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Abstract. We propose a compact descriptor for the purpose of dense
image matching and object recognition. The descriptor is calculated
based on local gradients about each point in an image. It contains the
averages of gradients at four different windows surrounding a center
point. The descriptor is calculated much faster than histogram of ori-
ented gradients (HOG). Additionally, it will be shown that it is more
discriminative than HOG. We used the new descriptor for two applica-
tions needed in RoboCup competitions very often. First, computation of
dense optical flows and 3D scene reconstruction from two views. Second,
human face detection.

1 Introduction

Finding local descriptors for image points is an active and challenging field of
research in image processing and computer vision communities. In this regard,
several works can be named, suggesting different types of local descriptors for
sparse feature matching or dense matching purposes. For the sparse feature
matching, the following methods can be remarked: SIFT [11], SURF [2], BRIEF
[4], ORB [17], BRISK [10], LIOP [19] and MRRID [7]. An evaluation of these
methods can be found in [1,12]. According to these works, although SIFT and
SURF are relatively old methods, they still outperform many of the new methods
by delivering higher rates of correct matches. Nevertheless, the SURF method
is known to perform poorly in case of in plane rotations. We found out that this
is due to a simple neglect in the calculation of the SURF descriptor, where the
averaged vectors are not projected on the axis of oriented coordinate frames.

SIFT descriptors are generated based on the histogram of oriented gradients
(for 8 bins) at 16 windows surrounding a point. In case of the SURF method,
the sum of gradient components and the sum of absolute values of gradient
components in 16 windows about a point are used to form a descriptor vector
with the length of 64. Unfortunately SIFT and SURF are slow methods and
are not appropriate for real time applications. Hence, later, methods based on
binary descriptors such as BRIEF and ORB were proposed to meet real time
requirements. The BRIEF descriptor is generated based on pairs of test points
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in a neighborhood of a point. As BRIEF is not rotation invariant, later ORB
was proposed to achieve the rotation invariant version of BRIEF. In the BRISK
method, binary patterns are extracted based on a regular radial symmetric pat-
tern about a point. In this method the intensities of the neighborhood of the
point are smoothed with Gaussian kernels of different sizes. These considera-
tion make the precision of BRISK slightly better than BRIEF and ORB. Binary
descriptors are fast to create, and also in the matching process, the Hamming
distance (XOR operation) and bit counting can be used to speed up the matching
process dramatically.

The aforementioned methods work well for sparse matching purposes; nev-
ertheless, the good performances are due to the long descriptors created based
on large neighborhoods of features. However, as we may need to use feature
descriptors for other purposes such as dense image matching, object and action
recognition, using such long descriptors demands high computational loads. In
literature, compact descriptors such as census [20], MLDP [14] and HOG [5] were
used for the computation of dense optical flows. HOG is also used in object and
human action recognition. Among the mentioned descriptors, HOG showed a
promising performance because it considers both the magnitudes and the direc-
tions of gradients in a local window [16]. Nevertheless, the computation of HOG
is expensive as it necessitates the calculation of gradient angles. On the other
hand, in HOG the spacial distribution of gradients is neglected, which degrades
its discrimination. In this paper, we propose a new compact descriptor with the
length of 8 bins, inspired from the SURF descriptor. We name the descriptor
distributed averages of gradients (DAG), which outperforms HOG both in the
sense of computation time and also discrimination.

The paper is structured as follows: In Sect. 2, the gradient based descriptors
are reviewed. Section 3 describes how DAG is constructed. In Sect. 4, the appli-
cation of DAG for the computation of dense optical flow and face detection is
presented. DAG is evaluated in Sect. 5. Section 6 concludes this paper.

2 Gradient-Based Descriptors

In this section SIFT and SURF descriptors are reviewed as they are tightly
related to HOG and DAG. In the SIFT method, HOG descriptors at 16 different
windows surrounding a feature point are calculated. Then descriptors are formed
by ordering the values of bins in vectors with the lengths of 128. Calculation of
HOG is based on local gradients of an image about a point in a window. Given
an image I(x, y) : Ω → R, gradient vectors for a pixel (x, y) are computed as
follows:

v(x, y) = [vx vy]T = [Ix(x, y) Iy(x, y)]T (1)
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where Ix = ∂I
∂x and Iy = ∂I

∂y . To form HOG, the magnitudes m and angles α of
gradients should be calculated:

α = atan2(vy, vx)

m =
√

v2
x + v2

y (2)

For the calculation of HOG for a point such as (x, y), the gradients in a rec-
tangular neighborhood of the point is taken into account. In this regard, n bins
(b1 . . . bn) spanning 0◦ . . . 360◦ should be created. The value of each bin is formed
as follows:

bi =
∑

βi<αj<βi+1

mj (3)

where βi = 360
n (i − 1). A popular number for bins is eight, which has been

used in SIFT. HOG has two main shortcomings: first it needs relatively high
computation loads for the calculation of gradient angles. Second it discards the
geometry of the occurrence of gradients. Obviously, in SIFT, HOG descriptors
are calculated at different sub-windows about a feature, which means that the
geometry of gradients will also be taken into account in another way.

Unlike SIFT, SURF descriptors are generated by averaging gradient compo-
nents and also their absolute values to form a vector containing of 4 elements
[
∑

vx,
∑

vy,
∑ |vx|,∑ |vy|]T . By calculating such a vector for 16 surrounding

windows about a point, a descriptor vector with the size of 64 is obtained.

3 Distributed Averages of Gradients

As mentioned in the introduction section, long descriptors of the feature match-
ing methods are keys to achieve high correct matching rates. However, in case
of dense matching based on differential techniques, using such long descriptors
gives rise to very high computation loads. On the other hand, compact versions
of the descriptors mostly with the lengths of eight have been used for dense opti-
cal flow calculations. In this regard, we propose a compact descriptor inspired by
the SURF descriptor, in which the averages of gradients in only four surrounding
windows about each pixel are utilized (Fig. 1).

Additionally, unlike SURF which utilizes only small sub windows, in our
proposed descriptor, window sizes can be changed but the number of windows
remains always four. Additionally, these four windows are overlapping which
make them robust against abrupt changes of the gradients at the borders. Fur-
thermore, to keep the descriptor compact, we did not utilize the average of
absolutes of gradient components. Instead the average of gradients for each sub
window wi : i = 1, 2, 3, 4 is simply calculated as follows:

vi = [vi,x vi,y]T =
1
N

∑
(x,y)∈wi

v(x, y) (4)
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Fig. 1. DAG construction. Each arrow indicates the average of gradients in a window.

where N = (S/2 + 1)2. By concatenation of the four vectors, a descriptor vector
as following is formed:

d = [v1,x v1,y v2,x, v2,y, v3,x, v3,y, v4,x, v4,y]T (5)

The descriptor vector can also be normalized to achieve robustness against
illumination changes. We abbreviate the normalized version as NDAG.

3.1 Rotation Invariant DAG

To make DAG rotation invariant, a normal vector in the direction of the average
of gradients in a neighborhood of each point is taken into account: g = [gx gy]T .
We also use the orthogonal vector to g, namely k, to form a local coordinate
system based on g and k. The four windows about the keypoint is scanned using
four sets of vectors:

{g1 = −g, k1 = k}, {g2 = g, k2 = g}, {g3 = −g, k3 = −g},g4 = g, k4 = −g}
(6)

To address pixels in surrounding windows, we simply use the following equation:

x = [x y]T = hgi + wki (7)

where i is the index of a window, h = 0, . . . , S
2 + 1 and w = 0, . . . , S

2 + 1. After
the calculation of the averages of gradients in four windows, it is important to
project the averages on the axis of the rotated coordinate system (g and k). This
step is not done in the SURF method which gave rise to its poor performance
in case of in plane rotations.

4 Applications of DAG

In this section two applications of DAG are proposed: first for the computation
of dense optical flow, and second for face detection.
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4.1 Dense Optical Flow Using DAG

We apply DAG for the computation of the optical flow. To this end, we use
combined local global methods proposed in [16]. Given two images I and I ′,
DAG descriptors are extracted for all pixels in both images. As a result, for
each image, one image with 8 channels is created to store the eight components
of DAG descriptor. We name the 8-channel images S and S′ associated to the
images I and I ′ respectively. Consequently, we define a cost function consisting
of data and regularization terms as explained in [16]:

min
u,v

E(u, v) =
∑
Ω

(λEdata + γEsmooth + Edual) , (8)

where
Edata = ρ(x, y, u, v) (9)

Esmooth = ‖ ∇u ‖ + ‖ ∇v ‖ (10)

Edual =
1
2θ

(u − û)2 (11)

where λ, γ and θ are the importance weights for each term. ρ(.) is a similarity
function as follows:

ρ(x, y, u, v) =
8∑

i=1

(S′
i(x + u, y + v) − Si(x, y))2 (12)

where i is the channel index. To calculate optical flows, the cost function in Eq. 8
can be minimized based on the dual variable technique explained in [16].

4.2 DAG for Face Detection

One of the main task of a rescue robot is exploring a disaster environment to find
living survivors. In this regard, the robot should be able to distinguish between
the victims and other objects. Obviously, human face is an important feature by
which victims can be determined more reliably comparing to other features. We
have implemented a face detection framework which can work based on different
types of descriptors. In this framework, a descriptor for a region of interest is
extracted. Then a SVM (support vector machine) classifier for two classes, face
and non-face, is trained. To achieve better detection rates, in the framework a
multi-camera system is used, which consists of thermal and video cameras. The
thermal images are segmented based on a temperature threshold to provide a
list of regions which may contain faces. We align the thermal images with the
video camera images using a simple calibration process. Thus, for each region
in the thermal image, a corresponding region in the video image can be found
(see Fig. 2). For each region in an image from the video camera, a descriptor
based on DAG is generated. In this regard, each region is divided into regular
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blocks of the size N × N . Then for each block a DAG descriptor (or other
descriptors) is generated. Afterwards, the descriptors are concatenated to form
a global descriptor for each region. The extracted feature vector contains fine
detailed information of an image such as edges, spots, corners and other local
texture features.

Fig. 2. Face detection using thermal and video images.

5 Evaluation and Experimental Results

5.1 Sparse Matching

To evaluate the discriminating ability of DAG, we used the KITTI training
dataset [8] for optical flows. This dataset includes 194 pairs of images and pro-
vide the ground truth of flows between each two images. We compared DAG,
normalized DAG (N-DAG), HOG, normalized HOG (NHOG) and ORB as a
baseline method. The reason that we selected ORB was that we wanted to eval-
uate the performance of different methods given the same inputs. In this regard,
we extracted Shi-Thomasi features [18] at eight levels of pyramids with the scale
factor 0.8 and computed descriptors for the features based on different methods.
The total average of extracted features was 3953. We used two measures for the
evaluation:

precision =
number of correct matches

number of matches

recall =
number of correct matches

number of all features to be matched

To have a uniform matching strategy, we used 2 nearest neighbor (2-nn)
matching method. In this method, for each feature in the first image, namely f1
with the descriptor d1, two matched features in the second image, namely f2,1

and f2,2, with the descriptors d2,1 and d2,2 are found. If the Euclidean distances
of the descriptors are d1 = ||d1 − d2,1|| and d2 = ||d1 − d2,2||, a matching is
assumed to be correct if d1/d2 < 0.8; otherwise, no matching is considered for f1.

We conducted two experiments to evaluate the performance of upright and
rotated descriptors. In the first experiment, we evaluated the upright versions
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Fig. 3. Precision and recall curves for high quality features (top) and low quality
features (bottom).

of all of the methods for two different groups of features: first, features with
the qualities more than 0.005 and second features with the qualities between
0.001 and 0.005. We would like to see how the methods work for features with
good and bad qualities. It is an important issue for dense matching purposes as
typically most of the points have low gradient responses. In Fig. 3, the precision
and recall curves for different methods with respect to the window widths can
be seen. We can see that for small window sizes NDAG performs much better
than the other methods but for larger windows ORB has better performance.
Comparison of DAG and HOG shows that the precision and recall of DAG
increase more and more as the window size increases; whereas the performance
of HOG after the window size 21 degrades. It signifies that DAG is more capable
to capture local informations in comparison to HOG at bigger window sizes. The
reason that NDAG works better than DAG is that in small windows illumination
changes affect the average of gradients adversely. Therefore, as normalization of
DAG makes it robust against illumination changes, better performance of NDAG
is reasonable. On the other hand, HOG is already robust against illumination
changes thanks to its binning process. Therefore, its normalization only leads to
losses of information.

Concerning the performances of the methods for low quality features, we see
that DAG outperforms all other methods. The poor performance of ORB lies in
the fact that most of the low quality features are located on almost homogeneous
regions such as roads and in this case the binary descriptors are more vulnerable
against the measurement noise rather than the gradient based methods.

In the second experiment, we rotated the second images of each image pairs
to evaluate rotation invariance of DAG. In this experiment, we also ran the SIFT
method, which might be interesting to readers how it works for these sequences.
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Unfortunately, SURF had a very poor performance and was not comparable
with any of the other methods. Therefore, we did not take it into account in this
experiment. Figure 4 depicts the comparison results. We see that all methods
except SIFT experiences relatively large drops at the angles 45◦k (k = 1, . . . 7).
Nevertheless, ORB and then DAG have the best performances. Surprisingly,
SIFT has a relatively poor performance. We investigated the problem and noticed
that it originates from the nature of outdoor images in the KITTI dataset. In
these images, repeatability of blob features are low, which gives rise to missing
many of candidates for correct matching.

Fig. 4. Precision and recall curves in case of in plane rotations.

5.2 Computation of Dense Optical Flow and 3D Scene
Reconstruction

We applied the DAG descriptor to compute dense optical flows for the KITTI [8]
dataset as explained in Sect. 4.1. The KITTI dataset provides a very challenging
testbed for the evaluation of optical flow algorithms. Pixel displacements in the
data set are generally large, the images exhibit less texture regions, strongly vary-
ing lighting conditions, and many non-Lambertian surfaces, especially translu-
cent windows and specular glass, and metal surfaces. Moreover, the high speed
of the forward motion creates large regions on the image boundaries that move
out of the field of view between frames, such that no correspondence can be
established.

For evaluating the estimated optical flow, we calculated the average end-point
error AEE, the average angular error AAE, and the percentage of pixels with an
AEE of more than 3 pixels, which also known as bad pixels [8]. In all experiments,
we used the fixed point iteration algorithm to optimize the objective function in
Eq. 8. In order to deal with large displacement optical flows, we used the coarse
to fine technique [3]. Furthermore, we used the normalized version of HOG and
the normalized version of DAG. Because the normalized descriptors are robust
against illumination changes, and also thanks to the normalization, a constant
smoothness parameter can be applied regardless of the magnitudes of gradients.
We used the following parameters setup for all descriptors, pyramids scale factor
0.9, the smoothness parameter λ = 10, outer fixed point iteration was 4 image
warp, and inner fixed point iteration was 10 times. For DAG and HOG, we used
the window size 7 and 5 respectively, which yielded the best results.
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For KITTI training dataset, Table 1 shows the average AEE and the average
of the percentage of bad pixels for 194 sequences. As shown in Table 1 DAG out-
performs HOG in the AEE but the percentage of bad pixels for HOG is slightly
better than DAG. Furthermore, Table 2 shows a comparison among DAG, HOG,
and MLDP for some sequence of KITTI training dataset. As shown in this
table DAG outperforms other descriptors. In Fig. 5, the computed flows for the
sequence 0 using different methods are visualized. We can see that DAG works
very well in the estimation of flows in low texture regions. It supports the pre-
vious results for sparse feature matching.

One of the main application of dense optical flow is 3D scene reconstruction
based on the structure from motion techniques. These techniques are especially
important for outdoor environments, where RGB-D cameras cannot be used due
to their limitations an also 3D range sensors cannot be an option due to their
high prices. In Fig. 5, the reconstruction of the scene for sequence 0 of KITTI
is visualized. We used the techniques proposed in [13] for the camera motion
estimation and the 3D scene reconstruction. We observe that the structure of
the scene at many places is reconstructed well. Especially, the ground plane is
rebuilt very well, showing the ability of the combined techniques in providing
fine information for terrain analysis purposes.

We have also computed the optical flows based on the DAG descriptor for the
KITTI test dataset and submitted to KITTI website under the name of DAG-
Flow. Table 3 shows a comparison among algorithms used local descriptors for
optical flow estimation.

Table 1. Average of the AEE and the average of the percentage of outliers for the
KITTI training dataset.

Average AEE Average percentage
of outliers

DAG 2.16 8.16

HOG 2.19 8.12

MLDP 2.85 8.89

Table 2. The AEE and the percentage of bad pixels for some sequences of KITTI
training dataset.

Sequence no 0 14 25 101 115 131 139 141

AEE %AEE AEE %AEE AEE %AEE AEE % AAE AEE %AEE AEE %AEE AEE %AEE AEE %AEE

DAG 1.69 9.01 8.80 17.67 7.12 23.00 8.74 21.97 0.75 3.88 1.40 8.43 1.10 5.50 4.63 14.85

HOG [16] 3.07 13.16 8.98 22.10 7.63 26.99 8.56 26.91 2.05 8.27 2.10 13.29 3.21 10.27 6.53 19.64

MLDP [14] 4.39 19.67 9.54 22.16 9.48 35.76 17.84 39.45 1.30 7.72 2.08 14.42 1.42 8.26 9.09 23.17

The average elapsed time for the computation of the optical flow for each
pair of images were obtained. The optimization algorithm model ran on an Intel
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Table 3. KITTI test dataset. The average of the AEE and the average of the percentage
of outliers for some methods using local descriptors for the optical flow estimation.

Average AEE Average percentage
of outliers

TVL1-HOG [16] 2.0 7.91

MLDP-OF [14] 2.4 8.67

CRTflow [6] 2.7 9.43

TGV2CENSUS [15] 2.9 11.03

DAGflow 2.3 8.41

Fig. 5. KITTI training data set. Row 1: sequence 000000 10 and frame 000000 11. Row
2: color coding of the estimated optical flow and the error map using DAG. Row 3:
estimated optical flow and error map using HOG [16] descriptor. Row 4: reconstructed
scene from two views. (Color figure online)

Core2Duo with a 2.5 GHz processor executing C++ codes. The computation
time for DAG was 12.10 s, while for HOG and MLDP was 22.70 s and 16.26 s
respectively.

5.3 Face Detection

For evaluating the performance of DAG descriptor for the face detection, we have
used the Frontal Face Dataset from the Caltech 101 categories [9]. Caltech data
set contains images for 101 objects. The face dataset contains 450 images with
the resolution of 896 × 592 pixels. The images were captured from 27 people in
different lighting conditions, various face expressions and different backgrounds.
In our setup, every image is partitioned into 15 × 15 block. For training and
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testing the detection algorithm, we used positive images from the Frontal face
dataset, while images from other objects as negative images. For training the
SVM classifier, we used 100 positive images and 100 negative images. We tested
the algorithm using 450 positive image and 450 negative images. We evaluated
the accuracy of the algorithm by calculating the false positive and false negative
ratios. Interestingly, the face detection algorithm based on DAG detected all the
450 faces correctly and the number of false detection was always zero; whereas,
the algorithm based on HOG failed to detect some faces (false negative). In Fig. 6
some samples of faces are presented, which the SVM classifier based on HOG
failed to detect.

Fig. 6. Samples of false detection of SVM classifier based on HOG feature vector. Left
frame 88, middle frame 193, and right frame 338.

6 Conclusion

In this paper a new compact descriptor for the purpose of dense image match-
ing and object recognition is proposed. The descriptor is calculated based on
local gradients of each pixel in an image by calculating the average gradients at
four different regions surrounding a center point. The descriptor can be calcu-
lated much faster than histogram of oriented gradients as there is no need for
calculation of the angle of each gradient and also the binning step is skipped.
Additionally, it was shown that the proposed descriptor is more discriminative
than HOG based on two different types of experiments conducted in this paper.
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