upward embedding on a layer of Th if
and only if it has an upward embedding on the round sphere S = {(x, y, z)|x2 +
y2 + z2 = 1}.

By the following theorem we characterize the horoidal digraphs. We assume
w.l.o.g. that the digraphs have no isolated vertex.

Theorem 3.9 The digraph D = (V,A, S, T ) has an upward embedding on the
horizontal torus if and only if there are subsets S′ ⊆ S and T ′ ⊆ T and there are
permutations πS′ and σT ′ such that by adding new arcs, if necessary, the digraph
can be extended to a digraph D′ = (V,A′, S′, T ′) which is ordered spherical or
ordered bispherical with respect to πS′ and σT ′ .

Proof Suppose that D = (V,A, S, T ) has an upward embedding on Th. There
are two cases that can be happen for D.

Case 1. D has an upward embedding on a layer of Th. In this case, according to
Proposition 3.8 it has an upward embedding on sphere. By Theorem1.3 we con-
clude that D is a spanning subdigraph of a single source and single sink digraph
D′ = (V,A′, S′, T ′). That means the assertion for this case follows. Because D′

is an ordered spherical with respect to the unique permutation of S′ and T ′.
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Case 2. D has no upward embedding on a layer of Th. In this case we consider
an upward embedding of D on Th. Suppose that, the subset of sources (sinks)
that must be placed on cmin(cmax) is denoted by S′(T ′). Now, we add a set of
new arcs F to this embedding in such way that all of them point up, they do
not generate crossing and for each source node in S \ S′ (sink node in T \ T ′)
there will be an arc in F incoming to (emanating from) it. By adding this set
of arcs we have an upward embedding of a superdigraph D′ = (V,A′, S′, T ′) of
D = (V,A, S, T ) in which A′ = A∪F . Suppose that we denote by π′

S and σ′
T the

permutations of S′ and T ′ according to their order of their placement on cmin

and cmax, respectively. Let Ain and Aout be the set of arcs drawn on the inner
layer and outer layer of Th, respectively. The digraphs D′(Ain) and D′(Aout) are
order spherical with respect to π′

S and σ′
T . In other words, D′ = (V,A′, S′, T ′)

is a superdigraph of D = (V,A, S, T ) and is ordered bispherical with respect to
π′

S and σ′
T .

Conversely, suppose that, there is a superdigraph D′ = (V,A′, S′, T ′) of D
that is an ordered spherical with respect to some permutations of S′ and T ′, for
some S′ ⊂ S and T ′ ⊂ T . In this case, D′ is a horoidal digraph and therefore its
subdigraph D is also horoidal.

t'

s'
Fig. 3. A digraph D = (V,A, {s′}, {t′}) that is not horoidal

Now, suppose that there are some subsets S′ ⊂ S and T ′ ⊂ T and some
permutations π′

S and σ′
T for them such that a superdigraph D′ = (V,A′, S′, T ′)

of D is ordered bispherical with respect to π′
S and σ′

T . Let [A1, A2] be its cor-
responding consistent stable S′T ′-bipartition. In this case, the digraphs D′(A1)
and D′(A2) are ordered spherical with respect to π′

S and σ′
T . Therefore, the

digraph D′(A1) and D′(A2) can be embedded upwardly on inner layer and outer
layer of Th, respectively such that these upward embeddings imposes an upward
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embedding for D′ on Th. In other words, D′ and therefore D has an upward
embedding on the horizontal torus. �

We characterize the horoidal digraphs by the above theorem. Note that, one
can not apply it for characterization the digraphs that admit upward embedding
on vertical torus. As an example, all arcs in A in every stable {s′}{t′}-bipartition
of every super graph D′ = (V,A′, {s′}, {t′}) of digraph D = (V,A, {s′}, {t′})
depicted in Fig. 3 belong to one part. That means it is inconsistent. Because k3,3

is a subgraph of the underlying graph of indeced subdigraph on the aforemen-
tioned part. Therefore, this digraph is not horoidal. However, one of its upward
embeddings on vertical torus is depicted in [11].

Now, by using the characterization stated in Theorem3.9 we show that Prob-
lem 3 belongs to NP . It is summarized in the following theorem.

Theorem 3.10 The upward embedding testing on Th belongs to NP .

Proof The candidate solution consists of a superdigraph D′ = (V,A′, S′, T ′) of
the instance D whose sources and sinks are subsets of the sources and sinks of D,
two cyclic permutations π′

S and σ′
T for S′ and T ′ and a consistent stable S′T ′-

bipartition [A1, A2], if necessary. For checking the correctness of this solution in
polynomial time, one can check the conditions of Theorem3.9. To this end, the
Step 1 of the following two steps can be considered and if it is not sufficient (i.e.,
if the answer of Step 1 is not true) then another step must be considered, too.

Step 1. Check if the digraph D′ is an ordered spherical with respect to π′
S and

σ′
T .
Step 2. Check if the digraphs D′(A1) and D′(A2) are ordered spherical with

respect to π′
S and σ′

T .
For checking Step 1, it suffices to check if the single source and single sink

digraph π′
SD′σ′

T is spherical. According to Theorem 1.3 it can be done by check-
ing if its underlying graph is planar. Therefore this checking step can be done
in polynomial time. If it is revealed that its underlying graph is not planar then
by using [A1, A2] we have to consider Step 2. For checking Step 2 it is sufficient
to check if the single source and single sink digraphs D′(A1) and D′(A2) are
ordered spherical with respect to π′

S and σ′
T . Similarly, this step can be checked

in polynomial time. Therefore the candidate solution can be checked in polyno-
mial time. That means the assertion follows. �

4 Source-In-Sink-Out Graph of Adigraph

In this section we want to show that the upward embedding testing problem on
Th is an NP-hard problem. We do this by a polynomial time reduction from
the upward sphericity testing decision problem. Let x and y be two vertices of
a digraph D. By y ≺ x we mean the vertex x is reachable from the vertex y.
That means there is a directed path from y to x in D, especially y is reachable
from itself by the trivial path. By N+(y) we mean all the reachable vertices
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from y and by N−(y) we mean all the vertices for which y is a reachable vertex.
A subgraph DO

x = (V (DO
x ), A(DO

x )) is an out-subgraph rooted at vertex x if
V (DO

x ) = N+(x) and A(DO
x ) consists of all the arcs of all the directed paths in

D from x to every other vertex in V (DO
x ). A subgraph DI

x = (V (DI
x), A(DI

x))
is an in-subgraph rooted at vertex x if V (D) = N−(x) and A(DI

x) consists of
all the arcs of all the directed paths in D from every other vertex in V (DO

x ) to
x. In Fig. 4 an out-subgraph rooted at a source vertex is depicted. Now, we are
ready to introduce some useful properties of these defined subgraphs.

s1s2
s3

s4

t1t2

s5

t4 t3

s1s2
s3

s4

t1t2

s5

t4 t3

The arcs of the  out-subgraph O
s1D

Fig. 4. A digraph D and the arcs of DO
s1 .

Lemma 4.11 Let x be an internal vertex of a digraph D, then all the arcs
in A(DO

x ) ∪ A(DI
x) belong to the same equivalence class with respect to the

relation R.

Proof The internal vertex x has both incoming and outgoing arcs. Let a and
a′ be an incoming arc of x and an outgoing arc of x, respectively. For each arc
in A(DO

x ) there is a directed path containing that arc and a, therefore they
belong to the same equivalence class. Similarly, for each arc in A(DI

x) there is
a directed path containing that arc and a′, therefore they belong to the same
equivalence class. On the other hand, there is a directed path containing a and
a′, that means they belong to the same equivalence class too. According to the
transitive property of R the proof is completed. �

The relation between the arcs of the out-subgraph rooted at a source vertex
and the relation between the arcs of the in-subgraph rooted at a sink vertex are
shown in the following lemma.
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Lemma 4.12 Let s and t be a source vertex and a sink vertex of a digraph D,
respectively.

(i) If od(s) = 1 then all the arcs of DO
s belong to the same equivalence class

with respect to the relation R.
(ii) If id(t) = 1 then all the arcs of DI

t belong to the same equivalence class with
respect to the relation R.

Proof Suppose that od(s) = 1 and let a be the outgoing arc of s. Obviously, for
each arc of DO

s there is a directed path containing that arc and a, therefore they
belong to the same equivalence class. That means all the arcs of DO

s belong to
the same equivalence class with respect to the relation R. Similarly, the second
part of the lemma can be proved. �

Now, we define the source-in-sink-out graph of a digraph D = (V,A) that
is denoted by SISO(D). Suppose that D = (V,A) is a digraph with the set of
source vertices S and the set of sink vertices T . Let S = {s ∈ S | od(s) > 1}
and let T = {t ∈ T | id(t) > 1}. In other words, S is the set of sources for which
the number of their outgoing arcs is more than one and T is the set of sinks
for which the number of their incoming arcs is more than one. Construction of
the digraph SISO(D) from the digraph D is done as follows. For each source
vertex s ∈ S, we add a new vertex s′ and a new arc from the new vertex s′ to
the vertex s. Also, for each sink vertex t ∈ T , we add a new vertex t′ and a new
arc from the vertex t to the new vertex t′ (see Fig. 5). Obviously, s′ is a source
vertex, t′ is a sink vertex, and s and t are two internal vertices of SISO(D).
With respect to the construction of SISO(D), we can immediately conclude the
following lemma.

s1s2
s3

s4

s'2

s'4

s'1

t1t2 t3

t'1

s5

t4

t'2

Fig. 5. The source-in-sink-out graph of the depicted graph in Fig. 4
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Lemma 4.13 Let D be a digraph.

(i) If s is a source vertex of SISO(D) then od(s) = 1.
(ii) If t is a sink vertex of SISO(D) then id(t) = 1.

By Definition 2.5 two arcs of a digraph belong to the same equivalence class if
they belong to a directed path. In the following lemma we show that two arcs of
a source-in-sink-out graph belong to the same class if they belong to the same
undirected path (not necessarily directed).

Lemma 4.14 Suppose that D is a digraph. If P is an undirected path in
SISO(D), then all the arcs of P belong to the same equivalence class with respect
to the relation R.

Proof It is sufficient to show that each pair of consecutive arcs in P belong
to the same equivalence class. To this end let a and a′ be an arbitrary pair of
consecutive arcs of P , and let v be their common vertex. Since the number of
the arcs incident with v is at least two, by Lemma 4.13, the vertex v is neither
a source vertex of SISO(D) nor a sink vertex of SISO(D). That means v is an
internal vertex of SISO(D). Therefore by Lemma 4.11, the arcs a and a′ belong
to the same equivalence class. �

The following theorem states a key property of the source-in-sink-out graph
of a digraph.

Proposition 4.15 Let D be a connected digraph, all the arcs of SISO(D)
belong to the same equivalence class with respect to R.

Proof Let a = (x, y) and a′ = (x′, y′) be an arbitrary pair of arcs of D. Because
of the connectivity of D, there is an undirected path P ′ between x to y′. If
P ′ does not contain a, we add it to P ′. In this case the starting point of the
obtained undirected path is the vertex y. Similarly, we can add the arc a′ to
the undirected path, if it does not contain this arc. In other words, there is an
undirected path P in D that contains a and a′. Thus, by Lemma 4.14, a and a′

belong to the same equivalence class. �

In the following theorem we observe that either both digraphs D and
SISO(D) or none of them have upward embeddings on sphere.

Proposition 4.16 The digraph D has an upward embedding on sphere if and
only if SISO(D) has an upward embedding on sphere.

Proof Suppose that we have an upward embedding of D on the round sphere
S = {(x, y, z)|x2 + y2 + z2 = 1}. Let S be the set of sources for which the
number of their outgoing arcs is more than one and let T be the set of sinks
of D for which the number of their incoming arcs is more than one. Without
loss of generality, we can assume that none of the sources (sinks) of S (T ) is
located at south (north) pole. Otherwise, we may modify the upward embedding
to provide an upward embedding on the sphere with this property. Let s ∈ S be



A Characterization of Horoidal Digraphs 23

an arbitrary source in S with z its height (its z-coordinate) and consider Sε
z−ε,

where ε is small enough so that this portion contains no vertices of D in its
interior. This portion may be partitioned into connected regions bounded by the
monotonic curves corresponding to the arcs of D. We consider a point s′ as an
arbitrary point on the circle obtained by cutting the sphere with plane Z = z−ε
so that the point s and s′ are on the boundary of a region. Now, we draw the arc
(s′, s) in the mentioned region by a monotonic curve. Similarly, if we draw an arc
(t, t′) for each sink t ∈ T by a monotonic curve without any crossing with other
arcs. Then we have an upward embedding for SISO(D) on the round sphere.
Conversely, if we have an upward embedding of SISO(D) on the round sphere.
By deleting all added arcs (s′, s) and (t, t′) in construction of SISO(D) from D,
we have an upward embedding of D on sphere. �

Proposition 4.17 Let D be a digraph, SISO(D) has an upward embedding on
sphere if and only if it has an upward embedding on Th.

Proof Suppose that SISO(D) has an upward embedding on sphere. Since, for
upward embedding, sphere and each layer of Th are equivalent we can conclude
that SISO(D) has an upward embedding on a layer of Th and therefore on Th.
Conversely, suppose that SISO(D) has an upward embedding on Th. By Propo-
sition 4.15, all the arcs of each connected component of SISO(D) belong to the
same equivalence class with respect to relation R. Therefore, by Theorem 2.6 in
any upward embedding of SISO(D) on Th all the arcs of each connected com-
ponent of SISO(D) must be drawn on a layer of Th. Suppose that SISO(D)
has k connected components and let H1,H2, . . . , Hk be its connected compo-
nents. Assume that −1 < z < 1 is a real number. We set ε = 1−z

k+1 , and embed
the component Hj on the portion Sε

z+(j−1)ε upwardly, for j = 1, . . . , k. In other
words, we can have an upward embedding of SISO(D) on the round sphere. �

Now, by Propositions 4.16 and 4.17 we have the following theorem:

Proposition 4.18 The digraph D has an upward embedding on sphere if and
only if SISO(D) has an upward embedding on Th.

Obviously, the construction of SISO(D) from D can be done in O(n) time,
where n is the number of vertices of D. By this fact and Proposition 4.18 the
NP-hardness of upward embedding testing on Th is proved, this is summarized
in the following theorem.

Theorem 4.19 The upward embedding testing on Th is an NP-hard problem.

By Theorems 3.10 and 4.19 we have one of the main results of the paper as
follows.

Theorem 4.20 The upward embedding testing on Th is an NP-Complete
problem.
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5 Conclusion and Some Open Problems

In this paper, we have presented a characterization for a digraph to have an
upward embedding on Th. By that characterization we have shown that the
decision problem to decide whether a digraph has an upward embedding on
the horizontal torus belongs NP. We have constructed a digraph from a given
digraph in such a way that it is horoidal if and only if it is spherical. Finally, we
have presented a polynomial time reduction from the sphericity testing decision
problem to the upward embedding testing on Th. That means we have shown
that the upward embedding testing decision problem on Th is NP-Complete.

The following are some open problems:
Dolati et al. in [11] presented a polynomial time algorithm to decide whether a
single source and single sink digraph has an upward embedding on Th.

Problem 1: Is it possible to find polynomial time algorithms for upward embed-
ding testing of some other classes of digraphs on Th?
Problem 2: Characterize those digraphs which they are spherical if and only if
they are horoidal.
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