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Abstract. Introducing robots to provide flexible logistics in a smart fac-
tory and cohabitation of robot workers and human operators will require
robots to recognize and interpret the same cues in the environment as
humans do. In this paper, we describe a novel method to detect machine
light signal towers as one such cue that are frequently seen on production
machines. It uses color information to determine basic regions of interest
and applies a number of spatial constraints to make it robust against
many common disturbances. As an option, the algorithm can use laser
data for machine-specific reduction of the search space for a speed up by
an order of magnitude providing fast, accurate, and robust detection. It
recognizes the respective activation states and even blinking lights.

1 Introduction

G: on

Y: on

R: off

Fig. 1. Illustration of recognition and noise.
(Color figure online)

Industrial manufacturing is expected
to change considerably in the near
future – a paradigm shift often called
Industry 4.0 [1]. Part of this vision
are smart factories, context-aware
facilities that can take into account
information like object positions or
machine status [2]. They provide
manufacturing services that can be
combined efficiently in (almost) arbi-
trary ways. This challenge is modeled
by the RoboCup Logistics League (RCLL) [3].

While some factories will be designed according to this vision with networked
machinery, even more existing facilities will be incrementally upgraded for eco-
nomic reasons, requiring the robots to adapt to existing machines, and to work
safely alongside humans [4,5]. The light signals used in the RCLL are industry-
standard parts1 that are often used to indicate a machine’s status, e.g. when it
is about to run out of material, or whether it is currently safe for a human to
perform certain operations. Being able to visually recognize these is important
1 Similar to http://www.werma.com/en/s c1006i2580/K37 cable 24VAC/DC GN/

YE/RD/69811075.html.
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even in the presence of a network to communicate that very information, for
example to prevent misunderstandings between humans and robots in case of a
signal or network failure.

In this paper, we describe a novel method that uses a coarse (yet expressive
and very efficient) color model to search for relevant regions of interest (ROI) of
the light colors red, yellow, and green. These regions are then filtered by a number
of spatial constraints to eliminate typical false positives like colored reflections on
metal parts of the machine. A machine-specific laser-based detection of the signal
tower can be used to reduce the image search space considerably, providing an
order of magnitude speed-up while increasing reliability. Eventually, the detected
ROIs for the three colors are analyzed for their activation state (cf. Fig. 1) and
for temporal relations to detect blinking lights.

In the following Sect. 2 we briefly describe the RCLL and the problem of light
signal tower detection. In Sect. 3 we highlight some related work before describing
the method in detail in Sect. 4. We provide evaluation results in Sect. 5 before
we conclude in Sect. 6.

2 RoboCup Logistics League and Signal Light Towers

RoboCup [6] is an international initiative to foster research in the field of
robotics and artificial intelligence. Besides robotic soccer, RoboCup also fea-
tures application-oriented leagues which serve as common testbeds to compare
research results. Among these, the industry-oriented RoboCup Logistics League2

(RCLL) tackles the problem of production logistics in a smart factory. Groups
of three robots have to plan, execute, and optimize the material flow and deliver
products according to dynamic orders in a simplified factory. The challenge con-
sists of creating and adjusting a production plan and coordinating the group [3].

Fig. 2. Robot approaching
a ring station. (Color figure
online)

A game is split into two major phases. In the
exploration phase, the robots must determine the
positions of machines assigned to their team and
recognize and report a combination of marker and
light signal state. During the production phase,
the robots must transport workpieces to create
final products according to dynamic order schedules
which are announced to the robots only at run-time,
while the machines indicate their status with light
signals.

Machines in the RCLL are represented by Festo’s
Modular Production System (MPS) stations, each
equipped with a red/yellow/green signal light tower.
For example, in Fig. 2 a robot approaches a ring sta-
tion, where the signal tower is on the front left corner
of the station.

2 RoboCup Logistics website: http://www.robocup-logistics.org.

http://www.robocup-logistics.org
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The distinctive feature of this vision problem is the presence of active light
sources with an extreme variation in brightness which far exceeds the sensitivity
range of our consumer-grade cameras.

Fig. 3. Actual light
signals vs. environ-
ment clutter. (Color
figure online)

To be able to detect blinking states, we have to recog-
nize both lit and unlit signals, but depending on ambi-
ent light, unlit signals may be captured as almost all
black while lit signals are captured as mostly white (cf.
Fig. 3). Another problem is the fact that the individ-
ual red/yellow/green segments are not optically separated
internally, for example, a lit red segment will always make
parts of an unlit yellow segment appear red. In combi-
nation with extensive and unpredictable background clut-
ter (cf. Fig. 3) coming from colorful reflections on shiny
machine parts, colorfully dressed spectators and other
objects, false positives become a major problem. Since
individual segments are made of a transparent material
with a fluted surface, the use of many light emitting sen-
sors like a Kinect is infeasible. The use of stereo cameras
is made difficult since the amount of textures is low if the
region of a color is mostly a bright spot if the light is turned
on, or the remainder of the image too dark if tuned down.

3 Related Work

Automatic detection of roadside traffic lights is a related field in particular for
autonomous driving. Ziegler et al. describe the challenges posed by a long real-
world overland journey [7] under urban and rural conditions at daytime. While
it is in principle possible to work around the whole issue by broadcasting traffic
signal states over radio, this would require major infrastructure investments [8].

A common practice is to build a database containing features of known
intersections to assist locating a traffic signal within a camera image [7,8]. The
required data are gathered on a special mapping run of the routes. Fairfield and
Urmson generate a detailed prior map that contains a global 3D pose estimate of
every traffic signal [8]. Ziegler et al. create a manually labeled 2D visual feature
database [7]. During autonomous driving, these hints are then used to limit the
search space for the classifier that detects the red, yellow and green lights.

Such approaches do not cover some of the typical problems outlined in Sect. 2
and do not use a second sensor that allows to reduce the problem space.

Another approach in the RCLL has been to reduce camera exposure and
contrast until only lit signals would create a saturated output [9]. A drawback
of this approach is that this makes the camera unusable for other tasks.

Color detection has been a long-standing issue in RoboCup. In other leagues
like the Standard Platform League, lookup tables were sufficient while constant
lighting was provided [10]. These methods generally cannot capture the dynamic
range with active light sources. Edge and color segmentation have been used to
detect vertically stacked color-coded landmarks [11]. While somewhat similar in
shape, they did not change during the game and had no temporal dependencies.
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4 Multi-modal Light Signal Detection

Image processing is performed as a sequence of operations forming a process-
ing pipeline that is depicted in Fig. 4. A classifier takes an input image and
determines regions of interest (ROI) by detecting colors along a grid with pixels
of relevant colors according to similarity color models. An assembly stage com-
bines ROIs of different colors according to some spatial constraints. Additionally,
based on the detection of the flat side panel of the MPS (cf. Fig. 2) by means of
a 2D laser scanner, the ROIs can be further constrained by an estimate of the
expected position within the image. This combination of different sensors makes
this a multi-modal approach which significantly reduces the search space and
the chance of false positives. Distance-based tracking ensures that consecutive
frames are accepted for small movements. A brightness classifier detects lit/unlit
signal segments in the determined ROIs and temporal aggregation is performed
to detect blinking signals.

INPUT

Laser ROI

Raw Image

Classifier/
Color Model

Signal
Assembly

Tracking/
Filtering

OUTPUT

Light
State

Fig. 4. A model of the processing pipeline. (Color figure online)

In the following we will detail the major components of the pipeline which
has been implemented using the computer vision framework in Fawkes [12].

4.1 Color Model

Fig. 5. Sector of the
UV plane recognized by
the color model. (Color
figure online)

The color model is responsible for deciding whether an
input color matches a certain reference color. The used
color model has been ported from the VLC video player3.
It works directly with the YUV colorspace that is pro-
duced natively by most webcams, thus eliminating col-
orspace conversion. In the YUV colorspace, the lumi-
nance (roughly conforms to the concept of brightness)
information is encoded entirely in the Y dimension, while
the color value (chrominance) is a 2D vector in the UV
plane. The saturation of a color then corresponds to the
length of the UV vector.

Normalizing the two color vectors by their saturation
and computing the length of the difference vector then

3 Based on VLC’s (http://www.videolan.org) color threshold filter (colorthres.c).

http://www.videolan.org
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gives a reasonable similarity measure: δUV = | |r| ·c−|c| ·r |, where r = (ur, vr)T

is the reference color, c = (uc, vc)T is the input color, and δUV is the scalar color
difference. Specifying a threshold on δUV then allows us to decide whether some
pixel from the camera image matches a given color within a certain tolerance.
Along with a threshold on |c| and on δY , such a color model describes a subset
of the UV space (similar to Fig. 5) that extends through a portion of the Y
dimension. Multiple such color models can be combined into a multi-color model
that contains all shades we expect to see e.g. in the red light in a signal tower.

4.2 Classifier

A classifier takes an input image and outputs regions of interest. The color
classifier used in this work takes a color model that ascribes a principal color
to a pixel color and a scanline grid. The classifier then analyzes each crossing
of the grid. If the pixel is found to belong to a known color class, it considers
the direct 5 × 5 neighborhood. Only if a sufficient number of neighboring pixels
are assigned to the same color class, the pixel is considered as a positive match.
Areas with a sufficient number of similarly colored points result in a ROI. A
post-processing step merges overlapping or adjacent ROIs of the same color.

Algorithm 1. Detect a signal tower based on ROIs returned by the classifiers.
Input: R1, R0: sets of red on/off ROIs, G1, G0: sets of green on/off ROIs,

S: the set of previously detected signals
Output: S ∪ T where T are detections in current image

1: l ← Get Laser ROI(); T ← ∅

2: for all (R, G) ∈ {R0, R1} × {G0, G1} do
3: T ← T ∪ Create Laser Signal(R, G, l)
4: end for
5: if T �= ∅ then
6: T ← {arg max t∈T Match Quality(t, l)}
7: else
8: for all (r, g) ∈ R0 ∪ R1 × G0 ∪ G1 do
9: T ← T ∪ Red Green Match(r, g)

10: end for
11: end if
12: if S = ∅ then return T end if
13: for all t ∈ T do
14: s, dist ← Closest Match By Distance(S, t)
15: if dist ≤ cfgmax jitter then
16: Update State(s, t)
17: else
18: S ← S ∪ t
19: end if
20: end for
21: return S
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4.3 Signal Assembly

In the signal assembly, we compose a signal of the ROIs denoting enabled or
disabled green (G1 and G0) and red (R1 and R0) signal lights which have been
determined by the classifier described above. Algorithm 1 depicts the overall
approach: first, it is tried to determine if ROIs can be found that fit into a laser-
based ROI (ll. 1–4). If this succeeds, only the best matching ROI combination is
kept (ll. 5–6), otherwise a full search on the image is performed (ll. 7–11). If no
previous detections exist the algorithm returns the detected signals (l. 12). For
the remaining candidates, a distance-based tracking is performed (ll. 13–20).
States of previous detections are updated if a new detection is spatially close
(ll. 14–17) or just added otherwise (l. 18).

Red/Green Matching. A crucial part is the matching of red and green ROIs
that are spatially related such that they can represent a light signal. The input
ROIs can be of the full image, or constrained to a laser-based ROI (see next
section). We limit the search for the signal to red and green ROIs since the yellow
light may appear to change color if the lights above or below are lit. Depending
on the environment—which might contain arbitrary colorful objects that match
the reference colors—the color classifier can return any number of rectangular
ROIs, some of which may be part of the signal we are looking for. Algorithm 2
shows the procedure. First, Geom OK checks the width and vertical position
of the green ROI, and the horizontal alignment of both ROIs:

function Geom OK(r, g)
return whether width(g) ≤ cfgmax width ∧ top(g) > cfggreen horizon

∧ centerx(g) - centerx(r) ≤ cfgx align threshold

end function

Any (r, g) pair that does not satisfy this constraint cannot possibly be part of
one signal tower, so it is skipped (ll. 2 and 18). A pair that passes is then checked
for a special case that can occur due to the extreme brightness of the red and
green lights (ll. 3 and 4). The used webcams have an acrylic lens cover that
easily gathers a slight haze from dust and wiped-off fingerprints, often causing
lit signals to create a colored bloom around the actual light source. The result
is a ROI that does contain the signal light, but which is overly large. Whether
a ROI ρ1 is affected by bloom is determined in relation to another ROI ρ2:

function Fix Bloom(ρ1, ρ2)
if [width-ratio(ρ1, ρ2) > cfgmax width ratio

∧ aspect-ratio(ρ1) ≤ cfgmax aspect ratio

∧ 0 < vspace(ρ1, ρ2) < 1.5 · height(ρ2)] then
left(ρ1) ← left(ρ2)
width(ρ1) ← width(ρ2)
bottom(ρ1) := top(ρ2) − height(ρ2)

end if
end function
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If bloom is detected, the geometry of the ROI that is likely not or less-affected
by bloom is used to improve the geometry. After this, another constraint tests if
the vertical space between r and g is sufficient to fit a similarly-sized yellow ROI
in between (Vspace-OK). If this constraint is violated, the (r, g) pair is skipped.
Otherwise the two ROIs are aligned well enough horizontally and a similarly-
sized gap for a yellow ROI exists in between. If these are still too dissimilar in
width (l. 6), the width of both is set to the mean width while preserving the
center position (l. 7–9). If a pair of red and green ROIs ran through this process,
we assume both must be part of the same signal tower, and generate a yellow
ROI y that fits in between (l. 11–14).

Laser-Assisted ROI Pre-processing If the position of the MPS table could
be detected with the 2D laser scanner, a bounding box can be estimated in
which the colored ROIs are to be expected (cf. pink box in Fig. 6). We call
this rectangular region the laser ROI or l. Within l, we can expect to find
(almost) no clutter, which allows us make additional assumptions, as described
in Algorithm 3. For example, we can now handle overexposure (Fig. 6) by simply
merging the broken-down red or green ROIs into one (Lines 2 and 3). If the red
or green light is switched off, large parts of it may appear in a very dark shade

Algorithm 2. Return ROI tuple (r, y, g) if r and g fit all constraints
1: function Red Green Match(r, g)
2: if r �= ∅ ∧ g �= ∅ ∧ Geom OK(r, g) then
3: Fix Bloom(r, g)
4: Fix Bloom(g, r)
5: if Vspace-OK(r, g) then
6: if ¬(1/cfgmax width ratio ≤ width-ratio(r, g) ≤ cfgmax width ratio) then
7: δw ← width(g) − width(r)
8: left(g) ← left(g) + δw/2
9: width(g) := width(g) + δw/2

10: end if
11: left(y) ← mean(left(r), left(g))
12: width(y) ← mean(width(r), width(g))
13: height(y) ← mean(height(r), height(g))
14: top(y) ← bottom(r) + 1/2(top(g) − bottom(r) − height(y))
15: return (r, y, g)
16: end if
17: end if
18: return (∅)
19: end function
Terminology: left(ρ) denotes the left border of a ROI ρ, so right(ρ) = left(ρ) + width(ρ), top(ρ)

denotes the top border of ρ, bottom(ρ) = top(ρ) + height(ρ); vspace(ρ1, ρ2) is the amount of ver-

tical space between ρ1 and ρ2: top(ρ2) − bottom(ρ2), and mean(a, b) is the arithmetic mean value

of a and b. The function aspect-ratio(ρ) returns width(ρ)/height(ρ) if width(ρ) > height(ρ), and

height(ρ)/width(ρ) otherwise, so that for any ρ, aspect-ratio(ρ) ≥ 1. width-ratio(ρ1, ρ2) simply

returns width(ρ1)/width(ρ2), so it can be used to determine which one is wider than the other.
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Algorithm 3. Generate a ROI tuple (r, y, g) from R and G that lies within l.
1: function Create Laser Signal(R, G, l)
2: rm ← [

⋃
R] ∩ l

3: gm ← [
⋃

G] ∩ l
4: if rm �= ∅ ∧ [br ← Classify Black(above(rm))] �= ∅ then
5: δy ← top(rm) − bottom(br)
6: if −δy > height(rm) then
7: δy ← −height(rm)
8: end if
9: top(rm) ← bottom(br)

10: height(rm) ← height(rm) + δy
11: end if
12: if gm �= ∅ ∧ [bg ← Classify Black(below(gm))] �= ∅ then
13: δy ← top(gm) − bottom(bg)
14: if δy > 0 then
15: height(gm) ← height(gm) + δy
16: end if
17: end if
18: s ← Red Green Match(rm, gm)
19: if s �= ∅ then
20: return s
21: else if rm �= ∅ ∧ gm �= ∅ then
22: er ← |1 − height(rm)/width(l)|
23: eg ← |1 − height(gm)/width(l)|
24: if height(gm) > width(l) ∧ eg > er then
25: Fix Height(gm, rm)
26: else if height(rm) > width(l) ∧ er > eg then
27: Fix Height(rm, gm)
28: end if
29: return Red Green Match(rm, gm)
30: else if rm �= ∅ then
31: g, y ← Create ROIs From Red(rm)
32: return (rm, y, g)
33: else if gm �= ∅ then
34: r, y ← Create ROIs From Green(gm)
35: return (r, y, gm)
36: end if
37: end function
The union ρ1 ∪ ρ2 is defined as the ROI ρm that contains both ρ1 and ρ2; the intersection ρ1 ∩ ρ2

is the ROI that is contained in both ρ1 and ρ2 (which might be the empty ROI).

that does not have enough saturation to discriminate it from other, unwanted
objects. In this case, the merged ROI may still not cover the full area of the
signal light, but we also do not suffer from bloom. Since we do not expect black
clutter (T-shirts, black machine parts etc.), we can look for the black socket
(l. 12) or the black cap on top (l. 4). If the “black” classifier is successful, rm

or gm may be improved using the respective black ROIs (ll. 5–10 and 13–16).
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In the case of green, we only extend gm (i.e. δy must be positive), since an unlit
green signal part often turns out so dark as to appear black.

Fig. 6. Laser ROI
(pink rectangle), over-
exposed lights (Color
figure online)

After this pre-processing the red/green matching
algorithm is tried once with rm and gm (l. 18). If this suc-
ceeds, we have successfully obtained a tuple (rm, y, gm)
that covers the full signal tower and can be passed on
for tracking, brightness classification and blinking detec-
tion. If the red/green matching fails while both rm and
gm are defined, one of the two ROIs might be blown up
because of bloom, and can be improved if the other one
does not suffer from bloom. Since the width of both rm

and gm is limited to the width of the laser ROI l, we can
estimate how badly bloom affects a ROI by its aspect
ratio (ll. 22–23). The height of a bloom-affected ROI can
then be improved in relation the ROI that is less affected
(ll. 24–28).

After this, the Red/Green matching is tried once more
with improved rm or gm. If this fails again, we give up
on the current combination of ROI sets.

Apart from the case where we were able to obtain both rm and gm, we also
handle cases where one of the two is missing (ll. 33–35). If, e.g., there is only
a red ROI rm, matching green and yellow ROIs can be generated. In this case
a black ROI b that might have been found can be used to estimate the overall
height of the color ROIs. Eventually, three similarly sized ROIs should be found.

4.4 Tracking, State Detection, and Filtering

After ROIs have been determined, distance-based tracking is performed. A
resulting ROI tuple denoting a signal tower is matched against previous detec-
tions based on their distance and a maximum threshold (algorithm 1, ll. 14–16).

To determine the activation states, the brightness of the respective ROIs is
evaluated. ROIs of high brightness are considered to be active lights. This infor-
mation is stored in a circular buffer. The buffer length is determined by the
number of frames that can be processed per second and the maximum blink-
ing frequency in the RCLL, which is 2 Hz. The light state is considered to be
unknown, as long as the buffer is not completely filled. Once filled, the number of
on/off transitions is counted. If this is larger than 1, the specific light is blinking.

Additionally, a confidence value is produced based on the visibility of the
signal tower. A positive value for this visibility history denotes consecutive pos-
itive sightings, negative values how many images the signal tower could not be
detected. The value immediately turns negative on failed detections and is not
step-wise decremented.

A filtering stage can be used that performs outlier removal, i.e., if the light
signal is not visible for a short time the old state is assumed to still be valid.
Additionally, the visibility history is used to explicitly state that a signal is
unknown if the value is below a given threshold.
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5 Evaluation

The approach has been evaluated in terms of run-time and detection rates. The
experiments were conducted on the actual robot that features an additional
laptop (cf. Fig. 2) with a Core i7-3520M CPU and 8 GB of RAM.

Figure 7 shows the run-time per frame as 1-second averages (30 images),
without (a) and with (b) laser-based ROI pre-processing. During each run, the
situation was modified twice after 20 and after 40 s, each time introducing more
background clutter. Overall, the classifier requires the largest amount of process-
ing time. After introducing more clutter, this part requires more processing time
(to be expected with more pixels classified as red or green), as does the ROI
assembly stage, since more ROIs are produced and are tried to be combined to a
signal tower. Enabling the laser-assisted ROI pre-processing considerably reduces
the overall processing time due to search space reduction for the classifier. The
ROI assembly stage takes longer since it now requires additional classifier runs
for the black cap and socket. The occasional outliers in (b) are due to the laser-
line detection not converging and falling back to full-image classification.

Table 1 shows the detection rate from running the image processing pipeline
on an actual robot detecting signals on an MPS in three situations posing typical
problems. For each situation, the robot moved to four nearby locations facing the
MPS and took 30 images. This was done for all valid light signal combinations
(no blinking). Figure 8 shows example images for each dataset. Three different
configurations were used. The pipeline was run without and with the laser-based
ROI pre-processing. Finally, filtering was enabled. Blind search incurs high run-
time and mediocre detection results (first macro column). Using the laser-based
ROI vastly reduces the search space, increasing the detection rate considerably
(second macro column). This is improved even further using the filtering and
outlier removal (last macro column). With conservative settings requiring a high
confidence, this results in virtually no false detections in actual games.

Fig. 7. Run-time data during live detection with and without a laser ROI. The Y axis
denotes the time since system start, the X axis shows the run-time of the algorithm in
1 s averages stacked by sub-components.
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Table 1. Results after applying the approach in three situations (cf. Fig. 8), each with
seven signal combinations and from four different positions in front of the MPS; we
give True (T) and false (F) positives (P) and negatives (N) (T/N omitted in this test),
and detection rate.

Op. Mode w/o Laser ROI w/Laser ROI Filtered (w/LR)

Dataset � DS 1 DS 2 DS 3 DS 1 DS 2 DS 3 DS 1 DS 2 DS 3

# T/P 310 350 604 708 764 692 495 463 393

# F/P 49 271 152 137 102 175 25 21 7

# F/N 509 245 112 23 0 1 0 0 0

Rate (%) 35.71 40.42 69.59 81.57 88.22 79.72 95.19 95.66 98.25

(a) DS 1: green background
clutter and reflection.

(b) DS 2: some clutter, red
shines into yellow light.

(c) DS 3: good conditions,
no clutter.

Fig. 8. Example images from the datasets used in the detection rate evaluation. (Color
figure online)

6 Conclusion

Integrating robots into human working areas will require recognizing cues that
were designed for human consumption, such as light signal towers which are
mounted to many machines in factories. In this paper, we have presented a
novel approach to detect such towers and recognize the respective signal states.
The algorithm encodes detailed human knowledge (collected in several RCLL
competitions) that deals with typical problems that arise, for instance due to
reflections of the lights on metal machine parts, or because colored light shines
into adjacent lights when illuminated. To improve efficiency and robustness, a
multi-modal approach has been chosen combining detection from a 2D laser
scanner and a camera image. To use the algorithm in a new situation, the main
modification required is providing a new mapping from such 2D laser scanner
data to a region of interest in the image. The evaluation results show that the
algorithm performs at a high speed allowing real-time light tower detection with
a very good detection rate yielding only a negligible number of false readings.

An implementation of the algorithm is available as part of the Fawkes soft-
ware stack release4 for the RCLL [12]. The datasets and evaluation scripts are
available on the project website.5

4 https://www.fawkesrobotics.org/p/rcll2015-release/.
5 https://www.fawkesrobotics.org/p/rcll-signal-vision.

https://www.fawkesrobotics.org/p/rcll2015-release/
https://www.fawkesrobotics.org/p/rcll-signal-vision
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