
Decentralized Reinforcement Learning Applied
to Mobile Robots

David L. Leottau1(B), Aashish Vatsyayan2, Javier Ruiz-del-Solar1,
and Robert Babuška2

1 Advanced Mining Technology Center, Department of Electrical Engineering,
Universidad de Chile, Av. Tupper 2007, Santiago, Chile

dleottau@ing.uchile.cl
2 Delft Center for Systems and Control,

Delft University of Technology, 2628 CD Delft, The Netherlands

Abstract. In this paper, decentralized reinforcement learning is applied
to a control problem with a multidimensional action space. We propose
a decentralized reinforcement learning architecture for a mobile robot,
where the individual components of the commanded velocity vector are
learned in parallel by separate agents. We empirically demonstrate that
the decentralized architecture outperforms its centralized counterpart in
terms of the learning time, while using less computational resources.
The method is validated on two problems: an extended version of the 3-
dimensional mountain car, and a ball-pushing behavior performed with
a differential-drive robot, which is also tested on a physical setup.

Keywords: Multiagent learning · Decentralized control · Reinforcement
learning · Robot soccer

1 Introduction

Reinforcement learning (RL) has been increasingly used to learn complex behav-
iors for robots in the real world [1,2]. One of the main challenges is the large
number of training trials required, especially in systems with many state and
action variables [3]. For such problems, distributed reinforcement learning can
be used to address this issue [4]. For instance, in mobile robotics, a common
high-level motion command is the desired velocity vector (e.g.: [vright, vleft] for
a differential robot, or [vx, vy, vθ] for an omnidirectional robot). If each com-
ponent of this vector is handled individually, a distributed control scheme can
be applied. By taking care of the coordination among the agents, it is possible
to use decentralized methods [5] to learn behaviors which require these motion
commands, taking an advantage of parallel computation and other benefits of
multiagent systems (MAS) [4,6].

In Decentralized Reinforcement Learning (DRL), a problem is decomposed
in several learning tasks, or sub-problems, whose information and resources are
managed separately and these tasks work together toward a common goal. In
c© Springer International Publishing AG 2017
S. Behnke et al. (Eds.): RoboCup 2016, LNAI 9776, pp. 368–379, 2017.
https://doi.org/10.1007/978-3-319-68792-6_31

Decentralized Reinforcement Learning Applied to Mobile Robots 369

systems with multidimensional action spaces, each individual action variable is
handled by a separate agent.

In this paper we propose to use DRL for mobile robots, where each com-
ponent of the desired velocity vector (e.g.: [vl, vw], linear and angular speed for
the particular case of a differential-drive robot) is learned by a separate agent.
Since most of the MAS works reported in the literature do not address or val-
idate MultiAgent Learning (MAL) algorithms with multiple-state, stochastic,
and real world problems [4], our goal is to show that MAS are also applica-
ble to real-world problems like robotic platforms, by using a DRL architecture.
Thereby, two separate problems are considered. The first is an extended ver-
sion of the three dimensional mountain car (3DMC) [7], which is a common RL
test bed. The second is a ball-pushing behavior, a soccer task performed with
a differential-drive robot in a noisy and stochastic setting, which is also tested
with a physical setup. Both validation problems are modeled and implemented
by using a Centralized RL (CRL) and a DRL architecture, in order to compare
and analyse both approaches.

The main contribution of this paper is twofold: first, we propose a DRL
scheme for learning individual behaviors in the context of mobile robots; second,
we compare CRL with DRL on two different validation problems. To the best of
our knowledge, this is the first decentralized architecture for learning on mobile
robot platforms, along with a comparison with the centralized RL counterpart.

The remainder of this paper is organized as follows: Sect. 2 gives a brief
introduction to DRL, Sect. 3 introduces the control problems, Sect. 4 presents
and analyses the experimental results, Sect. 5 presents the related work, and
Sect. 6 concludes the paper and outlines future work.

2 Decentralized Reinforcement Learning

In DRL, the learning problem is decomposed into several sub-problems which
as learned in parallel by separate agents. The MAS perspective yields several
potential advantages if the problem is approached with decentralized learners
and the coordination is taken care of [4]:

– The learning speed might be higher compared to a centralized agent which
has to search an exponentially larger action space.

– The state space can be reduced if not all the state information is relevant to
all the learning agents.

– Different algorithms, models or configurations can be used independently by
the different agents.

– Memory and processing time requirements are smaller.
– Parallel or distributed computing implementations are suitable.

A DRL scheme also has several challenges which must be efficiently solved in
order to take advantage of aforementioned MAS benefits. Agents have to coor-
dinate their individual behaviors towards a coherent and desired joint behavior.
The formulation of a good DRL modeling and learning goal is a difficult prob-
lem [4].

370 D.L. Leottau et al.

3 Validation Problems

In order to validate the DRL approach, two different problems have been
selected: the 3-Dimensional mountain car (3DMC), a canonical and already
reported RL test-bed [7]; and the ball-pushing behavior, a noisy and stochastic
real world application, which is performed with the MiaBotPro [8] differential-
drive robot, and tested on a physical setup. These problems allow us to carry out
a comparative analysis between a DRL scheme and its CRL counterpart. For the
case of DRL implementations, both problems are modeled with two RL agents,
no explicit coordination mechanism, or MAL algorithm; so, indirect coordination
will emerge between the two independently learning agents.

3.1 Three-Dimensional Mountain Car

Centralized modeling: An under-powered car has to move to its goal state
[7]. The slope of the mountain is shown in Fig. 1. The state has four continuous-
valued features: x, ẋ, y, ẏ. The positions (x, y) have the range of [−1.2, 0.6] and
the speeds (ẋ, ẏ) are constrained to [−0.07, 0.07]. The agent selects from five
actions: {Neutral, West, East, South, North}. West and East modify ẋ by -0.001
and +0.001 respectively, while South and North modify ẏ by −0.001 and +0.001
respectively. On each time step ẋ is updated by 0.025(cos(3x)) and ẏ is updated
by −0.025(cos(3y)) due to gravity. The goal state is x ≥ 0.5andy ≥ 0.5. The
agent begins at rest at the bottom of the hill. The reward is −1 for each time
step until the goal is reached, at which point the episode ends and the reward is
0. The episode also ends, and the agent is reset to the start state, if the agent
fails to find the goal within 5000 time steps.

Fig. 1. 3D mountain car surface. Figure adopted from [7].

Decentralized Reinforcement Learning Applied to Mobile Robots 371

Proposed decentralized modeling: In the original 3D mountain car prob-
lem, a centralized approach is followed. The original 5 actions modeling (CRL-
5a) make it impossible for the car to turn or perform a diagonal move at
each time step. In order to make this problem fully decentralized, more real-
istic, and challenging, we have extended the action space by incorporating four
more actions: {NorthWest, NorthEast, SouthWest, SouthEast}. Since the car
is now able to move on x and y axes at the same time, ẋ, and ẏ updates
must be multiplied by 1/

√
2 for these new four actions because of the diago-

nal moves. The decentralized approach employs two independent agents: agentx

whose action space is {Neutral,West, East}, and agenty whose action space is
{Neutral, South,North}. The learning task then be seen as two independent,
parallel sub-tasks, agentx trying to reach the east top, and agenty trying to
reach the north top.

Performance index: The evolution of the learning process is evaluated by mea-
suring and averaging 25 runs. The performance index is the cumulative reward
per episode, where −5, 000 is the worst case, and zero the best, though unreach-
able case.

RL algorithm and optimized parameters: SARSA(λ) with Radial Basis
Function (RBF) approximation with ε-greedy exploration is implemented for
these experiments [1]. The exploration rate ε is decayed by 0.99 at the end
of each learning episode. The following parameters are obtained after the hill
climbing optimization procedure: learning rate (α), eligibility traces decay factor
(λ), and exploration probability (ε). These parameters are detailed in Table 2 for
each implemented scheme. Additionally, the number of Gaussian RBF cores per
feature were also optimized: 9 cores to x and y, 6 cores to ẋ and ẏ, and a standard
deviation per core 1/2 · |featuremax − featuremin|/nCores.

A summary of the three implemented cases is shown below:

– CRL Original model (CRL-5a):
Actions: {Neutral, West, East, South, North}
Global reward function: r = 0 if goal, r = −1 otherwise
Joint state vector: [x, ẋ, y, ẏ]

– CRL Extended model (CRL-9a):
Actions: {Neutral, West, NorthWest, North,
NorthEast, East, SouthEast, South, SouthWest}
Global reward function: r = 0 if goal, r = −1 otherwise
Joint state vector: [x, ẋ, y, ẏ]

– Decentralized RL model (DRL):
Actions agentx: {Neutral, West, East},
Actions agenty: {Neutral, South, North}
Individual reward functions:
rx = 0 if x ≥ 0.5, rx = −1 otherwise; ry = 0 if y ≥ 0.5, ry = −1 otherwise
Joint state vector: [x, ẋ, y, ẏ]

372 D.L. Leottau et al.

3.2 Ball-Pushing

We are considering the ball-pushing behavior [9], a basic robot soccer skill [2]
similar to [10,11], where a differential robot player attempts to push the ball
and score a goal. The MiaRobot Pro is considered for this implementation (See
Fig. 2. In the case of a differential robot, the complexity of this task comes from
its non-holonomic nature, limited motion and accuracy, and especially from the
highly dynamic and non-linear physical interaction between the ball and the
robot’s irregular front shape. The description of the desired behavior will use the
following variables: [vl, vw], the velocity vector composite by linear and angular
speeds; aw, the angular acceleration; γ, the robot-ball angle; ρ, the robot-ball
distance; and, φ, the robot-ball-target complementary angle. These variables are
shown in Fig. 2 at left, where the center of the goal is located in ⊕, and a robot’s
egocentric reference system is considered with the x axis pointing forwards.

RL procedure is carried out episodically. After a reset, the ball is placed in
a fixed position 20 cm in front of the goal, the robot is set on a random position
behind the ball and the goal. The successful terminal state is reached if the
ball crosses the goal line. If robot leaves the field is also considered a terminal
state. The RL procedure is carried out in a simulator and the bests learned
policy obtained between the 25 runs for the CRL and DRL implementations are
directly transferred and tested on the MiaBot Pro robot on the experimental
setup.

Fig. 2. Definition of variables for the ball-pushing problem (left), and, a picture of the
implemented experimental setup (right).

Decentralized Reinforcement Learning Applied to Mobile Robots 373

Centralized modelling: For this implementation, proposed control actions are
twofold [vl, aw], the requested linear speed and the angular acceleration, where
Aaw = [positive, neutral, negative]. Our expected policy is to move fast and
push the ball towards the goal. That means: to minimize ρ, γ, φ; and to maximize
vl. Thus, this centralized approach considers all possible actions combinations
A = Avl ·Aaw and learns [vl, aw] actions, from the observed joint state [ρ, γ, φ, vw],
where [vw = vw(k−1) + aw]. States and actions are detailed in Table 1.

Table 1. Description of state and action spaces for the DRL modeling of the ball-
pushing problem

Joint state space: S = [ρ, γ, φ, vw]T

Feature Min. Max. N.Cores

ρ 0 mm 1000 mm 5

γ −45 deg 45 deg 5

φ −45 deg 45 deg 5

vw −10 deg/s 10 deg/s 5

Decentralized action space: A = [vl, aw]

Agent Min. Max. N.Actions

vl 0 mm/s 100 mm/s 7

aw −2 deg/s2 2 deg/s2 3

Centralized action space: A = [vl · aw]

AT = Avl · Aaw = 5 · 3 = 15 actions

Decentralized modelling: Differential robot velocity vector can be split in two
independent actuators, right and left wheel speeds [vr, vl] or linear and angu-
lar speeds [vl, vw]. To keep parity with the centralized model, our decentralized
modelling considers two single agents for learning vl and aw in parallel as it is
depicted in Table 1. In this way, the ball-pushing behavior can be decomposed in
two sub-task, ball-shooting and ball-goal-aligning, which are performed respec-
tively by agentvl and agentaw . The joint state vector [ρ, γ, φ, vw] is identical to
the one proposed for the centralized case.

A common reward function is considered for both CRL and DRL implemen-
tations, it is shown in expression (1), where Pbg is the distance where the ball
crossed goal line with respect to the center of the goal, gpSize = 75mm is the
distance from the center of the goal to the post, K = 10 is a constant gain, and
max features are normalization values taken from Table 1.

R(s) =
{

K · (1.1 − |Pbg|/(gpSize)) if goal
−(ρ/ρmax + γ/γmax + φ/φmax) otherwise (1)

374 D.L. Leottau et al.

Performance index: The evolution of the learning process is also evaluated
by measuring and averaging 25 runs. Percentage of scored goals across trained
episodes is considered as performance index:
%ofScoredGoals = scoredGoals/Episode, where scoredGoals are the amount
of scored goals until the current training Episode. Final performance is also
measured running again a thousand episodes with the best policy (between 25)
obtained per each tested scheme.

RL algorithm and optimized parameters: A RBF SARSA(λ) algorithm
with softmax action selection is implemented for these experiments [1]. Boltz-
man exploration temperature is decayed as:
τ = τ0 · exp(−dec · episode/maxEpisodes), where episode is the current episode
index and maxEpisodes = 1000 trained episodes per run. Thereby, the follow-
ing parameters are optimized: learning rate (α), eligibility traces decay factor
(λ), Boltzman exploration initial temperature (τ0), and exploration decay fac-
tor (dec). Obtained values after optimization are listed in Table 1. Furthermore,
number of discretized actions for the linear velocity are optimized obtaining
Avl = 5 for the CRL scheme and Avl = 7 for the DRL.

4 Experimental Results and Analysis

4.1 Three-Dimensional Mountain Car

Figure 3 shows a performance comparison between: the original implementation
of 3DMC proposed at [7], CRL-5a; the extension of that original problem where
9 actions are considered, CRL-9a; and a decentralized scheme, DRL; It is impor-
tant to remember that a better performance tends from negative to zero. Table 2
shows the averaged final performance of the last 100 episodes. Our results for
CRL-5a (red dotted line in Fig. 3) converges considerably faster than results
presented in [7], it can be due to parameter optimization, and because we have
implemented a RBF approach instead CMAC for continuous states generaliza-
tion. CRL-9a converges slower than the original one as it is expected because of
the augmented action space. Notice that DRL speeds-up convergence and outper-
forms both centralized schemes. From error bars in Fig. 3, it can be noticed that
asymptotic performance is similar between the three implementations. Thereby,
the most noticeable result is the fact that the DRL scheme is able to learn faster
than CRL ones without loosing performance. Expressing learning speed as a time
to threshold as it is presented in Table 2, DRL is two times faster than CRL-5a
and it has a better performance in around 15 units. Further, DRL is almost
three times faster than CRL-9a, its direct centralized counterpart, showing an
outperform of around 35 units.

Regarding computational resources, from optimized parameters definition in
Sect. 3.1, the DRL scheme uses two Q functions which consume 2 ·9 ·6 ·9 ·6 ·3 =
17496 memory cells, versus 9 ·6 ·9 ·6 ·9 = 26244 of its CRL-9a counterpart; DRL
consumes 1/3 less memory. Moreover, we have measured the elapsed time of

Decentralized Reinforcement Learning Applied to Mobile Robots 375

both learning process along the 25 performed runs, the DRL took 0.62 h, being
1.56 times faster than CRL-9a, which took 0.97 h. These times are referential,
experiments were performed with an Intel(R)Core(TM)i7-4774CPU@3.40Ghz
with 4 GB in RAM. Notice than even for this simple problem with only two
agents, there is a considerable memory consumption and processing time saving.

Episodes
0 50 100 150 200 250 300

A
ve

ra
ge

d
C

um
ul

at
iv

e
R

ew
ar

d

-5000

-4000

-3000

-2000

-1000

0

CRL-5a
CRL-9a
DRL

Fig. 3. 3DMC learning evolution plots. Results are averaged across 25 learning runs
and error bars show the standard deviation (Color figure online).

Table 2. 3D mountain car parameters, final performances, and convergence time.

Approach Optimized parameters Final performance Time to Th. †
DRL α = 0.2, λ = 0.95, ε = 0.06 −205.49 71

CRL-5a α = 0.25, λ = 0.95, ε = 0.06 −221.47 146

CRL-9a α = 0.2, λ = 0.95, ε = 0.06 −240.91 195

†Time to threshold [12] is defined for this case as the number of episodes to
achieve or overcome by first time a performance of −240.91.

4.2 Ball-Pushing

Figure 4 presents learning evolution plots and Table 3 shows the best policy final
performances. Notice that learning evolution plots achieves lower performances
than final performance presented in Table 3. It is because the performance of
learning evolution plots is affected by the poor performance during early learn-
ing episodes, meanwhile final performance presented in the table is measured by
using the best policy during the whole test. The DRL scheme sped-up learning
time and improved the CRL final performance by 15%. If a time to threshold of
37.98% is considered (the best performance achieved by CRL during the learn-
ing process shown in Fig. 4), it can be said that the DRL scheme learns more

376 D.L. Leottau et al.

than twice as fast as the CRL scheme, achieving this threshold in 441 learning
episodes. It can be also noticed from error bars during early episodes, where they
do not overlaps between them.

As it was mentioned in Sect. 3.2, number of discretized actions for the linear
velocity were optimized obtaining Avl = 5 for the CRL scheme and Avl = 7
for the DRL. Notice that the DRL implementation allows a finer discretization
than the CRL. For the CRL case, increasing from 5 to 7 the number of actions
of vl implies increasing the joint action space from 15 to 21 actions, taking into
account Aaw = 3 (please check Table 1), this implies an exponential increasing
in the search space which may increase learning time affecting the final perfor-
mance. This is one of the interesting properties of decentralized systems, since
agents are independents, separate modellings or configurations can be imple-
mented per agent without directly affecting the others.

It is not possible carrying out an equitative comparison between computa-
tional consumption of CRL vs. DRL because of the aforementioned 5 vs. 7 dis-
cretized actions for vl. Even so, DRL consumes 1/3 less memory, 625·7 + 625·3 =
6250 memory cells, versus 625 · 15 = 9375 of the CRL implementation (Please
see Table 1). On the other hand, the DRL elapsed time was 0.36 h, almost the
same as the 0.34 h of the CRL scheme.

Episodes
100 200 300 400 500 600 700 800 900 1000

%
 o

f S
co

re
d

G
oa

ls

0

10

20

30

40

50

CRL

DRL

Fig. 4. Ball-pushing learning evolution plots. Results are averaged across 25 learning
runs and error bars show the standard deviation.

4.3 Ball-Pushing: Physical Setup

An experimental setup is implemented in order to test learned policies onto a
physical setup, which is shown in Fig. 2 at right. The differential drive robot
Miabot Pro is used, it is a small cube with a size of 75 × 75 × 75mm and a
weight of 0.55 kg. It has two wheels which are driven by two electro motors. The
robot is connected via Bluetooth to a central computer close to the robot soccer
platform which is 1.5m×1m. A web camera above the platform provides position
and orientation of the robot, ball, and goal. This central vision system operates
at 30 frames per second. The robot position is identified by color segmentation

Decentralized Reinforcement Learning Applied to Mobile Robots 377

Table 3. Ball-pushing optimized parameters and best policy final performances of the
simulated and real setup

Approach Optimized
parameters

Performance
sim. (%)

Performance
real (%)

DRL α = 0.3, λ = 0.9,
τ0 = 1, dec = 10

75.28 68.57

CRL α = 0.5, λ = 0.9,
τ0 = 2, dec = 7

62.15 57.14

and thresholding. The color patch on the robot make this approach convenient
due to its simple nature and ease of implementation. The state observation is
processed from the vision system, while speed of the wheels are transmitted
through Bluetooth from the computer. These speeds are computed from the Q
tables by using a greedy search policy.

The best learned policy obtained between the 25 runs carried out by simula-
tion for the CRL and DRL implementations are directly transferred and tested
on the MiaBot Pro robot on the experimental setup. The robot was positioned
in seven different positions trying to cover the whole state space, and 10 trials
were run from each position. The results from these experiments can be seen in
Table 3, where performance is presented in percentage of success to score a goal
considering the seventy attempts.

It can be seen from the Table 3 that DRL performs on average 11.43% bet-
ter than CRL. Simulation and physical setup performances are similar which
validates simulation experiments and results.

Some experiments for centralized and decentralized RL were recorded and
can be seen in [13]. In this video it can be seen that actions are a bit abrupt,
it is because of no smoothing or extrapolation of the discrete actions where
carried out, policies were transferred directly from Q functions to the physical
robot. Also, cases where the mark of the robot or some tracker was lost in the
vision system were disregarded. These aspects should be improved for future
implementations, however, the porpoise of this work is more focused to compare
CRL and DRL approaches, than achieving an optimal performance.

5 Related Work

A multiagent RL application for the multi-wheel control of a mobile robot is pre-
sented in [14]; the robot’s platform is decomposed into driving modules agents
that are trained independently, in order to provide energy consumption opti-
mization. In [15], the DRL of the soccer ball-dribbling behavior is accelerated by
using transfer knowledge, there, each component of the omnidirectional biped
walk (vx, vy, vθ) is learned in parallel with single agents working on a multi-agent
task. Similar to [9], where some layered learning strategies are studied and one of
them involves the DRL of individual behaviors in the context of soccer robotics.

378 D.L. Leottau et al.

In [5], definitions of centralized and multiagent learning approach for rein-
forcement learning are presented. Both learning strategies are tested on a 2-link
manipulator, and compared in terms of performance, convergence time, and com-
putational resources. In [3], a distributed RL architecture is presented to learn
the inverse kinematics of a 3-link-planar robot and the SCARA robot; experi-
mental results have shown that it is not necessary that the decentralized agents
perceive the whole state space in order to learn a good global policy. A multi-
agent influence RL approach is presented in [16], this uses agent’s influences to
estimate learning error between them; it has been validated with a multi-joined
robotic arm.

6 Conclusions

This paper has proposed a decentralized reinforcement learning architecture for
implementing behaviors with a mobile robot, where the individual components
of the commanded velocity vector are learned in parallel by separate agents
working in a multiagent task.

Two validation problems have been modeled and implemented: an extended
version of the three dimensional mountain car, and a ball-pushing behavior per-
formed with a differential-drive robot, which has been also tested on a physical
setup. A DRL and its CRL counterpart scheme has been implemented for the
two validation problems in order to compare and analyze strengths, weaknesses
and properties of the DRL proposed framework.

Experimental results have evidenced that with less computational resources,
and non direct coordination mechanism, DRL implementations have shown bet-
ter performances and faster learning times than their CRL counterparts for
all the implemented experiments. This empirically demonstrate that benefits of
MAS are also applicable to more complex and real world problems like robotic
platforms. It opens the door to explore applications with higher dimensional
action spaces where a CRL scheme could not be easily implementable, like snake
robots, multi-link robotic arms, omni-directional mobile robots, multi-rotor aer-
ial vehicles, etc. Moreover, evaluating MAL algorithms with cooperation and
coordination between agents is part of our ongoing schedule.

Acknowledgment. This work was partially funded by FONDECYT under Project
Number 1161500. David Leonardo Leottau was funded under grant CONICYT-
PCHA/Doctorado Nacional/2013-63130183. The authors would like to thank Tech-
nical University of Delft for providing the resources to test the learnt policies on an
experimental setup.

References

1. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (1998)

2. Riedmiller, M., Gabel, T., Hafner, R., Lange, S.: Reinforcement learning for robot
soccer. Auton. Robots 27(1), 55–73 (2009)

Decentralized Reinforcement Learning Applied to Mobile Robots 379

3. Martin, J., Lope, H.D.: A distributed reinforcement learning architecture for multi-
link robots. In: 4th International Conference on Informatics in Control, Automation
and Robotics, ICINCO 2007. Number 3, Angers, Francia, pp. 192–197 (2007)

4. Busoniu, L., Babuska, R., De-Schutter, B.: A comprehensive survey of multiagent
reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(2),
156–172 (2008)

5. Busoniu, L., Schutter, B.D., Babuska, R.: Decentralized reinforcement learning
control of a robotic manipulator. In: Ninth International Conference on Control,
Automation, Robotics and Vision, ICARCV 2006, 5–8 December, Singapore, pp.
1–6. IEEE (2006)

6. Stone, P., Veloso, M.: Multiagent systems: a survey from a machine learning per-
spective. Auton. Robot. 8(3), 1–57 (2000)

7. Taylor, M.E., Kuhlmann, G., Stone, P.: Autonomous transfer for reinforce-
ment learning. In: The Autonomous Agents and Multi-agent Systems Conference
(AAMAS), Number May, Estoril, Portugal, pp. 283–290 (2008)

8. Systems, M.: Miabotpro manual (2016)
9. Leottau, D.L., Ruiz-del-Solar, J., MacAlpine, P., Stone, P.: A study of layered

learning strategies applied to individual behaviors in robot soccer. In: Almeida, L.,
Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS (LNAI), vol. 9513, pp.
290–302. Springer, Cham (2015). doi:10.1007/978-3-319-29339-4 24

10. Takahashi, Y., Asada, M.: Multi-layered learning system for real robot behavior
acquisition. In: Kordic, V., (ed.) Cutting Edge Robotics, Number pp. 357–375,
July 2005 (2004)

11. Emery, R., Balch, T.: Behavior-based control of a non-holonomic robot in pushing
tasks. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and
Automation (Cat. No.01CH37164), vol. 3, pp. 2381–2388. IEEE (2001)

12. Taylor, M., Stone, P.: Transfer learning for reinforcement learning domains: a sur-
vey. J. Mach. Learn. Res. 10, 1633–1685 (2009)

13. Vatsyayan, A.: Video: centralized and decentralized reinforcement learning of the
ball-pushing behavior (2016). https://youtu.be/pajMkrf7ldY

14. Dziomin, U., Kabysh, A., Golovko, V., Stetter, R.: A multi-agent reinforcement
learning approach for the efficient control of mobile robot. In: 2013 IEEE 7th
International Conference on Intelligent Data Acquisition and Advanced Computing
Systems (IDAACS), vol. 2, pp. 867–873. IEEE (2013)

15. Leottau, D.L., Ruiz-del-Solar, J.: An accelerated approach to decentralized rein-
forcement learning of the Ball-Dribbling behavior. In: AAAI Workshops, Austin,
Texas USA, pp. 23–29 (2015)

16. Kabysh, A., Golovko, V., Lipnickas, A.: Influence learning for multi-agent system
based on reinforcement learning. Int. J. Comput. 11(1), 39–44 (2012)

http://dx.doi.org/10.1007/978-3-319-29339-4_24
https://youtu.be/pajMkrf7ldY

	Decentralized Reinforcement Learning Applied to Mobile Robots
	1 Introduction
	2 Decentralized Reinforcement Learning
	3 Validation Problems
	3.1 Three-Dimensional Mountain Car
	3.2 Ball-Pushing

	4 Experimental Results and Analysis
	4.1 Three-Dimensional Mountain Car
	4.2 Ball-Pushing
	4.3 Ball-Pushing: Physical Setup

	5 Related Work
	6 Conclusions
	References

