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Abstract. The recognition of activities performed by humans, in a non-
intrusive and non-cooperative way, is a very relevant task in the develop-
ment of Ambient Intelligence applications aimed at improving the quality
of life by realizing digital environments that are adaptive, sensitive and
reactive to the presence (or absence) of the users and to their behavior.
In this paper, we present an activity recognition approach where angle
information is used to encode the human body posture, i.e. the relative
position of its different parts; such information is extracted from skeleton
data (joint orientations), acquired by a well known cost-effective depth
sensor (Kinect). The system is evaluated on a well-known dataset (CAD-
60 (Cornell Activity Dataset) for comparison with the state of the art;
moreover, due to the lack of datasets including skeleton orientations, a
new benchmark named OAD (Office Activity Dataset) has been inter-
nally acquired and will be released to the scientific community. The tests
confirm the efficacy of the proposed model and its feasibility for scenarios
of varying complexity.

1 Introduction

Automated high-level human activity analysis and recognition play a fundamen-
tal role in many relevant and heterogeneous application fields such as video-
surveillance, ambient assisted living, automatic video annotation or human-
computer interfaces. Of course different applications need specific approaches to
be designed and implemented; general-purpose solutions, though highly desir-
able, are very difficult to implement due to the differences in the source of infor-
mation, the requirements in terms of efficiency, the environmental factors which
have a significant impact on performance, etc. This work focuses on human
activity recognition in indoor environments which has typical applications in
fall-detection of elderly people, abnormal human behavior detection or human
computer interfaces. In our opinion unobtrusiveness is one of the most impor-
tant and interesting features of ambient intelligence applications; to meet this
requirement, the proposal of this paper is a vision-based technique where simple
cameras are used as input devices and the users are not require to wear neither
to actively interact with sensors of different nature.
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With respect to other application scenarios such as video-surveillance, indoor
environments offer several advantages: the input data are somehow more “con-
trolled” and easier to process (e.g. to segment the subjects in the scene), the
number of possible users is generally limited and input devices, such as RGB-
D cameras, can be successfully adopted for data acquisition. The problem of
activity recognition is however still complex if we consider that the users are not
cooperative and a real-time processing is needed to produce timely and useful
information. This paper proposes an activity recognition technique based on the
use of RGB-D cameras, and in particular the Kinect sensor, for data acquisi-
tion. To the best of our knowledge all the existing techniques based on skeleton
data only exploit 3D joint position, while joint orientation is typically neglected.
Aim of this work is to evaluate the reliability of the joint orientation estimates
provided by Kinect and to verify their effectiveness for action recognition.

The paper is organized as follows: an overview of the state-of-the-art is pro-
vided in Sect. 2, Sect. 3 presents the proposed approach, the results of the exper-
imental evaluation are given in Sect. 4 and finally Sect. 5 draws some conclusions
an presents possible future research directions.

2 State of the Art

Vision-based activity recognition techniques do not require the use of special
devices and the only source of information is represented by cameras placed
in the environment which continuously acquire video sequences. Many works
adopt common RGB cameras to acquire information from the environment, but
undoubtedly the widespread diffusion of low-cost RGB-D sensors, such as the
well-known Microsoft Kinect, greatly boosted the research on this topic. Even
though a few hybrid approaches combining gray-scale and depth information
have been proposed (e.g. [1]), RGB-D sensors alone have been widely used for
activity analysis [2] and several benchmarks have been released to facilitate the
comparative evaluation of recognition algorithms [3,4]. The most attractive fea-
ture of the Kinect sensor is the ability to capture depth images, coupled with the
possibility of tracking rather accurately skeletons of individuals in the scene. The
skeleton representation provided by Kinect which consists of a set of joints, each
described in terms of position and orientation in the 3D space. Such information
is extremely useful for human activity analysis as confirmed by many approaches
in the literature. A few works exploit only the depth information (and not the
skeleton), and typically perform an image segmentation to identify some rele-
vant posture features from the human body [5]. Most of the approaches perform
a skeleton analysis, adopting different representations of the set of joints such
as the simple joint coordinates, normalized according to some body reference
measure [6,7] or joint distances [8], EigenJoints in [9] where PCA is applied to
static and dynamic posture features to create a motion model, histograms of 3D
joints [10], kinematic features, obtained observing the angles between couples
of joints [11], Gaussian Mixture Models representing the 3D positions of skele-
ton joints [12], Dynamic Bayesian Mixture Model of 3D skeleton features [13]
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or spatio-temporal interest points and descriptors derived from the depth image
[14]. Another common approach is to adopt a hierarchical representation where
an activity is composed of a set of sub-activities, also called actionlets [15–18].
Finally a few works also analyze the interaction of humans with objects to obtain
a better scene understanding. The authors of [18] adopt a Markov random field
where the nodes represent objects and sub-activities, and the edges represent the
relationships between object affordances, their relations with sub-activities, and
their evolution over time is proposed; in [19] the authors propose a graph-based
representation.

3 Proposed Approach

The idea behind the proposed approach is to encode each frame of a video
sequence as a set of angles derived from the human skeleton, which summarize
the relative positions of the different body parts. This proposal presents some
advantages: the use of skeleton data ensures a higher level of privacy for the
user with respect to RGB sequences, and the angle information derived from
skeletons is intrinsically normalized and independent from the user’s physical
build. The skeleton information extracted by the Kinect [20] consists of a set
of n joints J = {j1, j2, ..., jn} where the number n of joints depends on the
software used for the skeleton tracking (i.e. typical configurations include 15,
20 or 25 joints). Each joint ji =

(
pi,

−→oi

)
is described by its 3D position pi

and its orientation −→oi with respect to “the world”. Our approach exploits the
information given by joint orientations to compute relevant angles whose spatio-
temporal evolution characterizes an activity. We consider three different families
of angles (see Fig. 1a and b):

– θab: angle between the orientations −→oa and −→ob of joints ja and jb. Angles θab

are computed for the following set of couples of joints:

Aθ = {(j1, j3), (j1, j5), (j3, j4), (j5, j6), (j0, j11), (j0, j12), (j7, j8), (j9, j10)}

– ϕab: angle between the orientation −→oa of ja and the segment
−−→
jajb connecting

ja to jb (we can consider the segment as the bone that interconnects the two
joints). Angles ϕab are computed for the following set of couples of joints:

Aϕ = {(j3, j1), (j3, j4), (j4, j3), (j4, j11), (j11, j4), (j5, j1), (j5, j6), (j6, j5),

(j6, j12), (j12, j6), (j2, j7), (j7, j2), (j7, j8), (j2, j9), (j9, j2), (j9, j10)}
– αbac: angle between the segment

−−→
jajb connecting ja to jb and

−−→
jajc that con-

nects ja to jc. Angles αabc are computed for the following triplets of joints:

Aα = {(j2, j7, j8), (j7, j8, j13), (j2, j9, j10), (j9, j10, j14)}
We consider only subset of the possible angles, mainly obtained from the

joints of the upper part of the body, because not all the angles are really infor-
mative: for example the angles between head and neck are almost constant over
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Fig. 1. (a) Representation of a subset of joints ja = (pa, −→oa), jb = (pb,
−→ob) and jc =

(pc,
−→oc) and related angles θ, ϕ and α. (b) The 28 angles used in our experiments

computed from a skeleton configuration with 15 joints.

time and does not provide useful information for activity discrimination. Differ-
ent configurations of angles have been evaluated and compared in (see Sect. 5).
Therefore, each frame fi of the video sequence Si, i = 1, .., l is represented by
a vector obtained as the ordered concatenation of the values of θi | i ∈ Aθ,
ϕj | j ∈ Aϕ, αk | k ∈ Aα

vi = (θ1, ..., θm, ϕ1, ...ϕn, α1, ..., αs)

of size (m + n + s).
It is worth noting that the number of frames for each video sequence can

be extremely high and certainly not all the resulting feature vectors are signifi-
cant: the variation of the angles between two subsequent frames is minimal and
usually unnoticeable. We decided therefore to adopt a Bag of Word model [21]
with a two-fold objective: minimizing the representation of each sequence keep-
ing only the relevant information and producing fixed-length descriptor which
can be used to train an activity classifier. The idea is to represent each activ-
ity as an histogram of occurrences of some reference postures (see Fig. 2 for a
visual representation), derived from the analysis of the training set. A reference
dictionary is first built by applying the K-means clustering algorithm [22] to
the set of posture features extracted from the training sequences. Since some
subjects could be left-handed, all the angle features are mirrored with respect
to the x-axis. We denote with k the number of clusters determined (i.e. the
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Fig. 2. Visual representation of a subset of key poses corresponding to some cluster
centroids of the dictionary W .

dictionary size). The dictionary should encode the basic postures assumed dur-
ing the different actions in the training set and will be used to represent each
sequence as an histogram of occurrences of such basic elements. Given a set of
training sequences TS = {Si, i = 1, .., d}, representative of the different actions,
the k-means clustering algorithm is applied to the associated set of feature vec-
tors FV = {vi, i = 1, .., d} to obtain a set of k clusters: the cluster centroids
are used as words of the reference dictionary W = {wi, i = 1, .., k}. The number
of clusters k determines the size of the dictionary and is one of the most rel-
evant parameters of the proposed approach. Each sequence is then encoded as
a normalized histogram of occurrences of the words in W . Of course the angle
features are continuous values and a precise correspondence between the words
in the dictionary and the descriptors is very unlikely; therefore when computing
the histogram each feature vector fi is associated to the closest word w∗

j in the
dictionary: j∗ = argminj ||fi − wj ||.

A Random Forest Classifier [23] is trained to discriminate the different activ-
ities represented in the training set; the classifier consists of an ensemble of
decision trees, each trained on a subset of the patterns and a subset of the fea-
tures and the final classification is obtained combining the decisions of the single
sub-trees.

4 Experiments

Several experiments have been conducted to evaluate the sensitivity of the pro-
posed approach to its main parameters (i.e. the set of angles selected and the
dictionary size). Despite of the large number of existing benchmarks for activity
recognition from skeleton information, joint orientations are generally not avail-
able. We used for testing the well-known CAD-60 [15,24], released by the Cornell
University, and a newly acquired dataset. CAD-60 contains 60 RGB-D videos
where 4 different subjects (two male and two female, one left-handed) perform
12 daily activities in 5 environments (office, kitchen, bedroom, bathroom and
living room). The authors of the benchmark propose two settings named new
person, where a leave-one-out cross-validation is adopted, and have seen where
the training set includes data from all the subjects. We adopted the new person
testing protocol, in accordance with all the related works in the literature, to
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allow for a comparison of the results. Moreover, analogously to other works, the
recognition accuracy is measured separately for the different rooms.

4.1 Office Activity Dataset (OAD)

Due to the lack of datasets including information on joint orientations, we
decided to acquire a new database of human activities to perform further tests.
Data acquisition was carried out in a single environment (office) from several
perspectives based on the action being performed. From this point of view the
benchmark is more complex than CAD-60 because all the activities need to be
compared for activity recognition and the higher number of subjects increases
the variability of each action. It contains 14 different activities: drinking, getting
up, grabbing an object from the ground, pour a drink, scrolling book pages, sitting,
stacking items, take objects from a shelf, talking on the phone, throwing some-
thing in the bin, waving hand, wearing coat, working on computer, writing on
paper. Data was collected from 10 different subjects (five males and five females)
aged between 20 and 35, one subject left-handed. The volunteers received only
basic information (e.g. “pour yourself a drink”) in order to be as natural as
possible while performing actions. Each subject performs each activity twice,
therefore we have collected overall 280 sequences.

The device used for data acquisition is the Microsoft Kinect V2 whose SDK
allows to track 25 different joints (19 of which have their own orientation). For
testing, we adopted the same “new person” setting of the CAD-60 dataset: a
leave-one-out cross-validation with rotation of the test subject. The set of angles
used for testing the proposed approach is however the same used for CAD-60.
The dataset will be made available online in the Smart City Lab web site (http://
smartcity.csr.unibo.it).

4.2 Results

Performance evaluation starts from the analysis of the confusion matrix M where
a generic element M (i, j) represents the percentage of patterns of class i clas-
sified by the system as belonging to class j. Further synthetic indicators can be
derived from the confusion matrix; in particular, we computed precision P and
recall R as follows:

P =
TP

TP + FP
,R =

TP

TP + FN

where TP, FP and FN represent respectively the True Positives, False Positives
and False Negatives which can be easily derived from the extra-diagonal elements
of the confusion matrix. In analogy to the proposal in [8], each video sequence is
partitioned into three subsequences which are used independently in the tests.
The results obtained are summarized in Fig. 3 where the Precision (P ) and Recall
(R) values are reported for different experimental settings, i.e. variable dictionary
size (k) and three subsets of angles considered for skeleton representation. In
particular, the efficacy of the joint orientations is assessed by comparing the

http://smartcity.csr.unibo.it
http://smartcity.csr.unibo.it
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Fig. 3. Precision (a) and recall (b) values on CAD-60 with different configurations of
angles, as a function of the dictionary size (k).

results of two different settings - 24 angles, (α angles omitted) and 28 angles -
with those obtained using only Aα angles, computed between all the existing
pairs of neighboring segments (13 angles, no joint orientation is used in this case).
The results show that, overall, the accuracy of the proposed technique is good.
As expected the dictionary size has a significant impact on the performance;
it is worth noting that different actions have often very similar postures (e.g.
drinking and talking on the phone) and a value of k excessively low probably
determines the reference posture of such activities to collapse in a single word,
thus making difficult to correctly distinguish them. On the other hand, a high
value of k produces very sparse feature vectors, more sensitive to the presence
of noise. The best results have been reached with a value of k = 100 which also
allows to efficiently perform the classification task. Also the angle configuration is
important; the use of 28 angles produces better results both in terms of precision
and recall with respect to the version with 24 angles. The limited accuracy of
the configuration with 13 angles, where the orientation is not exploited, confirm
the effectiveness of joint orientation for accurate posture representation. These
results also show that the significance of the angles varies greatly and a few
strategical angles can greatly improve the recognition performance. As to the
computational complexity, the proposed approach is very efficient, and all the
angle configuration are suitable for a real time processing.

The confusion matrix, reported in Table 1, allows to analyze the main causes
of errors. The mismatch occurred are all rather comprehensible since they are
related to very similar activities (e.g. cooking-chopping, cooking-stirring). In
these cases the skeleton information is probably too synthetic to discriminate
the two actions which are very similar in terms of posture. A comparison with
the state of the art is provided in Table 2 which summarizes the results pub-
lished in the benchmark website. Despite of the very good accuracy reached by
different approaches in recent years, the proposed approach outperforms existing
methods, both in terms of precision and recall.

The results on the Office Activity Dataset are reported in Tables 3 and 4 for
the standard configuration with 28 angles and k = 100. The overall results con-
firm that this benchmark is more difficult for several reasons: (i) the activities are
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Table 1. Confusion matrix using k = 100 words and a configuration of 28 angles on
CAD-60.
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Talking on the phone 0.86 0.0 0.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Writing on whiteboard 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Drinking water 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rinsing mouth with water 0.0 0.0 0.0 0.75 0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Brushing teeth 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wearing contact lenses 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Talking on couch 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
Relaxing on couch 0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.92 0.0 0.0 0.0 0.0
Cooking (chopping) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
Cooking (stirring) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17 0.83 0.0 0.0

Opening pill container 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Working on computer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Table 2. Precision (P ) and recall (R) of the proposed approach on CAD-60, com-
pared to the results published in the benchmark website. “*” indicates that a different
protocol was used.

Algorithm P R

Proposed approach 95.0 95.0

Sung et al. [15,24] - 2012 67.9 55.5

Koppula et al. [18] - 2012 80.8 71.4

Zhang and Tian [11] - 2012 86 84

Ni et al. [25] - 2012 Accur: 65.32 -

Yang and Tian [9] - 2013 71.9 66.6

Piyathilaka and Kodagoda [12] - 2013 70* 78*

Ni et al. [1] - 2013 75.9 69.5

Gupta et al. [5] - 2013 78.1 75.4

Wang et al. [17] - 2013 Accur: 74.70 -

Zhu et al. [14] - 2014 93.2 84.6

Faria et al. [13] - 2014 91.1 91.9

Shan and Akella [7] - 2014 93.8 94.5

Gaglio and Lo Re [6] Morana - 2014 77.3 76.7

Parisi et al. [26] - 2015 91.9 90.2

Cippitelli et al. [8] - 2016 93.9 93.5
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Table 3. Precision (P ) and Recall (R) values of the proposed approach for each activity
on OAD.

Action P R

Drinking 60.87 77.78

Getting up 81.25 72.22

Grabbing object from ground 83.33 83.33

Pouring a drink 75.00 83.33

Scrolling book pages 80.95 94.44

Sitting 59.09 72.22

Stacking items 90.00 100.00

Taking objects from shelf 100.00 94.44

Talking on phone 86.67 72.22

Throwing something in bin 75.00 33.33

Waving 66.67 66.67

Wearing coat 100.00 100.00

Working on computer 94.12 88.89

Writing on paper 78.95 83.33

Overall 80.85 80.16

Table 4. Confusion matrix using k = 100 words and a configuration of 28 angles on
OAD.
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Drinking 0.78 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.11 0.0 0.06 0.0 0.0 0.0
Getting up 0.0 0.72 0.0 0.0 0.0 0.28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Grabbing obj. 0.0 0.0 0.83 0.06 0.0 0.06 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0
Pour a drink 0.0 0.0 0.0 0.83 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Scrolling book 0.0 0.0 0.0 0.0 0.94 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0
Sitting 0.0 0.17 0.06 0.0 0.0 0.72 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0

Stacking items 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Taking objects 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.94 0.0 0.06 0.0 0.0 0.0 0.0

Talking on phone 0.17 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.72 0.0 0.06 0.0 0.0 0.0
Throwing something 0.11 0.0 0.11 0.0 0.06 0.17 0.11 0.0 0.0 0.33 0.06 0.0 0.0 0.06

Waving 0.17 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.67 0.0 0.0 0.06
Wearing coat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Working on computer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.89 0.11
Writing on paper 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.06 0.83

not partitioned according to the room where they are performed and the prob-
ability of misclassification increases; (ii) the number of subjects is higher and
the variability in executing the actions increases proportionally. For instance the
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worst results have been measured for the activity “throwing something in bin”
that the different subjects executed very differently. Other mismatches occur
between the activities “sitting” and “getting up”; in principle the reference pos-
tures of the two actions are similar, but their temporal ordering in the execution
is different and probably the BoW representation adopted is not able to capture
this aspect. However in general the good performance of the proposed approach
is confirmed on this dataset as well.

5 Conclusions

A human activity recognition technique based on skeleton information has been
proposed in this work. In particular, the effectiveness of joint orientations, typ-
ically neglected by the works in the literature, has been evaluated on differ-
ent benchmarks. The efficacy of the proposal have been confirmed; the results
obtained overcome the state-of-the-art in the well-known CAD-60 benchmark
and good accuracy levels can be reached also on the newly acquired OAD dataset.
Future researches will be devoted to the study of techniques able to couple the
human posture information (encoded according to the model proposed here) to
the information from the surrounding environment (e.g. about interactions with
objects or facial expressions) which would certainly increase the performance
and enable a fine-grained classification of activities.
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