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Abstract. This paper presents a base code release by the UT Austin
Villa RoboCup 3D simulation team from the University of Texas at
Austin. The code release, based off the 2015 UT Austin Villa RoboCup
champion agent, but with some features such as high level strategy
removed, provides a fully functioning agent and good starting point for
new teams to the RoboCup 3D simulation league. Additionally the code
release offers a foundational platform for conducting research in multiple
areas including robotics, multiagent systems, and machine learning.

1 Introduction

The RoboCup 3D simulation environment is a 3-dimensional world that mod-
els realistic physical forces such as friction and gravity, in which teams of
autonomous soccer playing humanoid robot agents compete with each other.
Programming humanoid agents in simulation, rather than in reality, brings with
it several advantages, such as making simplifying assumptions about the world,
low installation and operating costs, and the ability to automate experimental
procedures. All these factors make the RoboCup 3D simulation environment
an ideal domain for conducting research in robotics, multiagent systems, and
machine learning.

The UT Austin Villa team, from the University of Texas at Austin, first
began competing in the RoboCup 3D simulation league in 2007. Over the course
of nearly a decade the team has built up a strong state of the art code base
enabling the team to win the RoboCup 3D simulation league four out of the past
five years (2011 [14], 2012 [8], 2014 [9], and 2015 [11]) while finishing second in
2013. It is difficult for new RoboCup 3D simulation teams to be competitive with
veteran teams as the complexity of the RoboCup 3D simulation environment
results in an often higher than expected barrier of entry for new teams wishing
to join the league. With the desire of providing new teams to the league a good
starting point, as well as offering a foundational platform for conducting research
in the RoboCup 3D simulation domain, UT Austin Villa has released the base
code for its agent team. This paper presents the code release. Due to space
constraints some details of the agent code release are left out, but are covered
in other documents including a team technical report [13].

The remainder of the paper is organized as follows. In Sect. 2 a description
of the 3D simulation domain is given. Section 3 gives an overview of the code
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release and what it includes. A high level view of the agent’s architecture is pro-
vided in Sect. 4 with several of the agent’s features (walk engine, skill description
language, and optimization task infrastructure) highlighted in Sect. 5. Section 6
references other code releases, and Sect. 7 concludes.

2 RoboCup 3D Simulation Domain Description

The RoboCup 3D simulation environment is based on SimSpark [17], a generic
physical multiagent system simulator. SimSpark uses the Open Dynamics
Engine1 (ODE) library for its realistic simulation of rigid body dynamics with
collision detection and friction. ODE also provides support for the modeling of
advanced motorized hinge joints used in the humanoid agents.

Games consist of 11 versus 11 agents playing on a 30 m in length by 20 m
in width field. The robot agents in the simulation are approximately modeled
after the Aldebaran Nao robot,2 which has a height of about 57 cm, and a mass
of 4.5 kg. Each robot has 22◦ of freedom: six in each leg, four in each arm, and
two in the neck. In order to monitor and control its hinge joints, an agent is
equipped with joint perceptors and effectors. Joint perceptors provide the agent
with noise-free angular measurements every simulation cycle (20 ms), while joint
effectors allow the agent to specify the speed and direction in which to move a
joint.

Visual information about the environment is given to an agent every third
simulation cycle (60 ms) through noisy measurements of the distance and angle to
objects within a restricted vision cone (120◦). Agents are also outfitted with noisy
accelerometer and gyroscope perceptors, as well as force resistance perceptors
on the sole of each foot. Additionally, agents can communicate with each other
every other simulation cycle (40 ms) by sending 20 byte messages.

In addition to the standard Nao robot model, four additional variations of
the standard model, known as heterogeneous types, are available for use. These

Fig. 1. A screenshot of the Nao robot (left), and a view of the soccer field during a
game (right).

1 http://www.ode.org/.
2 http://www.aldebaran-robotics.com/eng/.

http://www.ode.org/
http://www.aldebaran-robotics.com/eng/
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variations from the standard model include changes in leg and arm length, hip
width, and also the addition of toes to the robot’s foot. Teams must use at least
three different robot types, no more than seven agents of any one robot type,
and no more than nine agents of any two robot types.

Figure 1 shows a visualization of the Nao robot and the soccer field.

3 Code Release Overview

The UT Austin Villa base code release, written in C++ and hosted on GitHub,3

is based off of the 2015 UT Austin Villa agent. A key consideration when releas-
ing the team’s code is what components should and should not be released.
A complete full release of the team’s code could be detrimental to the RoboCup
3D simulation community if it performs too strongly. In the RoboCup 2D soccer
simulation domain the former champion Helios team released the Agent2D code
base [1] that allowed for teams to be competitive by just typing make and run-
ning the code as is. Close to 90% of the teams in the 2D league now use Agent2D
as their base effectively killing off their original code bases and resulting in many
similar teams. In order to avoid a similar scenario in the 3D league certain parts
of the team’s code have been stripped out. Specifically all high level strategy,
some optimized long kicks [2], and optimized fast walk parameters for the walk
engine [7] have been removed from the code release. Despite the removal of these
items, which are described in detail in research publications [2,6,7,10,12–14], we
believe it should not be too difficult for someone to still use the code release as
a base, and develop their own optimized skills (we provide an example of how
to do this with the release) and strategy, to produce a competitive team.

The following features are included in the release:

– Omnidirectional walk engine based on a double inverted pendulum model [7]
– A skill description language for specifying parameterized skills/behaviors
– Getup (recovering after having fallen over) behaviors for all agent types
– A couple basic skills for kicking one of which uses inverse kinematics [14]
– Sample demo dribble and kick behaviors for scoring a goal
– World model and particle filter for localization
– Kalman filter for tracking objects
– All necessary parsing code for sending/receiving messages from/to the server
– Code for drawing objects in the RoboViz [15] monitor
– Communication system previously provided for drop-in player challenges4
– An example behavior/task for optimizing a kick.

What is not included in the release:

– The team’s complete set of skills such as long kicks [2] and goalie dives
– Optimized parameters for behaviors such as the team’s fastest walks (slow and

stable walk engine parameters are included, as well as optimized parameters
for positioning/dribbling [7] and approaching the ball to kick [9])

– High level strategy including formations and role assignment [6,12].
3 UT Austin Villa code release: https://github.com/LARG/utaustinvilla3d.
4 http://www.cs.utexas.edu/∼AustinVilla/sim/3dsimulation/2015 dropin challenge/.

https://github.com/LARG/utaustinvilla3d
http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/2015_dropin_challenge/
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4 Agent Architecture

At intervals of 0.02 s, the agent receives sensory information from the environ-
ment. Every third cycle a visual sensor provides distances and angles to different
objects on the field from the agent’s camera, which is located in its head. It is
relatively straightforward to build a world model by converting this information
about the objects into Cartesian coordinates. This of course requires the robot
to be able to localize itself for which we use a particle filter incorporating both
landmark and field line observations [4,9]. In addition to the vision perceptor,
the agent also uses its accelerometer readings to determine if it has fallen and
employs its auditory channels for communication.

Once a world model is built, the agent’s control module is invoked. Figure 2
provides a schematic view of the UT Austin Villa agent’s control architecture.

Fig. 2. Schematic view of UT Austin Villa agent control architecture.

At the lowest level, the humanoid is controlled by specifying torques to each
of its joints. This is implemented through PID controllers for each joint, which
take as input the desired angle of the joint and compute the appropriate torque.
Further, the agent uses routines describing inverse kinematics for the arms and
legs. Given a target position and pose for the hand or the foot, the inverse
kinematics routine uses trigonometry to calculate the angles for the different
joints along the arm or the leg to achieve the specified target, if at all possible.

The PID control and inverse kinematics routines are used as primitives to
describe the agent’s skills. In order to determine the appropriate joint angle
sequences for walking and turning, the agent utilizes an omnidirectional walk
engine which is described in Sect. 5.1. Other provided useful skills for the robot
are kicking and getting up from a fallen position. These skills are accomplished
through a programmed sequence of poses and specified joint angles as discussed
in Sect. 5.2. One of the kicking skills provided in the code release uses inverse
kinematics to control the kicking foot such that it follows an appropriate trajec-
tory through the ball as described in [14].

High level strategy has been removed from the code release, however some
sample behaviors such as dribbling and kicking the ball into the goal are included.
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5 Feature Highlights

The following subsections highlight several features of the UT Austin Villa
code release. These features include an omnidirectional walk engine (Sect. 5.1),
skill description language (Section 5.2), and optimization task infrastructure
(Section 5.3). When combined together these features provide a nice platform
for machine learning and optimization research.

5.1 Omnidirectional Walk Engine

Agents use a double inverted pendulum omnidirectional walk engine [7] to move.
The omnidirectional walk is crucial for allowing the robot to request continuous
velocities in the forward, side, and turn directions, permitting it to approach
continually changing destinations (often the ball).

The walk engine has parameterized values that control such things as step
height, length, and frequency. Walk engine parameters are loaded at runtime
from parameter files and can be switched on the fly for different walking tasks
(e.g. approaching the ball, sprinting, and dribbling). A slow and stable set of
walk engine parameters is included with the release, and these parameters can
be optimized to produce a faster walk [7].

5.2 Skill Description Language

The UT Austin Villa agent includes skills for getting up and kicking, each of
which is implemented as a periodic state machine withmultiple key frames, where
a key frame is a static pose of fixed joint positions. Key frames are separated by
a waiting time that lets the joints reach their target angles. To provide flexibility
in designing and parameterizing skills, we designed an intuitive skill description
language that facilitates the specification of key frames and the waiting times
between them. Below is an illustrative example describing a kick skill.

SKILL KICK_LEFT_LEG

KEYFRAME 1
setTarget JOINT1 $jointvalue1 JOINT2 $jointvalue2 ...
setTarget JOINT3 4.3 JOINT4 52.5
wait 0.08

KEYFRAME 2
increaseTarget JOINT1 -2 JOINT2 7 ...
setTarget JOINT3 $jointvalue3 JOINT4 (2 * $jointvalue3)
wait 0.08
.
.
.
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As seen above, joint angle values can either be numbers or be parameterized
as $<varname>, where <varname> is a variable value that can be loaded after
being learned. Values for skills and other configurable variables are read in and
loaded at runtime from parameter files.

5.3 Optimization Task Infrastructure

A considerable amount of the UT Austin Villa team’s efforts in preparing for
RoboCup competitions has been in the area of skill optimization and optimiz-
ing parameters for walks and kicks. An example agent for optimizing a kick is
provided with the code release. Optimization agents perform some task (such as
kicking a ball) and then determine how well they did at the task (such as how
far they kicked the ball) which is known as the agent’s fitness for the task. Opti-
mization agents are able to adjust the values of parameterized skills at runtime
by loading in different parameter files as mentioned in Sect. 5.2, thus allowing
the agents to easily try out and evaluate different sets of parameter values for a
skill. After evaluating itself on how well it did at a task, an optimization agent
writes its fitness for the task to an output file.

Optimization agents can be combined with machine learning algorithms to
optimize and tune skill parameters for maximum fitness on a task. The UT
Austin Villa team uses the CMA-ES [3] policy search algorithm for this pur-
pose. During optimization, agents try out different parameter values from loaded
parameter files written by CMA-ES, and then the agents write out their fitness
values indicating how well they performed with those parameters so that CMA-
ES can attempt to adjust the parameters to produce higher fitness values. UT
Austin Villa utilizes overlapping layered learning [10] paradigms with CMA-ES
to optimize skills that work well together.

When performing an optimization task, agents are able to change the world
as needed (such as move themselves and the ball around) by sending special
training command parser commands5 to the server.

6 Other Code Releases

There have been several previous agent code releases by members of the
RoboCup 3D simulation community. These include releases by magmaOffenburg6

(Java 2014), libbats7 (C++ 2013), Nexus8 (C++ 2011), and TinMan9 (.NET
2010). The UT Austin Villa code release (C++ 2016) expands on these previous
code releases in a number of ways. First the UT Austin Villa code release offers a

5 http://simspark.sourceforge.net/wiki/index.php/Network Protocol#Command
Messages from Coach.2FTrainer.

6 http://robocup.hsoffenburg.de/uploads/media/magmaOffenburg3D-2014Release.
tar.gz.

7 https://github.com/sgvandijk/libbats.
8 http://nexus.um.ac.ir/index.php/downloads/base-code.
9 https://github.com/drewnoakes/tin-man.

http://simspark.sourceforge.net/wiki/index.php/Network_Protocol#Command_Messages_from_Coach.2FTrainer
http://simspark.sourceforge.net/wiki/index.php/Network_Protocol#Command_Messages_from_Coach.2FTrainer
http://robocup.hsoffenburg.de/uploads/media/magmaOffenburg3D-2014Release.tar.gz
http://robocup.hsoffenburg.de/uploads/media/magmaOffenburg3D-2014Release.tar.gz
https://github.com/sgvandijk/libbats
http://nexus.um.ac.ir/index.php/downloads/base-code
https://github.com/drewnoakes/tin-man
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proven base having won the RoboCup 3D simulation competition four out of the
past five years. Second the release provides an infrastructure for carrying out opti-
mization and machine learning tasks, and third the code is up to date to work with
the most recent version of the RoboCup 3D simulator(rcssserver3d 0.6.10).

7 Conclusion

The UT Austin Villa RoboCup 3D simulation team base code release provides a
fully functioning agent and good starting point for new teams to the RoboCup 3D
simulation league. Additionally the code release offers a foundational platform for
conducting research in multiple areas including robotics, multiagent systems, and
machine learning. We hope that the code base may both inspire other researchers
to join the RoboCup community, as well as facilitate non-RoboCup competition
research activities akin to the reinforcement learning benchmark keepaway task
in the RoboCup 2D simulation domain [16].

Recent and ongoing work within the RoboCup community is the development
of a plugin10 for the Gazebo11 [5] robotics simulator to support agents created
for the current RoboCup 3D simulation league simulator (SimSpark). The UT
Austin Villa code release has been tested with this plugin and provides an agent
that can walk in the Gazebo environment. As the development of the plugin
continues further support of the Gazebo plugin by the UT Austin Villa code
release, such as providing getup behaviors that work in Gazebo, is planned.

A link to the UT Austin Villa 3D simulation code release, as well as additional
information about the UT Austin Villa agent, can be found on the UT Austin
Villa 3D simulation team’s homepage.12
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