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Abstract. This paper presents a novel variation of the use of LBP codes.
Similarly to Uniform LBP and Local Salient Patterns (LSP), it aims at
both obtaining an effective texture description, and decreasing the length
of the feature vectors, i.e., of the chains of LBP histograms. Instead of
considering uniform codes, we rather consider the codes providing the
highest “representativeness” power with respect to texture features. We
identify this subset of codes by a generalized notion of entropy. This
allows determining the most informative items in an homogeneous set.
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1 Introduction

Though quite simple and light to compute, Local Binary Patterns (LBP) rep-
resents a very efficient texture operator. The basic procedure uses the value of
each image pixel in turn as a binarization threshold for the values in its neigh-
borhood (originally a 3×3 window); afterward, the code assigned to each pixel is
the binary number represented by the string of binary elements obtained in such
neighborhood. While the gray-level value of a given pixel represents its spectral
propriety, its LBP code represents the textural aspect of the given pixel. LBP
has achieved a great and still increasing popularity since its introduction in [9],
where it is presented as a simplification of texture units (TUs) [18] making up
the texture spectrum of an image. Similarly to LBP, TUs are obtained from a
neighborhood of 3×3 pixels, yet using three (0, 1, 2) instead of two values, giving
a much higher number of codes. The texture spectrum is defined as the histogram
(frequency of occurrences) of texture units computed over a region. The work in
[9] shows that LBP, when used together with a simple local contrast measure,
achieves better performance in unsupervised texture segmentation than other
methods for texture analysis quite popular at that time. Due to this descriptive
power, since its introduction, LBP has been the object of extensive investiga-
tions and evaluations, as well as variations [10]. It has been applied to address
many problems, in particular, in the field of biometrics. A few examples include
face recognition [1], demographics classification [19], gender recognition [15,17],
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or even face expression recognition [14]. A comprehensive survey of the use of
LBP in Computer Vision can be found in [11].

This work deals with a novel approach to reduce the size of the code set for
LBP, along the line of Uniform LBP codes [16] and Local Salient Patterns (LSP)
[2]. Therefore, these two are the reference techniques we will compare with. In
other words, the contribution of this work is to propose a new code reduction
technique, and to compare it with the previously proposed ones.

The new operator is denoted as Weighty LBP (W-LBP). The core idea is
to choose the most relevant codes according to their informative content with
respect to textural features. Though Uniform LBP codes can be perceptually
appreciated as more relevant with respect to the remaining ones, there is no
assessment of their individual “informative” power. The same holds for LSP.
We propose to analyze the LBP codes by exploiting a generalized definition of
entropy. This was introduced to identify relevant face images in a set, and used
for image analysis [6], for template selection in video-surveillance tasks [4], for
the construction of a difference space for face image classification [13], and also
for clustering [8]. Then it was extended to analyze generic items in a set, e.g., to
quantize colors for image segmentation [5]. We apply the underlying approach
here to select the most “representative” LBP codes.

The application of the method based on set entropy requires to exploit a
suited similarity measure able to capture the characteristic nature of the items
at hand (see Sect. 3.1). In the case of LBP such items are binary strings. Despite
many different similarity/distance measures have been proposed, each such mea-
sure captures different aspects. Therefore, in the following we will briefly present
the ones that we chose to analyze in order to capture the possible “informative
power” of LBP codes. Afterward, we will follow a double evaluation procedure. In
the first place, for each similarity measure, the subset of the most representative
codes will be identified, and then among the obtained subsets those achieving
the best classification results will be selected.

2 Related Work

LBP can be used in two ways. It can be used to characterize an image by a fea-
ture vector built with the histogram of LBP codes from the image, or to produce
a gray level feature image by substituting each pixel in the original image by its
LBP code. Feature images then undergo further computer vision processing. In
particular applications, e.g., face recognition, LBP robustness can be increased
by processing the image divided in cells according to a grid, whose size depends
on image resolution. In this case, LBP is applied separately to each grid cell,
and, in the case of histograms, the final feature vector is obtained by chaining
the single cell histograms. This causes possibly huge feature vectors. Methods
requiring a training step may incur the curse of dimensionality problem. For this
reason, an interesting research line investigates how to identify and use a reduced
the number of LBP codes, achieving a possibly better texture characterization
with shorter feature vectors. However, finding the optimal subset of patterns is
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a demanding combinatorial problem. The selection of a subset of NP or less
patterns out of the total 256, requires to assess the performance of a number of
possible solutions that even for moderate values of NP requires huge computing
resources. Therefore a suboptimal yet satisfying solution is often searched for.
The work in [16] compares two approaches to extract a relevant subset of LBP
codes. The first one uses beam search and explores subsets of patterns mini-
mizing the classification error. The method iteratively increases the size of the
pattern subset up to dimension NP and updates a list of the best BS subsets
identified. The classification at each iteration exploits a reduced LBP histogram
that contains one bin for each pattern chosen so far. All the remaining patterns
are collapsed into a single bin. After NP iterations, the procedure returns BS
distinct pattern sets, from which the optimal patterns can be chosen.

The second approach proposes the nowadays popular Uniform LBP patterns.
It first defines a measure of nonuniformity U(LBP), which corresponds to the
number of transitions (from 0 to 1 or the inverse) in the circular bitwise represen-
tation of the code. The assumption is that the lower the number of transitions,
the more robust the code to image distortions. Based on this, the authors propose
using the nine uniform patterns and their circularly rotated versions (this allows
some transformation invariance). In practice, this corresponds to use 58 out of
the 256 original unrotated patterns . Even in this case, all the remaining patterns
are compressed into a single bin, therefore obtaining a 59-bin histogram. The
conclusions drawn in [16] underline that every application may have its optimal
set of patterns, but uniform patterns appear to perform well in many situations.

An example of a different strategy to address the reduction of LBP codes is
represented by Local Salient Patterns (LSP) [2]. This recent approach derived
from the original formulation of LBP focuses on the location of the largest pos-
itive and negative differences within the pixel neighborhood. This is deemed to
remove the noise influence. The coding takes into account the possible pairs of
neighbor indexes (pdiffmax, pdiffmin) that provide the maximum and the min-
imum difference with the central value of the neighborhood (usually, a 3 × 3
window). Therefore there are 57 distinguished codes (the last one corresponds
to equal differences for all neighbors). This descriptor has achieved good perfor-
mances in different facial analysis tasks, and experiments reported in [2] show
that in most cases, LSP can outperform Uniform LBP.

3 The Proposed LBP Reduction

3.1 Entropy to Select Representatives in a Set

In image analysis, entropy is usually exploited as a measure of random-
ness/homogeneity of image pixels. Each pixel x in image I is treated as a symbol
in the alphabet emitted by a source S. As for gray scale images, the alphabet
is the set of 8-bit integers in [0, 255]. After normalizing the image histogram
values in the range [0, 1], each bin represents the probability of occurrence of the
corresponding symbol in I. Entropy H(I) is:

H(I) = −
∑

255
k=0p(k)log2(k) (1)
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Equation 1 can be generalized to express the amount of homogeneity in a set
of items of any kind, given a suited abstraction. We summarize here the basic
notation. More details can be found in [6].

Given a set G of objects/elements/observations (items from here on), we
first search for a suitable similarity measure s, which is used to associate a
real scalar value to any pair of feature vectors (templates) used to characterize
the items of interest according to a chosen set of characteristics. The choice
of the similarity measure to exploit depends in the first place on the kind of
items to compare, and on the extracted feature templates. Computational cost
of measuring this similarity can provide a further criterion. Popular examples
are Euclidean distance, if feature vectors are represented as points in a space, or
Dynamic Time Warping (DTW) for time series. The noticeable property of the
following definitions is that they hold whichever is the chosen similarity measure
s. From here on, if not otherwise specified, the notation will identify templates
with the items they describe. In a preliminary definition step, let us assume to
compare the probe template v to classify with a set templates gi (from now on
denoted as gallery.) This produces a similarity measure s(v, gi), denoted as si.
After score normalization, si is a real value in the interval [0, 1]. The score si
can be interpreted as the probability that v conforms (adapts) to gi, therefore
obtaining a probability distribution over the set G, i.e., si,v = p(v ≈ gi). In
order to compute a total value for the entropy of the set G each of its elements
is considered in turn as a probe v, to compute all-against-all similarities. Let’s
denote as Q the number of pairs 〈qi, qj〉 in G such that si,j > 0, used as a
normalization factor; then entropy of G is denoted as H(G) and computed as:

H(G) = − 1
log2(|Q|)

∑
qi,j∈Qsi,j log2(si,j) (2)

The value of H(G) can be considered as a measure of heterogeneity for the items
in G. It is possible to order all of them according to their informative power
or representativeness, by computing their contribution to H(G). Given G, the
devised procedure computes the complete similarity matrix M and the value for
H(G). For each item gi ∈ G, M is used to compute the value of H(G\gi) obtained
by ignoring gi. The item gi, achieving the minimum difference f(G, gi) = H(G)−
H(G\gi), is selected; the matrix M is updated by deleting the i − th row and
column, and the process is repeated, until all elements of G have been selected.
According to this procedure, we first select the most representative samples, i.e.
those causing the lower entropy decrease. The algorithm progressively reduces
the inhomogeneity of the set. We finally obtain an ordering of the elements as
they are selected by the algorithm, with the corresponding value of f(·). The
trend of the resulting curve presents local maxima and minima in a smooth saw
tooth shape, that can be usually quite well approximated by a parabola (see [6]).
The values obtained for f(·) can be used to cluster the set elements, in a way
similar to one of the approaches in [13]. The first relative maximum becomes the
representative element of the first cluster. The following elements along f(·) until
the next relative maximum are included in this cluster. A new cluster is created
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when the next relative maximum is found, and cluster population is continued
as before. This procedure is repeated till the end of f(·).

3.2 Binary Similarity and Distance Measures

In order to explore the information content of LBP codes with respect to differ-
ent similarity measures, we refer to the survey presented in [3]. In that work, 76
binary similarity and distance measures are discussed that have been used over
the last century, and their correlation is investigated through a hierarchical clus-
tering technique. The interested reader can refer to that paper. For our purposes,
we selected a subset of 65 out of the measures mentioned there, leaving out or
merging duplicates. Similarly to [3], the definitions of measures are expressed by
Operational Taxonomic Units (OTUs) [7]. Assume to have two binary vectors,
i and j. Let n be their common dimension. The following notation is used:

– a = the number of vector entries where the values of i and j are both 1 (or
presence, if the binary values are interpreted in this way), meaning positive
matches: a = i • j

– b = the number of entries where the value of i and j is (0, 1) (or i absence
mismatch): b = ī • j

– c = the number of attributes where the value of i and j is (1, 0) (or j absence
mismatch): c = i • j̄

– d is the number of attributes where both i and j have 0 (or absence), meaning
negative matches: d = ī • j̄.

The sum a+d gives the total number of matches between i and j, while the sum
b + c gives the total number of mismatches between i and j. Measures defined
as distances were transformed into similarities to obtain consistent measures.

4 Experimental Results

The experiments carried out for this work aimed at investigating a novel strategy
to identify the most “informative” binary patterns produced by the LBP feature
extractor, and how reducing the LBP code set to them can affect the perfor-
mance of a classifier in terms of recognition accuracy. In the specific case, the
experiments adopted a very simple classifier, namely Nearest Neighbor (NN)
in order to avoid the dependence of the observed variations from factors not
related to the aspect under study (the different sets of LBP codes). With the
same idea in mind, the face database used as testbed is EGA [12]. This dataset
is the result of the integration of subsets of a number of existing face datasets,
that are quite different in nature in terms of ethnicity (E), gender (G), and age
(A) of subjects. While EGA is expressly built to be quite balanced with respects
to such demographic traits, it also offers a good variety in terms of image qual-
ity. It includes a total of 2345 images captured from 469 subjects, 5 images per
subject. More details on source datasets and EGA organization can be found in
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[12]. As for this work, it is important to underline that, since EGA collects face
images extracted from datasets with different characteristics, both for the demo-
graphics of subjects, for capture setting and for capture devices, carrying out
experiments on it is equivalent to carrying out experiments on the correspond-
ing subsets of the source datasets. All experiments in this work considered all
EGA subjects, with two out of the five images each: the first one in the dataset
for the experiment gallery and the second one as the probe. Each image was
pre-processed by Viola-Jones algorithm to detect the position of the face and of
the center of the eyes. Faces were resized in order to have a constant inter-eye
distance of 40 pixels, and cropped to 64×100 pixels. No pre-processing was per-
formed regarding illumination, because LBP is in itself an operator quite robust
to most illumination distortions. Firstly, for each similarity measure the subset
of the most representative codes was identified, and then among the obtained
subsets those achieving the best classification results were selected. This is quite
different from beam search, that tries to add any missing code to a candidate
subset, and from Uniform LBP, that selects LBP codes based on some code
pattern (e.g., uniformity). We rather try to identify “weighty” LBP codes.

For sake of space, it is not possible to report the definition of all the 65
considered measures. Table 1 only reports those providing results worth men-
tioning, with the number indicating the ordering used here. Such numbering is
maintained to preserve the relation with Figs. 2 and 3 below that report exper-

Table 1. The considered similarity (S) and distance (D) measures.

S INTERSECTION a (10)

D EUCLID
√
b + c (14)

D HELLINGER or CHORD 2 ∗
√

1 − a/
√

(a + b) ∗ (a + c) (22)

S MOUNTFORD a/(0.5 ∗ (a ∗ b + a ∗ c) + b ∗ c) (29)

S JOHNSON a/(a + b) + a/(a + c) (34)

S DENNIS (a ∗ d − b ∗ c)/
√

n ∗ (a + b) ∗ (a + c) (35)

S SIMPSON a/min(a + b, a + c) (36)

S FAGER & McGOWAN a/
√

(a + b) ∗ (a + c) − max(a + b, a + c)/2 (38)

S BARONI-URBANI & BUSER-I (
√
a ∗ d + a)/(

√
a ∗ d + a + b + c) (60)

Fig. 1. LBP feature images produced with different strategies to reduce the set of codes:
(a) All LBP (256 bins), (b) Uniform LBP (59 bins), (c) Entropy with MOUNTFORD
measure (80 bins) and with (d) BARONI-URBANI & BUSER-I measure (41 bins).
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imental results. The complete list can be found in [3] and a compacted one at
the end of the paper (Table 3). Figure 1 shows some examples of LBP images
produced for the same face image, but with sets of LBP codes obtained by com-
puting representativeness according to two different measures, namely MOUNT-
FORD measure (80 bins) and BARONI-URBANI & BUSER-I measure (41 bins),
respectively entries indexed as (29) and (60) in Table 1. The discussion about
experimental results will show that these two measures provide complementary
yet orthogonal improvements. The first experiment aimed at verifying if and
how a different identification of relevant LBP codes can affect the accuracy of
a simple NN classifier. Classifier performances were measured in terms of Equal
Error Rate (EER) in verification mode (1:1 matching with identity claim) and
Recognition Rate (RR) in identification mode (1:N matching without identity
claim). Chosen a similarity measure, the resulting f(·) function was computed
and used for the clustering procedure as described in Sect. 3.1. When coding
images, each code is substituted by the representative of the cluster to which it
belongs. A further information provided by the used clustering algorithm is the
number of returned clusters for the corresponding similarity measure. This helps
evaluating also the efficiency of the produced coding (the lower the number of
clusters, the lower the number of codes required), together with the obtained
accuracy. Therefore, in the following figures, we have on the y axis three differ-
ent items of information: the number of clusters produced, the EER and the RR
value, for each of the 65 measures whose index is on x axis.

LBP feature vector is the chaining of histograms from a grid of image sub-
regions, therefore a further element of interest is the size of such sub-regions
(the smaller the size, the higher the number of histograms to chain, the higher
the size of the final feature vector). Therefore the first experiment was repeated
with four different sub-region dimensions: 16× 16, 24× 24, 32× 32, and 36× 36.
Figures 2 and 3 show the plots obtained for the two extreme cases, where of
course the plot of the number of clusters is always the same. The plots obtained
by intermediate region sizes show a consistent trend.

Fig. 2. Performance of NN with LBP over 16 × 16 sub-regions.

The results obtained in this experiment suggest that all similarity measures
are affected in a generally similar way by sub-region sizes. It is possible to observe
that with more information (smaller region size) both RR and EER are con-
stantly better, and as the sub-region dimension increases, the accuracy decreases
for almost all measures. RR is especially negatively affected by growing size, since
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Fig. 3. Performance of NN with LBP over 36 × 36 sub-regions.

not only it decreases in general, but also becomes much more dependent from
the exploited similarity measure. In this sense, some measures show a very dif-
ferent behavior from the others, either in positive or negative sense. Measures
EUCLID, HELLINGER or CHORD, and FAGER & McGOWAN, respectively
(14), (22) and (38) in Table 1, generate a number of bins that is too low, taking
to an excessive performance decrease, which is further accentuated whit larger
regions. On the contrary, BARONI-URBANI & BUSER-I, i.e., (60) in Table 1,
though producing a very low number of bins, is able to provide an accuracy com-
parable with the others, and is also robust to region growing. A similar result
holds, though with slightly lower performance, for INTERSECTION, JOHN-
SON, DENNIS and SIMPSON, respectively (10), (34), (35) and (36) in Table 1.
Though dramatically decreasing the size of the feature vector, they maintain a
sufficient discriminative power of extracted features.

The second experiment compared the proposed approach with LBP and with
Uniform LBP. Table 2 shows the results, and reports the number of bins used by
the different variations of LBP with the corresponding values of EER and RR,

Table 2. Performance of NN with different strategies to reduce the set of LBP codes.
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Table 3. The full set of similarity (S) and distance (D) measures.

S\D Name OTU
S JACCARD or TANIMOTO a/(a + b + c) (1)
S DICE or CZEKANOWSKI or NEI

& LI
2 ∗ a/(2 ∗ a + b + c) (2)

S 3W-JACCARD 3 ∗ a/(3 ∗ a + b + c) (3)
S SOKAL & SNEATH-I a/(a + 2 ∗ b + 2 ∗ c) (4)
S SOKAL & MICHENER (a + d)/(a + b + c + d) (5)
S SOKAL & SNEATH-II 2 ∗ (a + d)/(2 ∗ a + b + c + 2 ∗ d) (6)
S ROGER & TANIMOTO (a + d)/(a + 2 ∗ (b + c) + d) (7)
S FAITH (a + 0.5 ∗ d)/(a + b + c + d) (8)
S GOWER & LEGENDRE (a + d)/(a + 0.5 ∗ (b + c) + d) (9)
S INTERSECTION a (10)
S INNERPRODUCT a + d (11)
S RUSSELL & RAO a/(a + b + c + d) (12)
D HAMMING b + c (13)
D EUCLID

√
b + c (14)

D CANBERRA or MANHATTAN or
CITYBLOCK or MINKOWSKI

b + c (15)

D MEAN MANHATTAN (b + c)/(a + b + c + d) (16)
D VARI (b + c)/(4 ∗ (a + b + c + d)) (17)

D SIZEDIFFERENCE (b + c)2/(a + b + c + d)2) (18)

D SHAPEDIFFERENCE (n ∗ (b + c) − (b − c)2)/(a + b + c + d)2 (19)

D PATTERNDIFFERENCE 4 ∗ b ∗ c/(a + b + c + d)2 (20)
D LANCE & WILLIAMS or BRAY &

CURTIS
(b + c)/(2 ∗ a + b + c) (21)

D HELLINGER or CHORD 2 ∗
√

1 − a/
√

(a + b) ∗ (a + c) (22)
S COSINE a/(a + b) ∗ (a + c) (23)
S GILBERT & WELLS log(a) − log(n) − log((a + b)/n) − log((a + c)/n) (24)

S OCHIAI-I or OTSUKA a/
√

(a + b) ∗ (a + c) (25)
S FORBES-I n ∗ a/(a + b) ∗ (a + c) (26)

S FOSSUM n ∗ (a − 0.5)2/(a + b) ∗ (a + c) (27)

S SORGENFREI a2/(a + b) ∗ (a + c) (28)
S MOUNTFORD a/(0.5 ∗ (a ∗ b + a ∗ c) + b ∗ c) (29)

S MCCONNAUGHEY (a2 − b ∗ c)/(a + b) ∗ (a + c) (30)
S TARWID (n ∗ a − (a + b) ∗ (a + c))/(n ∗ a + (a + b) ∗ (a + c)) (31)
S KULCZYNSKI II (a/2 ∗ (2 ∗ a + b + c))/((a + b) ∗ (a + c)) (32)
S DRIVER & KROEBER (a/2 ∗ (1/(a + b) + 1/(a + c))) (33)
S JOHNSON a/(a + b) + a/(a + c) (34)

S DENNIS (a ∗ d − b ∗ c)/
√

n ∗ (a + b) ∗ (a + c) (35)
S SIMPSON a/min(a + b, a + c) (36)
S BRAUN & BANQUET a/max(a + b, a + c) (37)

S FAGER & McGOWAN a/
√

(a + b) ∗ (a + c) − max(a + b, a + c)/2 (38)
S FORBES-II (n∗a−(a+b)∗(a+c))/(n∗min(a+b, a+c)−(a+b)∗(a+c)) (39)
S SOKAL & SNEATH-IV 1/4 ∗ (a/(a + b) + a/(a + c) + d/(b + d) + d/(c + d)) (40)

S GOWER (a + d)/
√

(a + b) ∗ (a + c) ∗ (b + d) ∗ (c + d) (41)

S PEARSON-I χ2 with χ2 = n ∗ (ad − bc)2/(a + b)(a + c)(c + d)(b + d) (42)

S PEARSON-II
√

χ2/(n + χ2) (43)

S PEARSON-III
√

ρ/(n + ρ) with ρ = (ad − bc)/
√

(a + b)(a + c)(c + d)(b + d) (44)
S PEARSON & HERON-I ρ (45)

S PEARSON & HERON-II cos(π ∗ √
b ∗ c/(

√
a ∗ d +

√
b ∗ c)) (46)

S SOKAL & SNEATH-III (a + d)/(b + c) (47)

S SOKAL & SNEATH-V or
OCHIAI-II

a ∗ d/
√

(a + b) ∗ (a + c) ∗ (b + d) ∗ (c + d) (48)

S COLE
√

2 ∗ (ad −
bc)/

√
a ∗ d − b ∗ c)2 − (a + b) ∗ (a + c) ∗ (b + d) ∗ (c + d)

(49)

S STILES log10(n∗(|ad−bc|−n/2)2/((a+b)∗(a+c)∗(b+d)∗(c+d))) (50)
S YULE Q (a ∗ d − b ∗ c)/(a ∗ d + b ∗ c) (51)
D YULE Q 2bc/(a ∗ d + b ∗ c) (52)

S YULE w (
√

a ∗ d − √
b ∗ c)/(

√
a ∗ d +

√
b ∗ c) (53)

S KULCZYNSKI-I a/(b + c) (54)

S DISPERSON (a ∗ d − b ∗ c)/(a ∗ d + b ∗ c)2 (55)
S HAMANN ((a + d) − (b + c))/(a + b + c + d) (56)

S MICHAEL 4 ∗ (a ∗ d − b ∗ c)/((a + d)2 + (b + c)2) (57)

S GOODMAN & KRUSKAL (σ − σ′)/(2 ∗ n − σ′) with
σ = max(a, b) + max(c, d) + max(a, c) + max(b, d) and
σ′ = max(a + c, b + d) + max(a + b, c + d)

(58)

S ANDERBERG (σ − σ′)/(2 ∗ n) (59)

S BARONI-URBANI & BUSER-I (
√

a ∗ d + a)/(
√

a ∗ d + a + b + c) (60)

S BARONI-URBANI & BUSER-II (
√

a ∗ d + a − (b + c))/(
√

a ∗ d + a + b + c) (61)
S PEIRCE (a ∗ b + b ∗ c)/(a ∗ b + 2 ∗ b ∗ c + c ∗ d) (62)

S EYRAUD n2 ∗(n∗a−(a+b)∗(a+c))/((a+b)∗(a+c)∗(b+d)∗(c+d)) (63)
S TARANTULA a ∗ (c + d)/(c ∗ (a + b)) (64)
S AMPLE |(a ∗ (c + d)/(c ∗ (a + b))| (65)
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having chosen the most representative measures according to the results of the
first experiment. We can observe that using MOUNTFORD measure, i.e. (29) in
Table 1, and carrying out our clustering/selection procedure, we obtain an LBP
coding able to achieve better performance than Uniform LBP at the expense
of a higher number of bins. On the contrary, BARONI-URBANI & BUSER-I is
able to finally produce a lower number of bins, with a decrease of performance
that might be negligible according to the accuracy requirements. In summary,
it is possible to improve the performance over Uniform codes either in terms of
feature vector length or in terms of EER.

5 Conclusions

This paper presented a novel approach to the selection of the most represen-
tative LBP codes in order to obtain smaller though sufficiently discriminative
feature vectors. The proposed method neither performs an unaffordable exhaus-
tive search nor relies on codes with special patterns. It rather exploits a cluster-
ing procedure based on a measure of representativeness of the different codes.
Such measure is based in turn on a suitable similarity measure among binary
codes. The obtained results show that it is possible to reduce the number of
LBP codes to use in building feature vectors, without affecting the classification
performance too much. The experiments aimed at analyzing 65 different similar-
ity/distance measures. Though some common aspects of behavior were detected,
some measures resulted better able to improve the selection of an appropriate
subset of codes, by either reducing the size of the feature vectors without a dra-
matic decrease in performance, or obtaining a slightly better result than Uniform
LBP at the expense of using some more codes. Our future work will be focused
on testing the generality of these outcomes on different classes of images. In
practice, LBP can be used in many applications based on texture analysis, and
it will be interesting to evaluate our approach in a different context. In particu-
lar, it will be interesting to investigate if the same similarity measures produce
equivalent results on different classes of images.
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