
International Harting Open Source Award 2016:
Fawkes for the RoboCup Logistics League

Tim Niemueller1(B), Tobias Neumann2, Christoph Henke3,
Sebastian Schönitz3, Sebastian Reuter3, Alexander Ferrein2,

Sabina Jeschke3, and Gerhard Lakemeyer1

1 Knowledge-based Systems Group, RWTH Aachen University, Aachen, Germany
niemueller@kbsg.rwth-aachen.de

2 MASCOR Institute, FH Aachen University of Applied Sciences, Aachen, Germany
3 Institute Cluster IMA/ZLW & IfU, RWTH Aachen University, Aachen, Germany

Abstract. Since 2014, we have made three releases of our full software
stack for the RoboCup Logistics League (RCLL) based on the Open
Source Fawkes Robot Software Framework. They include all software
components of the team Carologistics which won RoboCup 2014, 2015,
and 2016. The software is based on experience from participating in a
number of leagues with the AllemaniACs RoboCup@Home team being
another active contributor. We think that these releases have made the
RCLL more accessible to new teams and helped established ones to
improve their performance. The team is proud to have been selected
for the third place of the 1st International Harting Open Source Award
in 2016. In this paper, we give an overview of the framework and its
development.

1 Introduction

Autonomous mobile robots comprise a great deal of complexity. They require a
plethora of software components for perception, actuation, task-level reasoning,
and communication. These components have to be integrated into a coherent and
robust system in time for the next RoboCup event. Then, during the competition,
the system has to perform stable and reliably. Providing a software framework
for teams to use tremendously eases that effort. Even more so when providing a
fully integrated system specific for a particular domain.

Over the past ten years, we have developed the Fawkes Robot Software Frame-
work [2] as a robust foundation to deal with the challenges of robotics applica-
tions in general, and in the context of RoboCup in particular. It has been devel-
oped and used in the Middle-Size [3] and Standard Platform [4] soccer leagues,
the RoboCup@Home [5,6] service robot league, and now in the RoboCup Logis-
tics League [7,8]. The frameworks or parts of it have also been used in other con-
texts [9,10]. In Fig. 1 the timeline of some robots used with Fawkes is depicted.
Although Fawkes is designed as a general framework to fit various robotics appli-
cations, in this paper we focus on its use in the RCLL.

c© Springer International Publishing AG 2017
S. Behnke et al. (Eds.): RoboCup 2016, LNAI 9776, pp. 634–642, 2017.
https://doi.org/10.1007/978-3-319-68792-6_53



International Harting Open Source Award 2016 635

Fig. 1. Robots running (parts of) Fawkes which were or are used for the development
of the framework and its components in the past ten years [1].

We have been the first team in the RCLL to publicly release their software
stack. Teams in other leagues have made similar releases before [11]. What makes
ours unique is that it provides a complete and ready-to-run package with the full
software (and some additions and fixes) that we used in several competitions –
which we won. This in particular includes the complete task-level executive com-
ponent, that is the strategic decision making and behavior generating software.
The major parts of the domain model are also made publicly available.

In the RCLL all teams use the same hardware platform “Robotino” by Festo
Didactic. This means that there is no hardware barrier that prevents teams from
using the software effectively and quickly. Even more so, with the 3D simulation
environment based on Gazebo which we have developed [12] and provide, teams
can immediately start using our software system for their own development. We
provide extensive documentation and are expanding it continuously.

In 2016, the RCLL software stack based on Fawkes1 was selected for the third
place of the 1st International Harting Open Source Prize.

In the following we will briefly describe the framework, some major compo-
nents, and our simulation environment in Sect. 2 with a highlight on the task-
level executive in Sect. 3. We conclude in Sect. 4.

2 Fawkes Robot Software Framework

The software stack is based on the Fawkes Robot Software Framework2 which is
Open Source software. The development is split into a core and domain-specific
parts. The core framework, Fawkes, is developed in public. We have just released
the first stable release 1.0. The domain-specific components are developed in
private as they are considered to be our competitive edge. We have made several
releases in the past few years, one after each RoboCup event since 2014.

Fawkes was initially started in 2006 as an effort to build a capable and faster
software platform for a new generation of Mid-Size league robots of the Allema-
niACs3 RoboCup Team (cf. Fig. 1). It was used for the first time at RoboCup
1 Latest release: https://www.fawkesrobotics.org/p/rcll2016-release.
2 Fawkes website at https://www.fawkesrobotics.org.
3 Website of the AllemaniACs at https://robocup.rwth-aachen.de.

https://www.fawkesrobotics.org/p/rcll2016-release
https://www.fawkesrobotics.org
https://robocup.rwth-aachen.de


636 T. Niemueller et al.

2007 in Atlanta. Since then it was also used on our domestic service robot
Caesar [6] in the RoboCup@Home league winning the RoboCup in 2006 and
2007, placing second in 2008, and winning the German Open 2007 and 2008 [5].
From 2008 to 2010 we participated as team ZaDeAt [4], a joint team from Uni-
versity of Cape Town (ZA), RWTH Aachen University (DE) and Technical Uni-
versity of Graz (AT), in the Standard Platform League. During this time we
developed the Lua-based Behavior Engine [13], a component which was ported to
ROS in 2010 and used, for example, on HERB at CMU [9]. Since 2012 we partici-
pate in the RoboCup Logistics League as the Carologistics4 joint team consisting
of the Knowledge-Based Systems Group, the Institute Cluster IMA/ZLW & IfU
(both RWTH Aachen University), and the Institute for Mobile Autonomous Sys-
tems and Cognitive Robotics (FH Aachen University of Applied Sciences). We
won the RoboCup and RoboCup German Open titles 2014–2016. Fawkes is also
used in combination with ROS on a PR2 in a project on hybrid reasoning [10].

The overall software structure is designed as a three-layer architecture [14]
and follows a component-based paradigm [15–17]. It consists of a deliberative
layer for high-level reasoning, a reactive execution layer for breaking down high-
level commands and monitoring their execution, and a feedback control layer for
hardware access and functional components. The communication between single
components – implemented as plugins – is realized by a hybrid blackboard and
messaging approach [2]. Other teams use monolithic approaches or messaging
by standardized interfaces [18].

Fawkes and ROS

The most popular robot software framework is the Robot Operating System
(ROS) [19]. It has a rich ecosystem of existing software components. Its develop-
ment started at about the same time. Fawkes and ROS can be fully integrated, for
example with Fawkes running as a ROS node. Some plugins have been extended
directly to interact with ROS, e.g., for visualizing component-specific informa-
tion, the main purpose of ROS on the Carologistics’ and AllemaniACs’ robots.
Generic adapter plugins translate between the middleware differences and mes-
sage types. For example, Fawkes can either provide its navigation capabilities to
ROS, or integrate ROS’ move base component for path planning.

Fawkes uses a monolithic approach, running most components as dynamically
loaded plugins multi-threaded in a single process, while ROS focuses on a multi-
process approach of federated nodes. Fawkes uses a hybrid blackboard/messaging
communication architecture, while ROS uses a publisher/subscriber middleware.
While Fawkes uses a development model focused on a few core repositories used
to develop the components, for ROS components are developed rather separately.

Software Components

Fawkes already contains a wide variety of more than 125 software components
and more than two dozen software libraries, many of which are used in the RCLL.
4 Website of the Carologistics at https://www.carologistics.org.

https://www.carologistics.org


International Harting Open Source Award 2016 637

These cover a wide range of functionalities, from plugins providing infrastructure,
over functional components for self-localization and navigation, and perception
modules via point clouds, laser range finders, or computer vision, to behavior
generating components following reactive or deliberative paradigms. In the fol-
lowing we describe some examples with a particular focus on the RCLL. The
behavior components are explained in more detail in Sect. 3.

Navigation. Fawkes comes with an implementation of Adaptive Monte Carlo
Localization which is an extended port from ROS. In the RCLL, we use a pre-
specified map and a laser range finder to determine and track the position of
the robot on the field. For locomotion path planning we use a layered structure.
A component called navgraph has a topological graph of the playing field, where
nodes specify travel points or points of interest like machines, and edges denote
passages free from static obstacles. When moving to a specific point the navgraph
plugin determines a path on this graph to reach the goal. It then instructs the
colli [20], a local path planner and collision avoidance module we have developed.
Based on the next (intermediate) goal on the path it follows a collision-free path.

Fig. 2. Machine signal detection
used in the RCLL 2016. The mark-
ings denote the detected lights [21].

Perception. The detection and recognition of
the light signal of a machine as shown in
Fig. 2. While it might seem like a routine
task for computer vision, it is complicated
by several factors. Since the lights can be on
and off, the brightness of the image varies
significantly. Additionally, background clut-
ter colored alike the light signal makes detec-
tion difficult. A full search for the light signal
in an image therefore results in many false
positives and negatives. Thus we use a multi-modal laser-based search space
reduction [21].

Simulation. The RCLL emphasizes research and application of methods for effi-
cient planning, scheduling, and reasoning on the optimal work order of produc-
tion processes handled by a group of robots. An aspect that distinctly separates
this league from others is that the environment itself acts as an agent by posting
orders and controlling the machines. This is what we call environment agency.
Therefore, we have created an open simulation environment [12] depicted in
Fig. 3 to support research and development. There are three core aspects in this
context: (1) The simulation should be a turn-key solution with simple interfaces,
(2) the world must react as close to the real world as possible, including in par-
ticular the machine responses and signals, and (3) various levels of abstraction
are desirable depending on the focus of the user, e.g. whether to simulate laser
data to run a self-localization component or to simply provide the position.

In recent work [12], we provide such an environment.5 It is based on the
well-known Gazebo simulator addressing these issues: (1) its wide-spread use

5 Simulation is available at https://www.fawkesrobotics.org/p/rcll-sim/.

https://www.fawkesrobotics.org/p/rcll-sim/


638 T. Niemueller et al.

Fig. 3. The simulation of the RCLL in Gazebo based on Fawkes.

and open interfaces already adapted to several software frameworks in combi-
nation with our models and adapters provide an easy to use solution; (2) we
have connected the simulation directly to the referee box, the semi-autonomous
game controller of the RCLL, so that it provides precisely the reactions and
environment agency of a real-world game; (3) we have implemented multi-level
abstraction that allows to run full-system tests including self-localization and
perception or to focus on high-level control reducing uncertainties by replacing
some lower-level components using simulator ground truth data.

The simulation also forms the basis for a new logistics robots competition
in simulation [22]. It is intended to build a bridge between the planning and
robotics communities and foster closer cooperation for integrating state-of-the-
art planning systems into a robotics scenario.

3 Task-Level Coordination and Execution

Fig. 4. Behavior layer separation [23].

In the model as depicted in Fig. 4,
behavior specification takes place
in the upper two layers. The
layers are combined following
an adapted hybrid deliberative-
reactive coordination paradigm.
On the lower level, processing for
perception and actuation takes
place. Task coordination is per-
formed using an incremental rea-
soning approach [23] on the top level and a reactive middle layers creates a
consistent and unified interface to the lower level components. In the RCLL, the
top level takes care about selecting the next tasks to accomplish and to coor-
dinate with the other robots. The middle layer provides a reactive framework
for modeling, implementing, executing, monitoring, and (locally repairing) basic
skills like moving a place, but also multi-step actions like retrieving a workpiece.



International Harting Open Source Award 2016 639

For computational and energy efficiency, the behavior components need also to
coordinate activation of the lower level components to solve computing resource
conflicts.

In the following, we describe these two components as a core contribution of
the Fawkes framework in the RCLL in a little more detail.

Lua-based Behavior Engine

In previous work we have developed the Lua-based Behavior Engine (BE) [13].
It integrates as a plugin into Fawkes and has also been ported to and used in
ROS [9]. The ROS integration is also available as part of Fawkes allowing for a
direct hybrid development of behaviors based on Fawkes and ROS.

Fig. 5. Hybrid
state machine.

The BE implements individual behaviors – called skills –
as hybrid state machines (HSM). They can be depicted as a
directed graph (cf. Fig. 5 to the right) with nodes representing
states for action execution and monitoring. Edges denote jump
conditions implemented as Boolean functions. For the active
state of a state machine, all outgoing conditions are evaluated,
typically at about 15 Hz. If a condition fires, the active state
is changed to the target node of the edge. A table of variables
holds information like the world model, for example storing
numeric values for object positions. It remedies typical prob-
lems of state machines like fast growing number of states or variable data passing
from one state to another. Skills are implemented using the light-weight, exten-
sible scripting language Lua.

For the RCLL, more than thirty skills have been implemented with a hierar-
chical structure where more complex skills like retrieving a workpiece build on
more basic ones like approaching and aligning at an MPS.

Incremental Reasoning Agent

The problem at hand with its intertwined world model updating and execution
naturally lends itself to a representation as a fact base with update rules for trig-
gering behavior for certain beliefs. We have chosen the CLIPS rules engine [24].
Incremental reasoning means that the robot does not create a full-edged plan
at a certain point in time and then executes it. Rather, when idle it commits to
the “then-best” action. This avoids costly re-planning (as with approaches using
planners), it allows to cope with incomplete knowledge about the world, and it
is computationally inexpensive. The decision is based on the current situation as
determined through a world model that is weakly synchronized with the other
robots and eventually consistent [25]. Adding a new rule is simplified through
more specific rules augmenting more general ones.

The robots must communicate to coordinate with the group in order to
avoid multiple robots choosing the same task. A mechanism for mutual exclu-
sion denotes one robot as leader through dynamic election. For each task to
perform and resource to use, locks must be acquired ensuring that conflicts are



640 T. Niemueller et al.

resolved early. Robots who fail to obtain re-evaluate their choice with respect to
the updated knowledge (that another robot is already performing that task).

Another set of rules controls and monitors the execution of the basic behav-
iors through the Behavior Engine to accomplish the task. For example, consider
a task to retrieve a basic element and delivering it to another machine. This is
broken down in several skills. Should the basic element be dropped on the way,
the robot can repair the task by retrieving another one, or make a new decision.

4 Conclusion

The integration of a complete robot system even for medium-complex domains
such as the RCLL can be tedious and time consuming. We had made the deci-
sion early in 2012 when joining the RCLL to go for a more complex, but then
also more robust and flexible system. This was finally rewarded by winning the
RoboCup 2014, 2015, and 2016 RCLL competitions.

The public release of a fully working and thoroughly tested integrated soft-
ware stack lowers the barrier of entry for new teams to the league and fosters
research and exchange among members of the RoboCup community in general,
and in the RoboCup Logistics League in particular. We have organized the first
RCLL Winter School in 2015 to disseminate this work and to discuss future
directions with other members of the community. These effort were honored
with the third place of the 1st International Harting Open Source Award 2016.
We continue to develop Fawkes as Open Source software.

Acknowledgments. The Carologistics team members in 2015/2016 are: A. Ferrein,
M. Gomaa, C. Henke, S. Jeschke, N. Limpert, D. Kuenster, G. Lakemeyer, M. Löbach,
V. Mataré, T. Neumann, T. Niemueller, S. Reuter, J. Rothe, D. Schmidt, S. Schönitz,
and F. Zwilling.

The AllemaniACs team members in 2015/2016 are: G. Gierse, T. Hofmann, B.
Maleki-Fard, T. Niemueller, S. Schiffer, and F. Zwilling.

We gratefully acknowledge the financial support of RWTH Aachen University and
FH Aachen University of Applied Sciences.

F. Zwilling and T. Niemueller were supported by the German National Science
Foundation (DFG) research unit FOR 1513 on Hybrid Reasoning for Intelligent Sys-
tems (https://www.hybrid-reasoning.org).

References

1. Niemueller, T., Reuter, S., Ferrein, A.: Fawkes for the RoboCup logistics league.
In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS, vol.
9513, pp. 365–373. Springer, Cham (2015). doi:10.1007/978-3-319-29339-4 31

2. Niemueller, T., Ferrein, A., Beck, D., Lakemeyer, G.: Design principles of the
component-based robot software framework Fawkes. In: Ando, N., Balakirsky, S.,
Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472,
pp. 300–311. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17319-6 29

3. Beck, D., Niemueller, T.: AllemaniACs 2009 Team Description. Technical report,
KBSG, RWTH Aachen University (2009)

https://www.hybrid-reasoning.org
http://dx.doi.org/10.1007/978-3-319-29339-4_31
http://dx.doi.org/10.1007/978-3-642-17319-6_29


International Harting Open Source Award 2016 641

4. Ferrein, A., Steinbauer, G., McPhillips, G., Niemueller, T., Potgieter, A.: Team
ZaDeAt 2009 - Team Report. Graz University of Technology, and University of
Cape Town, Technical report, RWTH Aachen University (2009)

5. Schiffer, S., Lakemeyer, G.: AllemaniACs Team Description RoboCup@Home.
Technical report, KBSG, RWTH Aachen University (2011)

6. Ferrein, A., Niemueller, T., Schiffer, S., Lakemeyer, G.: Lessons learnt from devel-
oping the embodied AI platform caesar for domestic service robotics. In: Proceed-
ings of AAAI Spring Symp, 2013 - Designing Intelligent Robots: Reintegrating AI
(2013)

7. Niemueller, T., Reuter, S., Ewert, D., Ferrein, A., Jeschke, S., Lakemeyer, G.:
Decisive factors for the success of the carologistics RoboCup team in the RoboCup
Logistics League 2014. In: Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura,
K. (eds.) RoboCup 2014. LNCS, vol. 8992, pp. 155–167. Springer, Cham (2015).
doi:10.1007/978-3-319-18615-3 13

8. Niemueller, T., Reuter, S., Ewert, D., Ferrein, A., Jeschke, S., Lakemeyer, G.: The
carologistics approach to cope with the increased complexity and new challenges of
the RoboCup logistics league 2015. In: Jeschke, S., Isenhardt, I., Hees, F., Henning,
K. (eds.) Automation, Communication and Cybernetics in Science and Engineering
2015/2016, pp. 619–635. Springer, Cham (2016). doi:10.1007/978-3-319-42620-4 46

9. Srinivasa, S.S., Berenson, D., Cakmak, M., Collet, A., Dogar, M.R., Dragan, A.D.,
Knepper, R.A., Niemueller, T., Strabala, K., Vande Weghe, M., Ziegler, J.: HERB
2.0: lessons learned from developing a mobile manipulator for the home. Proc.
IEEE 100(8), 2410–2428 (2012)

10. Niemueller, T., Abdo, N., Hertle, A., Lakemeyer, G., Burgard, W., Nebel, B.:
Towards deliberative active perception using persistent memory. In: Proceedings of
the Workshop on AI-based Robotics at the International Conference on Intelligent
Robots and Systems (IROS) (2013)

11. Röfer, T., Laue, T.: On B-Human’s code releases in the standard platform league –
software architecture and impact. In: Behnke, S., Veloso, M., Visser, A., Xiong, R.
(eds.) RoboCup 2013. LNCS, vol. 8371, pp. 648–655. Springer, Heidelberg (2014).
doi:10.1007/978-3-662-44468-9 61

12. Zwilling, F., Niemueller, T., Lakemeyer, G.: Simulation for the RoboCup Logis-
tics League with real-world environment agency and multi-level abstraction. In:
Bianchi, R.A.C., Akin, H.L., Ramamoorthy, S., Sugiura, K. (eds.) RoboCup
2014. LNCS, vol. 8992, pp. 220–232. Springer, Cham (2015). doi:10.1007/
978-3-319-18615-3 18

13. Niemüller, T., Ferrein, A., Lakemeyer, G.: A Lua-based behavior engine for con-
trolling the humanoid robot Nao. In: Baltes, J., Lagoudakis, M.G., Naruse, T.,
Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 240–251. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-11876-0 21

14. Gat, E.: Three-layer architectures. In: Artificial Intelligence and Mobile Robots.
MIT Press (1998)

15. McIlroy, M.D.: Mass produced software components. In: Software Engineering:
Report On a Conference Sponsored by the NATO Science Committee (1968)

16. Brugali, D., Scandurra, P.: Component-based robotic engineering (part I). IEEE
Robot. Autom. Mag. 16(4), 84–96 (2009)

17. Brugali, D., Shakhimardanov, A.: Component-based robotic engineering (part II).
IEEE Robot. Autom. Mag. 17(1), 100–112 (2012)

18. Mamantov, E., Silver, W., Dawson, W., Chown, E.: RoboGrams: a lightweight
message passing architecture for RoboCup soccer. In: Bianchi, R.A.C., Akin, H.L.,
Ramamoorthy, S., Sugiura, K. (eds.) RoboCup 2014. LNCS, vol. 8992, pp. 306–317.
Springer, Cham (2015). doi:10.1007/978-3-319-18615-3 25

http://dx.doi.org/10.1007/978-3-319-18615-3_13
http://dx.doi.org/10.1007/978-3-319-42620-4_46
http://dx.doi.org/10.1007/978-3-662-44468-9_61
http://dx.doi.org/10.1007/978-3-319-18615-3_18
http://dx.doi.org/10.1007/978-3-319-18615-3_18
http://dx.doi.org/10.1007/978-3-642-11876-0_21
http://dx.doi.org/10.1007/978-3-319-18615-3_25


642 T. Niemueller et al.

19. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source robot operating system. In: ICRA Workshop on
Open Source Software (2009)

20. Jacobs, S., Ferrein, A., Schiffer, S., Beck, D., Lakemeyer, G.: Robust collision avoid-
ance in unknown domestic environments. In: Baltes, J., Lagoudakis, M.G., Naruse,
T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 116–127. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-11876-0 11

21. Mataré, V., Niemueller, T., Lakemeyer, G.: Robust multi-modal detection of indus-
trial signal light towers. In: RoboCup Symposium (2016, to appear)

22. Niemueller, T., Karpas, E., Vaquero, T., Timmons, E.: Planning competition
for logistics robots in simulation. In: WS on Planning and Robotics (PlanRob)
at International Conference on Automated Planning and Scheduling (ICAPS),
London, UK (2016)

23. Niemueller, T., Lakemeyer, G., Ferrein, A.: Incremental task-level reasoning in a
competitive factory automation scenario. In: Proceedings of AAAI Spring Sympo-
sium 2013 - Designing Intelligent Robots: Reintegrating AI (2013)

24. Wygant, R.M.: CLIPS: a powerful development and delivery expert system tool.
Comput. Industr. Eng. 17(1–4), 546–549 (1989)

25. Vogels, W.: Eventually Consistent. ACM Queue 6(6), 14–19 (2008)

http://dx.doi.org/10.1007/978-3-642-11876-0_11

	International Harting Open Source Award 2016: Fawkes for the RoboCup Logistics League
	1 Introduction
	2 Fawkes Robot Software Framework
	3 Task-Level Coordination and Execution
	4 Conclusion
	References




