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Abstract. In certain severe mental diseases, like schizophrenia, struc-
tural alterations of the brain are detectable by magnetic resonance imag-
ing (MRI). In this work, we try to automatically distinguish, by using
anatomical features obtained from MRI images, schizophrenia patients
from healthy controls. We do so by exploiting contextual similarity
of imaging data, enhanced with a distance metric learning strategy
(DML - by providing “must-be-in-the-same-class” and “must-not-be-in-
the-same-class” pairs of subjects). To learn from contextual similarity of
the subjects brain anatomy, we use a graph-based semi-supervised label
propagation algorithm (graph transduction, GT) and compare it to stan-
dard supervised techniques (SVM and K-nearest neighbor, KNN). We
performed out tests on a population of 20 schizophrenia patients and 20
healthy controls. DML+GT achieved a statistically significant advantage
in classification performance (Accuracy: 0.74, Sensitivity: 0.79, Speci-
ficity: 0.69, Ck: 0.48). Enhanced contextual similarity improved perfor-
mance of GT, SVM and KNN offering promising perspectives for MRI
images analysis.

1 Introduction

Schizophrenia (SCZ) is a severe, chronic and debilitating mental illness affecting
around 0.4% of the population [1]. Magnetic resonance imaging (MRI) studies
consistently observed alterations in cortical and subcortical brain areas, espe-
cially frontal [21] and temporal [14] regions. The capability of detecting these
pathological alterations in brain images would be of high relevance in accelerat-
ing the diagnostic process, with clear benefits for both patients and psychiatrists.
Given the complexity and multidimensionality of the problem, machine learning
(ML) analysis of magnetic resonance (MR) images is recently becoming popular
in the understanding of this domain.
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ML algorithms have been used in SCZ studies [18] with the aim of detecting
sets of features which could be discriminative in the diagnosis. In the litera-
ture, the majority of ML applications to psychiatric data are purely supervised
methods that learn only from labeled data, with promising and interesting results
[11,13,16]. However, while these findings have been received with great optimism
within the neuropsychiatric community, a major criticism has been that these
algorithms are ordinarily “trained” to categorize patients based on a symptom-
based diagnosis. As such, there are inevitable uncertainty in the “gold standard”:
learning from the unlabeled data seems a possibility to mitigate the problem.
In these situations, classification performances might improve when the learning
process incorporates unlabeled data. Moreover, semi-supervised and unsuper-
vised schemes could provide a better phenotype identification and classification
of diseases [20].

In this paper, we propose to exploit learning from both labeled and unlabeled
MR images. The addition of learning from unlabeled data will decrease the
risk of circular analysis, by exploiting similarities between data without prior
information on the class. To do so, we applied graph transduction (GT), i.e., a
data-driven graph-based semi-supervised label propagation algorithm [4], which
can learn from the contextual similarity (CS) of the imaging data. However,
the problem with label propagation methods is that their performance heavily
depends on the pre-existing CS of the input data. To deal with this problem, we
applied a distance metric learning (DML) strategy, to enhance CS information
of features obtained from MRI images, by providing “must-be-in-the-same-class”
and “must-not-be-in-the-same-class” pairs of subjects (i.e., healthy controls and
SCZ patients), thus increasing the intra-cluster similarity and decreasing the
inter-cluster similarity. The formalization of GT is inspired from game theoretic
notions [4], where the final labeling corresponds to the Nash equilibrium of a non
cooperative game. The players of the game correspond to data features (or nodes
of the graph) and the class labels correspond to available strategies. In our case,
we map the problem of classifying MRI images, where the brain imaging data
of each subject correspond to a player who can choose a strategy to maximize
its pay-off (the pair-wise similarity of the image features between subjects).

Authors of [3] showed a similar concept of what we present here, to solve
a problem in object recognition and scene classification (a general computer
vision problem), confirming the importance of enhancing CS to improve the
performance of a label propagation algorithm. In our study, we implemented
one of the latest and most robust metric learning [19] and label propagation
algorithm [4], to be then applied to MRI data.

To the best of our knowledge, this is the first study to address classification of
SCZ patients and healthy subjects applying a metric learning and graph-based
semi-supervised learning strategy to structural MRI data.

2 Learning from Enhanced Contextual Similarity

In this section, we present a scheme of classification that exploits contextual
brain anatomical similarities of subjects from MR images, so as to differentiate
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healthy controls from SCZ patients. A set of features, characterizing the anatomy
of the brain, was obtained from the MR images of every single subject. Then,
we used a DML technique, specifically the one proposed in [19], to enhance the
CS of the input MRI data and apply the GT algorithm [4] on top of this new
metric space to learn from the newly enhanced context. The overall scheme is
depicted in Fig. 1 and described step-by-step in the next sections.

Fig. 1. The proposed schizophrenia classification scheme using structural brain imaging
data.

2.1 CS Enhancement Using DML

DML represents a useful technique widely exploited in pattern recognition, which
aims to find a metric that maximizes the distance between features belonging to
different classes (and viceversa, minimizes the distance between features belong-
ing to the same class). With this aim, linear and non-linear metrics had been
investigated. On one hand, linear metrics can be computationally less expensive,
but often provide lower performances. On the other hand, non-linear algorithm
might perform better but they are computationally expensive and application-
dependent.

In the linear domain, DML remaps features using a linear combination carried
out by the transformation matrix L, as follows:

x̄′ = Lx̄,

where x̄ is the input feature vector and x̄′ is the transformed feature vector.
If the matrix L is full rank, it is possible to show that the Euclidean distance
between two elements in the transformed space,

D(x̄i, x̄j) = ||L(x̄i − x̄j)||2,

represents a valid metric. Furthermore, the Euclidean distance can be rewritten
using a matrix notation which becomes the so-called Mahalanobis distance. Such
distance is defined as

DM (xi, xj) =
√

(x̄i − x̄j)�M(x̄i − x̄j)

being M = L′L the Mahalanobis positive semidefinite matrix. The effect of such
transformation is shown in Fig. 2. When L is the identity matrix, the Maha-
lanobis distance becomes the standard Euclidean distance.
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Fig. 2. Illustration of feature context enhancement by means of large margin nearest
neighbor (LMNN) distance metric learning. Before training (left) and after training
(right).

In this study, we used a linear DML to modify the pre-existing neighbouring
structure of MRI data before feeding it to GT, aiming to achieve classification
improvements. In order to determine the transformation matrix L, we used the
Large Margin Nearest Neighbor DML method described in [19]. The algorithm
makes use of the following equations

pullpush(L) = (1 − μ) pull(L) + μ push(L) (1)

with

pull(L) =
∑
i,j→i

‖L(x̄i − x̄j)‖2

push(L) =
∑
i,j→i

∑
k

(1 − δik)[1 + ‖L(x̄i − x̄j)‖2 (2)

− ‖L(x̄i − x̄k)‖2]+
where yi is the class to which x̄i belongs and δik = 1 if yi = yk or δik = 0
otherwise. [f ]+ implies a hinge-loss such that [f ]+ = max(0, f ). The term j → i
in Eq. (2) implies that j belongs to the same class where i belongs too. Finally,
the parameter μ sets the trade-off between the pulling and pushing objectives
and was set to 0.5 as suggested in [19].

The process of getting the transformation metric L involves minimizing the
overall objective function in Eq. (1). The first term pulls subjects with the same
class label closer in terms of the Mahalanobis distance. The second term pushes
away differently-labeled instances by a large margin, so that they are located
further apart in the transformed space (Fig. 2).

As stated in [19], it is worth noting that Eq. (1) does not define a convex
optimization problem in terms of L. However, it can be rephrased in a convex
fashion using a semi-definitive programming approach by determining M instead
of L. Then, L can be computed using matrix factorization of M .
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2.2 Learning from Enhanced CS of MR Images Using GT

The aim of GT is to address the problem of consistent labeling, with the aim
of predicting or propagating class membership to unlabeled data by exploit-
ing learning both from the labeled and unlabeled samples. Such methodology
involves three different areas: (i) graph theory; (ii) evolutionary game theory;
and (iii) dynamical systems and optimization.

The main idea behind GT is to consider the samples of the dataset as nodes of
a graph, and to propagate class labels to unlabeled nodes, by considering the CS
among the samples. In particular, it exploits CS among data features to perform
label propagation in a consistent way, relying on a common a priori assumption
known as the “cluster assumption” (a reminiscent of the homophily principle
used in social network analysis): nodes that are close to each other, in the same
cluster or on the same manifold are expected to have the same label. Each node
is then a feature vector ∈ R

d (with d being the number of features). Moreover,
each node can select a strategy, i.e., class membership, that maximizes its CS.
Finally, the output labeling corresponds to the Nash equilibrium of the game.

Input features are represented with graph nodes G = (V), where the vertex
set V is composed of n = l + u elements ∈ R

d and consists of a first labeled set
{(x1, y1), ..., (xl, yl)} of l elements and a second unlabeled set {(xl+1, ..., (xl+u)}
of u elements. Then, the similarity matrix E between pairs of nodes is computed,
after having selected a similarity metric. A simple and effective optimization
algorithm to propagate the labels through the graph is given by the so-called
replicator dynamics, developed and studied in evolutionary game theory, which
has proven to be effective in many applications [7,23].

In practice, as explained in Sect. 2.1, labeled examples in the form of “must-
be-in-the-same-class” and “must-not-be-in-the-same-class” pairs of subjects are
provided to the DML framework, to learn the best feature space transformation
matrix L using Eq. (1). Afterwards, the class label propagation occurs on such
transformed feature space (i.e., Lx̄) by constructing the fully connected graph
G = (V), where V is now the set of graph nodes representing the transformed
feature vectors, and E encodes the brain anatomy similarity between subjects
by means of the edge weights (similarity matrix) as depicted in Fig. 3b. E is
constructed in the following manner (for simplicity we show how an edge is
constructed between two transformed feature vectors):

Eij = exp
[
−d(Lx̄i, Lx̄j)2

2σ2

]
(3)

where d(Lx̄i, Lx̄j) is the Euclidean distance. For estimating σ, which is a critical
parameter of the graph’s ability in representing the CS between data points, we
adopted an automatic self tuning method as proposed in [22].
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Fig. 3. (a) ROI and cortical thickness feature extraction from brain images. (b) Rep-
resentation of brain anatomy similarity between subjects.

3 Experiments

3.1 Dataset and Representation

The dataset consisted in T1-weigthed MR images of 20 healthy control sub-
jects (35.8 ± 13, 8 males) and 20 SCZ patients (37.9 ± 11, 13 males). The size of
this dataset is in line with the dimensionality of datasets used in academic works
aimed at medical applications [9,10,17]: in particular, it is not straightforward to
obtain consistent MRI data of psychiatric patients, due to difficulties in recruit-
ment and feasibility of MRI acquisitions in this kind of patients. The data were
collected at the Psychiatric department of Ospedale di Verona (Verona, Italy).
All involved subjects signed an informed consent, following the principle of the
Helsinki’s declaration.

The T1-weigthed images were preprocessed using the software FreeSurfer1

as depicted in Fig. 3a. Based on prior knowledge on schizophrenia [14,21], we
considered the average cortical grey matter thickness of frontal and temporal
regions (namely: caudal middle frontal, inferior temporal, middle temporal, ros-
tral middle frontal and superior frontal of the left hemisphere) as features in the
classification task. The ROI thickness measurement of the subjects is reported
in Table 1. Also, in order to take into account the effect of age on the cortical
thickness, we corrected all the data for age differences using a generalized linear
model [8].

3.2 Experimental Analysis

We performed two series of comparisons to assess the performances of the pro-
posed classification scheme in differentiating healthy controls from SCZ subjects.
First, we verified whether learning from CS (from both labeled and unlabeled
data) might provide better classification results than just learning from labeled

1 http://surfer.nmr.mgh.harvard.edu/.

http://surfer.nmr.mgh.harvard.edu/


Learning from Enhanced Contextual Similarity in Brain Imaging Data 271

Table 1. Grey matter cortical thickness of ROIs (in mm) of healthy controls and
schizophrenia patients.

ROI HC (mean± std) SCZ (mean± std)

Caudal middle frontal 2.56 ± 0.21 2.44 ± 0.18

Inferior temporal 2.85 ± 0.16 2.64 ± 0.17

Middle temporal 2.89 ± 0.17 2.73 ± 0.18

Rostral middle frontal 2.47 ± 0.19 2.34 ± 0.17

Superior frontal 2.82 ± 0.18 2.65 ± 0.20

data. Second, we tested if the enhancement of CS by DML might provide fur-
ther improvements. To do so, we compared the proposed classification scheme
(DML+GT) with both GT [4] and KNN, with and without metric learning (KNN
[6], DML+KNN [19]), linear SVM and DML+SVM.

We evaluated the classification performances by using accuracy (Acc), sen-
sitivity (Se), specificity (Sp) and Cohen’s kappa (Ck) coefficients. Sensitivity
refers to the true recognition of SCZ patients.

We considered first 70%, then 80% of the data from each class for training
and input labeling of GT, while the rest of data was left to be predicted. In
fact, GT was found to perform sufficiently well when the labeled data were just
a small fraction of the dataset [4]. However, given the small size of our dataset,
we considered labeling 70% and 80% of the data at disposal. We repeated this
procedure by randomly sampling the dataset 100 times and computed the aver-
age performance. In all the experiments we avoided the risk of circular analysis
[5]. For KNN, we chose K = 3, for limiting the possible overfitting due to the
relatively small sample size.

3.3 Experimental Results

The average and standard error of the classification performance for DML+GT
(proposed scheme), DML+SVM, DML+KNN, GT, SVM and KNN (used for
comparison), when 70% and 80% of the samples in each class are labeled are
reported in Table 2 and Fig. 4.

As expected, performance got better when using higher percentage of labeled
data on small datasets for DML+GT and GT. Moreover, in our proposed scheme,
sensitivity was always lower than specificity (Fig. 4c and d), meaning that some
subjects with schizophrenia were classified as healthy, regardless the labeled
sample size. In addition, the increase of training data provided different relative
improvements between sensitivity and specificity (Fig. 4c and d). This means
that these methodologies, under the settings we considered, are capable of recog-
nizing the healthy subjects more easily than the schizophrenia patients.

GT was more affected by the training set’s size (fourth bar in each plot of
Fig. 4) than the other methods. However, when DML was applied before GT,
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Table 2. Average test-set classification performance (± standard deviation across sub-
jects) on brain sMRI data features using 70% and 80% of the data for training.

Methods 70% 80%

DML+GT Acc 0.70 ± 0.01 0.74 ± 0.01

Se 0.66 ± 0.02 0.69 ± 0.02

Sp 0.73 ± 0.02 0.79 ± 0.02

Ck 0.39 ± 0.02 0.48 ± 0.03

DML+SVM Acc 0.71 ± 0.01 0.71 ± 0.02

Se 0.70 ± 0.02 0.74 ± 0.02

Sp 0.73 ± 0.02 0.68 ± 0.02

Ck 0.42 ± 0.02 0.42 ± 0.03

DML+KNN Acc 0.68 ± 0.01 0.70 ± 0.02

Se 0.64 ± 0.02 0.66 ± 0.02

Sp 0.72 ± 0.02 0.75 ± 0.02

Ck 0.36 ± 0.02 0.41 ± 0.03

GT Acc 0.61 ± 0.01 0.67 ± 0.01

Se 0.57 ± 0.04 0.64 ± 0.03

Sp 0.65 ± 0.03 0.71 ± 0.03

Ck 0.22 ± 0.02 0.35 ± 0.03

SVM Acc 0.69 ± 0.01 0.69 ± 0.01

Se 0.70 ± 0.02 0.73 ± 0.02

Sp 0.69 ± 0.02 0.66 ± 0.02

Ck 0.38 ± 0.02 0.38 ± 0.03

KNN Acc 0.65 ± 0.01 0.65 ± 0.01

Se 0.64 ± 0.02 0.62 ± 0.02

Sp 0.65 ± 0.02 0.69 ± 0.02

Ck 0.29 ± 0.03 0.30 ± 0.03

we obtained a drastic classification improvement of all measures except the sen-
sitivity, even with a smaller training set. Furthermore, the use of DML resulted
in a higher performance in all the cases except sensitivity (Fig. 4).

Finally, when 80% of the data is used as training, CS learning, i.e., learning
from unlabeled data as well, enhanced with DML outperformed both SVM and
KNN with DML (first bar vs second and third bar).

3.4 Discussion of the Experimental Results

This work supports the finding that DML+KNN is better than KNN (i.e., with
respect to every evaluation metric considered), as found by other authors [19].
In particular, we showed that this finding holds true when applied to thickness
features extracted from MRI data.



Learning from Enhanced Contextual Similarity in Brain Imaging Data 273

70% 80%
Percentage of labeled subjects from the dataset

0.3

0.4

0.5

0.6

0.7

0.8
Ac

cu
ra

cy
DML+GT DML+SVM DML+KNN GT SVM KNN

(a)

70% 80%
Percentage of labeled subjects from the dataset

0

0.2

0.4

0.6

C
oh

en
's

 K
ap

pa

(b)

70% 80%
Percentage of labeled subjects from the dataset

0.3

0.4

0.5

0.6

0.7

0.8

Se
ns

iti
vi

ty

(c)

70% 80%
Percentage of labeled subjects from the dataset

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ec

ifi
ci

ty

(d)

Fig. 4. Classification results for healthy controls vs. schizophrenia patients. Average
performances and standard errors of the mean are reported.

Moreover, GT is consistently improved by the proposed scheme (DML+GT),
which suggests that CS enhancement of MRI data coupled with learning from
unlabeled samples, can result in a better performance of classifying schizophre-
nia. This result is also supported in [3], within the computer vision domain
(object recognition and scene classification).

Finally, DML+GT performances are higher likely due to the additional infor-
mation obtained from the unlabeled MRI data features. This confirms that DML
and CS has the potential to improve schizophrenia classification.

The results obtained are comparable to the state-of-the-art in classification of
schizophrenia. For example, in [12] using functional MRI (fMRI), they obtained
an average classification accuracy of 0.59 and 0.84 using both static and dynamic
resting-state functional network connectivity approach respectively and linear
SVM. In [15] they obtained up to 0.75 accuracy (combining ROI thickness fea-
tures) using 1.5 T sMRI and covariate multiple kernel learning approach using
SVM. In [2], they achieved 0.75 accuracy considering the left hemisphere.

4 Conclusion

In this study, we designed a classification scheme to discriminate healthy con-
trols from schizophrenia patients using MR images-derived data as features.
We believe that learning from contextual anatomical similarity of subjects (i.e.,
learning both from labeled and unlabeled MRI data features) has a great poten-
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tial in dealing with schizophrenia, due to the nature and complexity of the disease
and its associated diagnostic uncertainty.

Furthermore, we showed that enhancing the CS improved the classification
performances of the label propagation algorithm (semi-supervised context learn-
ing). We demonstrated that the combination of metric learning and graph trans-
duction (DML+GT) is useful to learn a meaningful underlying pattern from
MRI data by exploiting contextual information, resulting in better classification
performances.

In the future, we would like to test a non-linear metric for context enhanc-
ing to assess if it can further improve the classification results. Also, GT could
be improved by using another anatomical feature (dis)similarity measurement
instead of the symmetric Euclidean distance of Eq. (3) since it can handle asym-
metric (dis)similarities also.
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