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Abstract. In this note, we address the problem of simulating elec-
tromyographic signals arising from muscles involved in facial expres-
sions - markedly those conveying affective information -, by relying solely
on facial landmarks detected on video sequences. We propose a method
that uses the framework of Gaussian Process regression to predict the
facial electromyographic signal from videos where people display non-
posed affective expressions. To such end, experiments have been con-
ducted on the OPEN EmoRec II multimodal corpus.

1 Introduction

The face is the locus of a great deal of emotional expressions and researchers
in different fields crossing with affective science [9] have been keen on facial
electromyographic measures of muscle activity, in particular those related to the
zygomaticus major and the corrugator supercilii (see Fig. 1a). The motivation for
such endeavour is straightforward: the zygomaticus major controls the corners
of the mouth (e.g., by pulling them back and up into a smile), the corrugator
supercilii hauls the brow down and together into a frown [18]. In brief, facial
electromyography is a reliable detector of the affective state, either in the con-
tinuous dimension of valence (positive versus negative affective state) [18], or to
reveal the discrete emotions [16].

Electromyography measures the electrical potentials arising from skeletal
muscles [27]. Facial EMG (fEMG), is based on recording the difference in elec-
trical potential pairs of electrodes that are placed close together on the target
facial muscle (Fig. 1b). Main advantages of fEMG stem from (1) the capability
of intercepting even very weak affective expression and (2) the very good time
resolution that allows to reliably register sudden expression changes. On the
other hand, the need of placing electrodes over the face limits the applicability
of this sensor to laboratory acquisition only (see again Fig. 1b). Cogently, in this
case and more generally, the option of monitoring physiological signals via non-
contact means has promise for a variety of out-of-lab applications well beyond
the affective computing realm [23].
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Fig. 1. (a) Anatomical location of facial muscles involved in this study. (b) Electrode
placing to detect the activity of the zygomaticus major and the corrugator supercilii
muscles. (c) Facial landmarks inferred by the method [8]

Whilst there is a number of works addressing noncontact, physiological mea-
surements of heart rate, e.g. [23,26,30], to the best of our knowledge, this is the
first attempt to estimate fEMG signals from video sequences.

We argue that, apart from the per se appealing issue of avoiding the obtru-
siveness of fEMG, the idea of virtual fEMG derived from observing natural,
non-posed facial expression, can be important for dealing with emotion under-
standing in a broader perspective (see Sect. 4, for a discussion). All things con-
sidered, this endeavour is at this stage affordable, given that in the last decade,
the number of public repositories has grown larger, where behavioral data have
been recorded by multiple modalities [7,29], hence providing adequate training
sets and benchmarking, as will be detailed in Sect. 3.

In Sect. 2 the method we propose for the virtual fEMG generation is
described; in Sect. 3 the experiments and the obtained results are shown and
discussed. In Sect. 4 conclusive remarks on this preliminary study are given.

2 Method

Given a video stream I(t), fEMG signal generation is obtained by relying on per-
ceived facial fiducial points, or landmarks. In a nutshell, landmarks are detected
in a sparse coding framework and signal generation is obtained through Gaussian
Process (GP) regression and prediction. More precisely, use the following random
variables (RVs):

– E: a set of fEMG data over time intervals, i.e. a set of signals e;
– L: a set of landmarks l, over time intervals, each li being a landmark;
– F: a set of feature responses f , over time intervals, each f i being a local feature

response;
– X = [x1, · · · ,xN ] ∈ R

D×N : the matrix of observed training patches.
– W = [w1, · · · ,wL] ∈ R

D×L: a dictionary; each column wi is referred to as a
basis vector or atom;

– Z = [z1, · · · , zN ] ∈ R
L×N the latent sparse code matrix associated to W.
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Then the proposed method can be summarised as the sampling of the virtual
fEMG signal ẽ = [e(1), e(2), · · · , e(T )] from the joint conditional distribution:

ẽ ∼ P (E,L,F,W | X, I). (1)

The joint pdf can be factorised as follows:

P (E,L,F,W |X, I) = P (E |L) × P (L |F) × P (F |W, I) × P (W |X) (2)

The method can be best explained by starting from the last factor on the
r.h.s. of Eq. 2. In the sparse coding framework, such term supports dictionary
inference given a set of training patches:

W∗ = arg max
W

P (W |X) (3)

The problem of inferring dictionary W can be reduced to a maximum likelihood
estimation W∗ = arg max P (W |X) ≈ arg max P (X |W), where the observable
patch vector xi is approximated as a sparse combination of basis vectors wi, i.e.
x = Wz+v, v being a residual noise vector sampled from a zero mean Gaussian
distribution N (0, σ2

I). The dictionary can be derived under the Olshausen
and Field approximation [21], log P (X|W) ≈ ∑N

i=1 maxzi
[log N (xi|Wzi, σ

2
I) +

log P (zi)], and turned in the minimization of the negative log-likelihood (NLL).
This can be done efficiently by using either the K-SVD [3] or the R-SVD [15]
algorithms as shown in [1,2,14].

The third factor represents the feature likelihood under the current observ-
able video I and the inferred dictionary. The goal here is to compute feature
responses

F∗ ∼ P (F | W, I) (4)

at each frame in I. Here, we adopt the Histograms of Sparse Codes (HSC) rep-
resentation to sample the local response f i [8].

The second factor accounts for the detection of landmarks given the observed
F∗. A part-based detection approach is adopted [8], where every facial landmark
can be modeled as a part, and the locations L of parts of the face can be generated
according to m views or poses by some similarity transformation τ , giving rise to
the global model Lk,τ . The generation of L can be accomplished by marginalising
over the set of m models, i.e., P (L|F) =

∑m
k=1

∫

τ
P (L|Lk,τ )P (Lk,τ |F)dτ . The

term P (L|Lk,τ ) accounts for dependence of L from the global configuration Lk,τ .
Assume that: (i) the locations of the parts {li}l

i=1 are conditionally inde-
pendent of one another and the same holds for the detector responses f i;
(ii) the relation between the transformed model landmark and the true landmark
is translationally invariant, i.e., P (lik,τ |lk,τ ) only depends on Δlik,τ = lik,τ − li.
Then, the following MAP solution can be derived,

L∗ = arg max
L

m
∑

k=1

∫

τ

l
∏

i=1

P (Δlik,τ )P (li|f i)dτ, (5)
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where the prior P (Δlik,τ ) accounts for the shape or global component of the
model, and P (li|f i) for the appearance or local component. The latter relies on
patches representing HSC responses to face landmarks.

Eventually, the first factor on the r.h.s. of Eq. 2, is the likelihood supporting
the generation of the fEMG signal given the extracted landmarks. The generative
model behind the conditional distribution P (E |L), under Gaussian assumption,
assumes that a realisation of a target electromyographic signal e is generated
by a latent function g = {g(dn)} of a suitable measurement d of the landmarks
corrupted by additive Gaussian noise. Thus, at time (frame index) t:

e(t) = g(d(lp(t))) + ν(t), ν ∼ N (0, σ2
e) (6)

where, in our case, d(lp) is a vector of distances over the pool lp, a sub-
set of the extracted landmarks l, which is suitable to capture muscle activ-
ity. Note that the mapping function g(·) needs not to be linear. In other
terms, the conditional distribution P (E |L) is defined as the marginal likeli-
hood P (E |L) =

∫

P (E |g,L)P (g |L)dg, where the marginalisation over the
function values g, can be performed by using a GP prior distribution over func-
tions P (g |L) = N (μg(L), k(L,L)), k(L,L) being the kernel function [24], i.e. in
our case

g(d(lp)) ∼ GP(μ(d(lp)), k(d(lp),d′(lp))), (7)

and where the likelihood of the observed targets is P (E |g,L) = N (g, σ2
eI), from

which Eq. 6 is obtained. Note that, due to analytical tractability of the Gaussian
distribution, all the above computations are determined in closed form so that,
prior to the prediction of the virtual fEMG signal ẽ, parameter learning can be
efficiently performed on the given dataset {L,E} (see Rasmussen and Williams
[24] for details).

3 Experimental Work

(A) Experimental Setup. The experiments have been conducted on the mul-
timodal corpus OPEN EmoRec II [25]. The dataset was designed to induce
emotional responses in users involved in naturalistic-like human-computer inter-
action (HCI) according to two HCI-experimental settings. In the former, pictures
taken from the IAPS set [17] were used to induce emotions. Stimulus sequences
consisted of 10 pictures with similar ratings according to the 5 possible affective
states: high valence and high arousal (HVHA), high valence and low arousal
(HVLA), low valence and low arousal (LVLA), low valence and high arousal
(LVHA) and neutral. In the second part of the experiment, the emotions were
induced during a naturalistic-like HCI in a standardized environment. In both
the experiments several data were recorded: video, audio, trigger information and
physiological data, namely respiration, fEMG from corrugator supercilii activity,
fEMG zygomaticus major activity, Blood Volume Pulse and Skin Conductance.

In this paper we refer to the data, videos and fEMG signals, acquired in the
first experiment, that is the recording of 30 subjects, each one stimulated by 5
image sequences.



Virtual EMG via Facial Video Analysis 201

(B) Landmark Extraction. Given a video sequence of a facial expression, we
account for Eqs. 3, 4 and 5 by applying the method described in [8] to infer the
locations of facial landmarks (Fig. 1c). Such method extends in a sparse coding
framework Zhu and Ramanan’s technique [31], which jointly performs face and
landmark detection. Once landmarks L have been detected, an adequate pool
lp of landmarks should be defined in order to provide related distance measures
d(lp) as a “proxy” to muscle activity. Figures 2 and 3 below show the landmarks
involved in measuring corrugator supercilii and zygomaticus major activities,
respectively.

Fig. 2. Landmarks and distances accounting for the corrugator supercilii activity
(Color figure online)

Fig. 3. Landmarks and distances accounting for the zygomaticus major activity (Color
figure online)

The fEMG signal captures very local muscle movements and its simulation
should derive from a small subset of facial landmarks with superposition to the
muscle of interest. The most natural choice would be to consider the landmarks
closest to the muscle as shown in Fig. 2, (blue dashed line, left panel) for the
corrugator supercilii, and in Fig. 3, (blue dashed line, left panel) for the zygo-
maticus major. However, landmark displacements are noisy, due to the detection
method and possible occlusions caused by the sensors. We thus investigate sev-
eral pools of displacements aiming at pinpointing the most suitable ones for
fEMG regression.

In the case of the corrugator supercilii, we thus consider the symmetric dis-
tance between the inner eye corners and the inner eyebrow landmarks (Fig. 2, left
panel), the two distances coupled, and more global measures obtained consider-
ing the distances between the inner eye corners and the corresponding eyebrow
landmarks, both separately and all together (Fig. 2, right panel). Similarly for the
zygomaticus major, we take into account the symmetric distance as in Fig. 3, (red
line, left panel), the two punctual distances coupled, and the distances between
the chin and the two halves extern lip contour landmarks, both singularly and
coupled (Fig. 3, right panel).
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Fig. 4. fEMG signal processing pipeline.

(C) fEMG Preprocessing. The raw data set of fEMG measurements derived
from corrugator supercilii and zygomaticus major activities - which we denote
Ec and Ez, respectively - is a collection of 1-D signals captured at 512 Hz or
more (Fig. 4a). The low frequencies are strongly influenced by artifacts such
as motion potentials, eye movements, eye blinks, swallowing, and respiration,
thus requiring a preliminary high-pass filtering to remove the strongest artifacts
that would otherwise dominate the real facial EMG potentials. In the literature
different cutoff frequencies are adopted for this purpose, ranging from 5 to 20 Hz
[6,19,32], We use a 20 Hz cutoff frequency, guaranteeing artifact elimination. In
addition, filtering has to be applied to remove the 50 Hz power line interference.
To this aim, notch filtering is adopted (Fig. 4b). Further, when fEMG activation
is addressed, the rectification and envelope are advised [5,20]. Eventually, to
train the Gaussian process, the signals are down-sampled to 25 Hz so that the
fEMG and the video frequencies are in correspondence (Fig. 4c).

(D) GP Model Learning and fEMG Prediction. Given a dataset of inputs and
targets, {L,E} = {ln, en | n = 1, · · · , N}, we are interested in evaluating the
mapping of S test sequences of landmarks Lnew = {lnew,s | s = 1, · · · , S} into
fEMG sequences Enew = {enew,s | s = 1, · · · , S}, where ẽ = enew,s is the
desired virtual fEMG signal. Notice that here and in what follows, we thoroughly
write lp,new in place of actual measurements d(lp,new) to simplify notation. For-
mally, we need to evaluate the predictive distribution P (Enew|L,E,Lnew) =
∫

P (Enew | gnew)P (gnew | L,E,Lnew)dgnew, where P (Enew | gnew) is the
likelihood given by Eq. 6. The posterior over functions P (gnew | L,E,Lnew)
is a Gaussian distribution N (μnew, knew), whose parameters can be written
in closed form [24], namely, μnew = k(Lnew,L)

[

k(L,L) + σ2
eI

]−1 and knew =
k(Lnew,Lnew) − k(Lnew,L)

[

k(L,L) + σ2
eI

]−1
k(L,Lnew). Kernel functions and

related hyperparameters are obtained from the training stage.
As to the latter, we train different models, varying the referred landmark

pool, p ∈ {1, ..., 6}, associated with the related muscle, and exploring the GP
behaviour by adopting the well-known Squared Exponential Kernel (kSE), Ratio-
nal Quadratic Kernel (kRQ), and the Matern 3/2 kernel (kM32) [24]. For each
model, training and test sets are derived adopting the k-fold cross validation
method, partitioning data into 10 subsets.
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(E) Results. The quality of the virtual fEMG, ẽ, with respect to the original
fEMG filtered signal, e, is evaluated in terms of Mean Square Error (MSE), and
by the Concordance Correlation Coefficient measures (CCC):

MSE(e, ẽ) =
1
T

T
∑

t=1

(e(t) − ẽ(t))2 CCC(e, ẽ) =
2cov(e, ẽ)

σ2
e + σ2

ẽ + (μe − μẽ)2
,

being μe and μẽ the signal means, σ2
e and σ2

ẽ the variances, and cov(e, ẽ) the
covariance.

In Table 1 we report the performances obtained in simulating the corrugator
supercilii fEMG, adopting the different learnt models. Those concerning the
virtual generation of the zygomaticus major fEMG are shown in Table 2.

Analysing the behaviour of the models, we observe that the MSE and the
CCC performances are always coherent. We can conclude that both in the sim-
ulations of the corrugator supercilii fEMG and of the zygomaticus major, best
performances are achieved through the largest pool of landmark distances. This
is likely to depend on the noise that characterizes landmarks localization, cer-
tainly attenuated by considering a pool of landmarks rather than punctual ones.

Table 1. Performances achieved in the virtual generation of the corrugator supercilii
fEMG, referring to different pool of landmarks (p ∈ {1...6}), and different kernels
(kSE , kRQ, kM32). Performances are expressed as MSE and CCC.

Pool MSE CCC

SE RQ M32 SE RQ M32

1 42.0075 31.8062 36.2262 0.9855 0.9888 0.9873

2 4.9623 4.9285 4.9343 0.9983 0.9983 0.9983

3 3.8280 3.7601 3.7185 0.9987 0.9987 0.9987

4 2.0082 1.7696 1.7273 0.9993 0.9994 0.9994

5 1.9681 1.7991 1.7070 0.9993 0.9994 0.9994

6 1.0478 0.7167 0.6522 0.9996 0.9997 0.9998

Table 2. Performances achieved in the virtual generation of the zygomaticus major
fEMG. Results are organized as in Table 1

Pool MSE CCC

SE RQ M32 SE RQ M32

1 11.5408 11.5193 11.5001 0.9969 0.9969 0.9969

2 13.3317 13.2269 13.1922 0.9965 0.9965 0.9965

3 8.1977 7.8251 7.7871 0.9978 0.9979 0.9979

4 2.2541 1.5721 1.4217 0.9994 0.9996 0.9996

5 2.5401 1.2763 1.3191 0.9993 0.9997 0.9997

6 1.0401 0.6291 0.5617 0.9997 0.9998 0.9999
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In particular, we observe that the punctual distance d = 1 in the corrugator
supercilii fEMG gives the worst performances, this because, in the considered
dataset, the fEMG sensor often partial occludes the eyebrow. Also, it is worth
noticing that system behaviour is robust to the use of different kernels.

Figures 5 and 6 illustrate typical fEMG signal reconstructions for both the
corrugator and the zygomaticus muscles.

Fig. 5. Detail of fEMG reconstruction of the corrugator supercilii signal, using the
Squared Exponential kernel and considering the 5-th landmark pool. The shaded area
represents the pointwise mean plus and minus two times the standard deviation for
each input value (corresponding to the 95% confidence region)

Fig. 6. Detail of fEMG reconstruction of the zygomaticus signal, using the Matern 3/2
kernel and considering the 6-th landmark pool
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4 Discussion and Conclusions

We have presented a method for detecting the electromyographic signal aris-
ing from muscles involved in affective, non-posed, facial expressions, which only
relies on the facial landmarks detected in videos. Preliminary experiments on
the OPEN EmoRec II multimodal corpus [25] have given evidence of promising
results.

Clearly, one should be aware that there are limitations in the detection capa-
bility of the method. It is known that real fEMG can intercept even very weak
affective expressions, even below the visible display of the expression itself [18];
however, this limit is shared by all virtual methods that attempt at simulating
in vivo measurements from visual input.

Apart from the appealing issue of avoiding the obtrusiveness of fEMG mea-
surement, what is to be gained by such attempt in view of the affective com-
puting problem? All things considered, as detailed in Sect. 2, the landmarks we
rely upon for regressing the fEMG signal are nothing but a subset of the facial
landmarks we collect, the latter, in principle, providing full information - at least
that available from the video sequence - to further proceed with facial expres-
sion analysis for affective computing purposes. Under the circumstances, it is
worth making clear the rationale behind this study. Affective computing aims
at dealing with machines that might have the ability to (1) recognize emotions,
(2) express emotions, (3) “have emotions”, the latter being the “hardest stuff”
[22]. So far, most current research focuses on (1) and (2), with image process-
ing and pattern recognition-based affect detection playing a prominent role [7].
The research work fostering this study pursues a different approach, centred on
simulation-based affect analysis [28]. According to embodied simulation theories,
understanding emotions of others is supported by running the same emotional
apparatus - possibly in reverse - that is already used to generate or experience
the emotion, eventually causing a “reactivation” of the corresponding mental
state [11–13]. Indeed, an emotion is a neural reaction to a certain stimulus,
realised by a complex ensemble of neural activations in the brain. The latter
often are preparations for (muscular, visceral) actions (facial expressions, heart
rate increase, etc.), as a consequence, the body will be modified into an “observ-
able” [10]. It is in such a broader perspective that it is particularly relevant to
have available a variety of physiological signals, real or virtual, for building the
latent continuous space of emotions [4]. fEMG, together with others that can
be obtained by less obtrusive means (heart rate, skin conductance, respiratory
rhythm, gaze scan path), is one such signal.

Acknowledgments. This research was carried out as part of the project “Interpret-
ing emotions: a computational tool integrating facial expressions and biosignals based
shape analysis and bayesian networks”, supported by the Italian Government, managed
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