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Abstract. In prior work, we have shown how to compute global network
entropy using a heat bath analogy and Maxwell-Boltzmann statistics. In
this work, we show how to project out edge-entropy components so that
the detailed distribution of entropy across the edges of a network can be
computed. This is particularly useful if the analysis of non-homogeneous
networks with a strong community as hub structure is being attempted.
To commence, we view the normalized Laplacian matrix as the net-
work Hamiltonian operator which specifies a set of energy states with
the Laplacian eigenvalues. The network is assumed to be in thermody-
namic equilibrium with a heat bath. According to this heat bath anal-
ogy, particles can populate the energy levels according to the classical
Maxwell-Boltzmann distribution, and this distribution together with the
energy states determines thermodynamic variables of the network such
as entropy and average energy. We show how the entropy can be decom-
posed into components arising from individual edges using the eigenvec-
tors of the normalized Laplacian. Compared to previous work based on
the von Neumann entropy, this thermodynamic analysis is more effective
in characterizing changes of network structure since it better represents
the edge entropy variance associated with edges connecting nodes of large
degree. Numerical experiments on real-world datasets are presented to
evaluate the qualitative and quantitative differences in performance.
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1 Introduction

There has been a considerable recent interest in computing the entropy associ-
ated with different types of network structure [2,3,5]. Network entropy has been
extensively used to characterize the salient features of the structure of static and
dynamic of network systems arising in biology, physics, and the social sciences
[1–3]. For example, the von Neumann entropy can be used as an effective char-
acterization of network structure, commencing from a quantum analog in which
the Laplacian matrix on graphs [1] plays the role of the density matrix. Further
development of this idea has shown the link between the von Neumann entropy
and the degree statistics of pairs of nodes forming edges in a network [2], which
can be efficiently computed for both directed and undirected graphs [3]. Since
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the eigenvalues of the density matrix reflect the energy states of a network, this
approach is closely related to the heat bath analogy in statistical mechanics.
This provides a convenient route to network characterization [3,5]. By populat-
ing the energy states with particles which are in thermal equilibrium with a heat
bath, this thermalization, of the occupation statistics for the energy states can
be computed using the Maxwell-Boltzmann distribution [4,5]. The properties of
this physical heat bath system are described by a partition function with the
energy microstates of the network represented by a suitably chosen Hamiltonian.
Usually, the Hamiltonian is computed from the adjacency or Laplacian matrix
of the network, but recently, Ye et al. [4], have shown how the partition function
can be computed from a characteristic matrix polynomial instead.

Although entropic analysis of the heat bath analogy provides a useful global
characterization of network structure, it does not allow the entropy of edge or
subnetwork structure to be easily computed. In this paper, we explore a novel
edge entropy projection which can be applied to the global network entropy com-
puted from Maxwell-Boltzmann statistics. We use this technique to analyze the
distribution of edge entropy within a network and explore how this distribution
encodes the intrinsic structural properties of different types of network.

The remainder of the paper is organized as follows. In Sect. 2, we briefly intro-
duce the von Neumann entropy with its approximate degrees of nodes connected
by an edge. In Sect. 3, we develop an entropic network characterization from the
heat bath analogy and Maxwell-Boltzmann statistics, and then describe our edge
entropy projection. In Sect. 4, we undertake experiments to demonstrate the use-
fulness of this novel method. Finally, in Sect. 5 we conclude our paper with a
summary of our contribution and suggestions for future work.

2 Preliminaries

2.1 Von Neumann Entropy

Let G(V,E) be an undirected graph with node set V and edge set E ⊆ V × V ,
and let |V | represent the total number of nodes on graph G(V,E). The |V |× |V |
adjacency matrix A of a graph is defined as

A =

{
0 if(u, v) ∈ E

1 otherwise.
(1)

Then the degree of node u is du =
∑

v∈V Auv.
The normalized Laplacian matrix L̃ of the graph G is defined as

L̃ = D− 1
2 LD

1
2 = ΦΛ̃ΦT (2)

where L = D − A is the Laplacian matrix and D denotes the degree diag-
onal matrix whose elements are given by D(u, u) = du and zeros elsewhere.
Λ̃ = diag(λ1, λ2, . . . λ|V |) is the diagonal matrix with the ordered eigenvalues as
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elements and Φ = (ϕ1, ϕ2, . . . , ϕ|V |) is the matrix with the ordered eigenvectors
as columns.

In quantum mechanics, the density matrix is used to describe a system with
the probability of pure quantum states. Passerini and Severini [1] have extended
this idea to the graph domain. Specifically, they show that a density matrix for a
graph or network can be obtained by scaling the combinatorial Laplacian matrix
by the reciprocal of the number of nodes in the graph.

With this notation, the specified density matrix is obtained by scaling the
normalized Laplacian matrix by the number of nodes, i.e.

ρ =
L̃

|V | (3)

When defined in this way the density matrix is Hermitian i.e. ρ = ρ† and
ρ ≥ 0,Trρ = 1. It plays an important role in the quantum observation process,
which can be used to calculate the expectation value of measurable quantity.

The interpretation of the scaled normalized Laplacian as a density opera-
tor, opens up the possibility of characterizing a graph using the von Neumann
entropy from quantum information theory. The von Neumann entropy is defined
as the entropy of the density matrix associated with the state vector of a sys-
tem. As noted above, Passerini and Severini [1] suggest how the von Neumann
entropy can be computed by scaling the normalized discrete Laplacian matrix
for a network. As a result the von Neumann entropy is given in terms of the
eigenvalues λ1, ....., λ|V | of the density matrix ρ,

S
V N

= −Tr(ρ log ρ) = −
|V |∑
i=1

λ̂i

|V | log
λ̂i

|V | (4)

The von Neumann entropy [1] computed from the normalized Laplacian spec-
trum has been shown to be effective for network characterization. In fact, Han
et al. [2] have shown how to approximate the calculation of von Neumann entropy
in terms of simple degree statistics. Their approximation allows the cubic com-
plexity of computing the von Neumann entropy from the Laplacian spectrum,
to be reduced to one of quadratic complexity using simple edge degree statistics,
i.e.

S
V N

= 1 − 1
|V | − 1

|V |2
∑

(u,v)∈E

1
dudv

(5)

This expression for the von Neumann entropy allows the approximate entropy
of the network to be efficiently computed and has been shown to be an effective
tool for characterizing structural property of networks, with extremal values for
the cycle and fully connected graphs.

Thus, the edge entropy decomposition is given as

S
V N

edge
(u, v) =

1
|E| − 1

|V ||E| − 1
|E||V |2

1
dudv

(6)
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where S
V N

=
∑

(u,v)∈E S
V N

edge
(u, v). This expression decomposes the global para-

meter of von Neumann entropy on each edge with the relation to the degrees
from the connection of two vertexes.

3 Network Entropy in Maxwell-Boltzmann Statistics

3.1 Thermodynamic Representation

Thermodynamic analogies provide powerful tools for analyzing complex net-
works. The underpinning idea is that statistical thermodynamics can be com-
bined with network theory to characterize both static and time-evolving net-
works [6].

Here we consider the thermodynamic system specified by a system of N
particles with energy states given by the network Hamiltonian and immersed
in a heat bath with temperature T . The ensemble is represented by a partition
function Z(β,N), where β = 1/kBT is an inverse of temperature parameter [5].

When specified in this way, the various thermodynamic characterizations of
the network can be computed. For instance, the average energy of the network
can be expressed in terms of the density matrix and the Hamiltonian operator,

〈U〉 = 〈H〉 = Tr (ρH) =
[
− ∂

∂β
log Z

]
N

(7)

and the thermodynamic entropy by

S = kB [log Z + β〈U〉] (8)

Both the energy and the entropy can be regarded as weighted functions of
the Laplacian eigenvalues which characterize the network structure in different
ways. In the following sections, we set the Boltzmann constant to the unity, i.e.,
kB = 1, and explore the thermodynamic entropy in more detail to represent the
intrinsic structure of networks.

3.2 Maxwell-Boltzmann Statistics

The Maxwell-Boltzmann distribution relates the microscopic properties of par-
ticles to the macroscopic thermodynamic properties of matter [4]. It applies to
systems consisting of a fixed number of weakly interacting distinguishable parti-
cles. These particles occupy the energy levels associated with a Hamiltonian and
in our case the Hamiltonian of the network, which is in contact with a thermal
bath [7].

Taking the Hamiltonian to be the normalized Laplacian of the network, the
canonical partition function for Maxwell-Boltzmann occupation statistics of the
energy levels is

Z
MB

= Tr
[
exp(−βL̃)N

]
=

⎛
⎝ |V |∑

i=1

e−βλi

⎞
⎠

N

(9)
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where β = 1/kBT is the reciprocal of the temperature T with kB as the Boltz-
mann constant; N is the total number of particles and λi denotes the microscopic
energy of system at each microstate i with energy λi. Derived from Eq. (8), the
entropy of the system with N particles is

S
MB

= log Z − β
∂ log Z

∂β
= −NTr

{
exp(−βL̃)

Tr[exp(−βL̃)]
log

exp(−βL̃)
Tr[exp(−βL̃)]

}

= −N

|V |∑
i=1

e−βλi∑|V |
i=1 e−βλi

log
e−βλi∑|V |
i=1 e−βλi

(10)

For a single particle, the density matrix is

ρ
MB

=
exp(−βL̃)

Tr[exp(−βL̃)]
(11)

Since the density matrix commutes with the Hamiltonian operator, we have
∂ρ/∂t = 0 and the system can be viewed as in equilibrium. So the entropy in
the Maxwell-Boltzmann system is simply N times the von Neumann entropy of
a single particle, as we might expect.

3.3 Edge Entropy Analysis

Our goal is to project the global network entropy onto the edges of the network.
In matrix form for Maxwell-Boltzmann statistics in Eq. (10), the entropy can be
written as,

S
MB

= −Tr
[
ρ

MB
log ρ

MB

]
= −Tr[Σ

MB
] (12)

Since the spectral decomposition of the normalized Laplacian matrix is

L̃ = ΦΛ̃ΦT (13)

We can decompose the matrix Σ
MB

as follows

Σ
MB

= Φσ
MB

(Λ̃)ΦT (14)

where

σ
MB

(λi) = −N
e−βλi∑|V |
i=1 e−βλi

log
e−βλi∑|V |
i=1 e−βλi

for Maxwell-Boltzmann statistics. As a result, we can perform edge entropy pro-
jection of the Maxwell-Boltzmann statistical model using the Laplacian eigen-
vectors, with the result that the entropy of edge (uv) is given as,

S
MB

edge
(u, v) =

|V |∑
i=1

σ
MB

(λi)ϕiϕ
T
i (15)

Thus, the global entropy can be projected on the edges of the network sys-
tem. This provides useful measures for local entropic characterization of network
structure in a relatively straightforward manner.
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4 Experiments and Evaluations

4.1 Data Sets

Data-Set 1: The PPIs dataset extracted from STRING–8.2 [8] consisting of net-
works which describe the interaction relationships between histidine kinase and
other proteins. There are 173 PPIs in this dataset and they are collected from 4
different kinds of bacteria with the following evolution order (from older to more
recent). Aquifex and Thermotoga-8 PPIs from Aquifex aelicus and Thermotoga
maritima, Gram-Positive-52 PPIs from Staphylococcus aureus, Cyanobacteria-
73 PPIs from Anabaena variabilis and Proteobacteria-40 PPIs from Acidovorax
avenae [9].

Data-Set 2: The New York Stock Exchange dataset consists of the daily prices
of 3,799 stocks traded continuously on the New York Stock Exchange over 6000
trading days. The stock prices were obtained from the Yahoo! financial database
(http://finance.yahoo.com) [10]. A total of 347 stock were selected from this
set, for which historical stock prices from January 1986 to February 2011 are
available. In our network representation, the nodes correspond to stock and the
edges indicate that there is a statistical similarity between the time series asso-
ciated with the stock closing prices [10]. To determine the edge structure of the
network, we use a time window of 20 days to compute the cross-correlation coef-
ficients between the time-series for each pair of stock. Connections are created
between a pair of stock if the cross-correlation exceeds an empirically determined
threshold. In our experiments, we set the correlation coefficient threshold to the
value to ξ = 0.85. This yields a time-varying stock market network with a fixed
number of 347 nodes and varying edge structure for each of 6,000 trading days.
The edges of the network, therefore, represent how the closing prices of the stock
follow each other.

4.2 Experimental Results

We first investigate the temperature dependence of edge entropy for the PPI
networks. We select three different types of edges with different values of degrees
at the vertices and explore how the entropy changes with temperature.

Figure 1(a) plots three selected edge entropies versus temperature with
Maxwell-Boltzmann occupation statistics. The three edges show a similar depen-
dence of entropy on the temperature. As the inverse of temperature (β) increases,
the edge entropy reaches a maximum value. The edge entropy for vertices
with the high degree increases faster than that for the low-degree in the high-
temperature region. In the low-temperature limit, entropy approaches zero. This
is because when the temperature decreases the configuration of particle occupa-
tion becomes identical as the particles always state at the low energy levels since
the thermalization effects vanish.

Figure 1(b) shows the relationship between the edge entropies in the Maxwell-
Boltzmann and von Neumann cases. There is a transition in the relationship
between two entropies with temperature. At high temperature (i.e., β = 0.1),

http://finance.yahoo.com
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Fig. 1. (Color online) (a) Edge entropy with a different degree on both nodes for
Maxwell-Boltzmann statistics. The red line represents the high-degree edge; the blue
line is the low-degree edge and the black line is the median value of degree on the edge
ends; (b) Scatter plot of edge entropies from Maxwell-Boltzmann vs. von Neumann
entropy with different value of temperatures.

the Maxwell-Boltzmann entropy is roughly in linear proportion to von Neu-
mann entropy. However, as the temperature reduces, it takes on an approxi-
mately exponential dependence. The Maxwell-Boltzmann edge entropy decreases
monotonically with the von Neumann edge entropy in the low-temperature
region (β = 10).

Further exploration of the relationship between Maxwell-Boltzmann edge
entropy and von Neumann entropy is shown in Fig. 2, which shows the 3D plots
of edge entropy with the vertex degree. The figure compares the edge entropy
between Maxwell-Boltzmann statistics and von Neumann entropy with node
degree connection for each edge in the network. The observation is that both
entropies have a similar tendency with the degrees at the end. The Maxwell-
Boltzmann edge entropy is more sensitive to the degree variance than the von
Neumann entropy in the high degree region. The reason for this is the constant
term in the von Neumann entropy formula dominates the value of edge entropy

Fig. 2. (Color online) 3D scatter plot of edge entropy from Maxwell-Boltzmann sta-
tistics and von Neumann entropy. (a) Edge entropy in Maxwell-Boltzmann statistics.
(b) Edge entropy from von Neumann formula. (c) The comparison of edge entropy
between Maxwell-Boltzmann statistics and von Neumann entropy.
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when the degrees are large. Thus, the Maxwell-Boltzmann edge entropy is better
suited to represent the differences in graph structure associated with large degree
nodes.

When compared to the von Neumann edge entropy, the Maxwell-Boltzmann
edge entropy is distributed rather differently. Figure 3 shows two examples of PPI
networks, namely Anabaena variabilis and Aquifex aelicus together with their
associated edge entropy histograms. The Maxwell-Boltzmann edge entropies are
more sensitive to the presence of edges associated with high degree nodes, which
provides better edge discrimination. This effect is manifest in the differences of
edge entropy histograms. In the Maxwell-Boltzmann case, the histogram shows
two peaks in the edge entropy distribution, while the von Neumann edge entropy
is concentrated at low values and has just a single peak. In other words, the von
Neumann edge entropy offers less salient structure.

PPI Networks
Maxwell-Boltzmann Statistics 

Distribution
von Neumann Entropy 

Distribution

Fig. 3. (Color online) Examples of protein-protein interaction networks with the edge
entropy distribution from von Neumann entropy and Maxwell-Boltzmann statistics.

Next, we turn our attention to the time evolution of networks. We take the
NYSE network as an example to explore the entropic characterization in the net-
work structure. Figure 4 plots the total network for the Maxwell-Boltzmann and
von Neumann cases. Both entropies reflect the positions of significant global
financial events such as Black Monday, Friday 13th mini-crash, Early 1990s
Recession, 1997 Asian Crisis, 9.11 Attacks, Downturn of 2002–2003, 2007 Finan-
cial Crisis, the Bankruptcy of Lehman Brothers and the European Debt Crisis.
In each case, the entropy undergoes significant fluctuations during the financial
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Fig. 4. (Color online) Entropy from Maxwell-Boltzmann statistics and von Neumann
entropy for NYSE (1987–2011). Number of particle is N = 1 and temperature is β = 10.

crises, associated with dramatic structural changes. Compared to the von Neu-
mann entropy, the Maxwell-Boltzmann case is more sensitive to fluctuations in
the network structure. A good example is Black Wednesday in 1992, which is
obvious in the Maxwell-Boltzmann entropy but is not clear in the von Neumann
case.

We now focus in detail on one critical financial event, i.e., Black Monday
in October 1987, to explore the dynamic structural difference with the entropic
variance. We visualize the network structure at three-time epochs, i.e., before,
during and after Black Monday, and compare the Maxwell-Boltzmann with von
Neumann edge entropy. Figure 5 shows the network structure and edge entropy
distribution during the crisis. Before Black Monday, the stocks are highly con-
nected with a large number of densely connected clusters of stocks following the
same trading trends. This feature is also reflected in the Maxwell-Boltzmann edge
entropy distribution. However, during Black Monday, the number of connections
between stock decrease significantly with large numbers of nodes becoming dis-
connected. Some stocks do though slightly increase their number of links with
other stocks. This manifests itself as a shift of the peak to the high entropy
region of the distribution. After Black Monday, the stocks begin to recover con-
nections with another. The node degree distribution also returns to its previous
shape. In contrast, the von Neuman edge entropy distribution does not com-
pletely reflect the details of these critical structural changes. Compared to the
Maxwell-Boltzmann edge entropy, the distribution of von Neumann edge entropy
does not change significantly during Black Monday and hence does not effectively
characterize the dynamic structure on the network.

In conclusion, both the Maxwell-Boltzmann and von Neumann edge entropies
can be used to represent changes in network structure. Compared to the von
Neumann edge entropy, the Maxwell-Boltzmann edge entropy is more sensitive to
variance associated with the degree distribution. In the low-temperature region,
the Maxwell-Boltzmann edge-entropy has similar degree sensitivity to the von
Neumann edge entropy. However, it is more sensitive to high degree variations.
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Before Black Monday During Black Monday After Black Monday

Fig. 5. (Color online) Visualization of network structure before, during and after Black
Monday. The edge entropy distribution is computed from von Neumann entropy and
Maxwell-Boltzmann statistics. The statistical model such as Maxwell-Boltzmann case
is more sensitive to represent the dynamic structure in the networks.

5 Conclusion

This paper has explored the thermodynamic characterizations of networks result-
ing from Maxwell-Boltzmann statistics, and specifically those associated with
the thermalization effects of the heat bath on the occupation of the normal-
ized Laplacian energy states. We view the normalized Laplacian matrix as the
Hamiltonian operator of the network with associated energy states which can be
occupied by classical distinguishable particles. This extends the use of entropy
as a tool to characterize network structures in both static and time series data.
To compare with the extensively studied von Neuman entropy, we conduct the
experiments which demonstrate that the thermodynamic edge entropy is better
suited to represent the intrinsic structural properties associated to long-tailed
degree distributions. Future work will focus on exploring non-classical alterna-
tives to the Maxwell-Boltzmann occupation statistics and the detailed distribu-
tion of the entropic characterization for different types of complex networks.
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